ADSP-BF53x/BF56x Blackfin® Processor
Programming Reference

Revision 1.0, June 2005

Part Number
82-000556-01

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-

ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,

and Visual DSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE

Purpose of This Manualccoooiiiiiiiiniiiiiiiccee XXV
Intended AUdIENCE ..ovvveiiiiiieiiiiiee e XXV
Manual CONTENES ovvuuniiiiiiieee et Xxvi
What’s New in This Manualccoovieeiiiiiiiiiiiiieeeeeeeeeei, xxvii
Technical or Customer SUPPOIt ...cceeevviiiiiiiiiiiiiiiiiccec e, xxviii
Supported Processorscocuveerireiniiieniiieniieeeiee e XXViil
Product Informationcoooiiiiiiiiiieeeeieiiiiieeee e XXIX
MyAnalog.comcoooiiiiiiiiiiiiiiiiic XXix
Processor Product Informationcceeeeiiiiiiiiiiiiiiieeiiiiieeeeeeen, XXX
Related DocUmMENtseeeiiiiiieiiiiiiiieeeeeieee e XXXi
Online Technical Documentationccceeeeiiiiiieeiiiiinnneennnn. Xxxil
Accessing Documentation From VisualDSP++ ... XXx111
Accessing Documentation From Windowscccce..e. xxxili
Accessing Documentation From the Web XXXIV

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

111

CONTENTS

Printed Manualsooooiiiiiiiiiiiiiii e XXXV
Visual DSP++ Documentation Setccccvvvvvreeeeeenniennnnnnen. XXX1V
Hardware Tools Manualsccoovviiiiiiiiiiiiiiiiiceee, XXXiV
Processor Manualsccccooviiiiiiiiiiiiiiiiiiiieeeeeee XXX1V
Data SHEEtS .ovvvieiiiiiiiiiiiiiee e XXXV

CONVENTIONS tetitiiiiiiiiiiiiiiiietiteieteteeeeeteeeteeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeees XXXV1
INTRODUCTION

Core ATChITECTULE oiviviiiiiiiiiiie et 1-1

Memory ArchiteCturecocceeiiiiiiiniiiiiiiiciieceieceec e 1-4

Internal Memoryc.cooviiiiniiiiniieeiieceec e 1-5

External Memoryccoociiiiiiiiiiiiiiiiiceiniecceeeecc e 1-6

I/O Memory SPaceccoocueiiiiiiiiiiiiiiiiiiee e 1-6

Event Handlingccoooiiiiiiiiiiiiiiiiicecceccec e 1-6
Core Event Controller (CEC) .iovuuiiiiiiiiieiiiiee e 1-8
System Interrupt Controller (SIC) ..occoveeviiiiiiiiiiiiiiiiiieieee 1-8

Syntax CONVENTIONSciiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 1-8

Case SENSITIVILY toeeevvriiiiiiiiiiiieeeiiiiiiie e e e e e 1-8

Free FOrmat ..oo.ooiiiiiiiiiiiiiiie e 1-9

Instruction Delimitingcoovviiriiiiiniiiiiiiiciiccecceceeee 1-9

COMUMEIITS ettt 1-10

Notation CONVENTIONS ...uvveieeeeiiiiiiiiieeeeeeeeeeiiiiie e e eeeeeeeeiii e 1-10
Behavior Conventionsc.ueeeeiriiiieeiniiieee e 1-12
GIOSSALY ..viiiiiiiiiiic e 1-13

Register Namescccccviiiiiiiiiiiiiiiii s 1-13

v ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

Functional Unitscccoviiiiiiiiiiiiiiiiiicccccc e, 1-14
Arithmetic Status Flagsc.ccccviiiiiniiiiniiiiccc, 1-15
Fractional Conventionccocceeeruiiiniiieeniiieiniee e 1-16
Saturation ... 1-17
Rounding and Truncatingccccceeeviieiniiiiniiieniiiciieeee. 1-19
Automatic Circular Addressingccocoeeevviiiiniiiiniiieniieennnen. 1-21
COMPUTATIONAL UNITS
Using Data Formatsccocoiiiiiiiiiiiiiiiiiiicccs 2-4
Binary Stringooccooiiiiiiiiiiiiiiic e 2-4
UnSIZNed ..ooiiiiiiiiiiciiic e 2-4
Signed Numbers: Two’s-Complementccocoeviviiiiiiiiinnnnns 2-5
Fractional Representation: 1.15 ...ccccceviiiiiiiiiiniiiinieeiieeeen 2-5
Register FIles .ooouiiiiiiiiiiiiiiiicc e 2-6
Data Register Fileccocooiiiiiiiiii 2-7
Accumulator Registerscoccceeviiiiniiiiniiiciiiiciiic e 2-8
Register File Instruction Summarycccocveiiiiiiiniiiiniiieneens 2-9
Data TYPes ..eeveiiiiiiiiiiiiiiiice 2-11
Endianessooccvveeiiiiiiiiiiiiiic e 2-13
ALU Data TYPes cevveeiiiiiiiiiiiiieeeeieec e 2-14
Multiplier Data Types ...ccoccvveeeiiiiiieiiiiiiiiceiiiece e 2-14
Shifter Data Types ...cc.eeoviiiiiiiiiiiiiiiiiccceec e 2-15
Arithmetic Formats Summarycccocceiiiiiiiniiiiniciiece, 2-16
Using Multiplier Integer and Fractional Formats 2-17

ADSP-BF53x/BF56x Blackfin Processor Programming Reference \

CONTENTS

Rounding Multiplier Resultscccccooviiiiiiiiini 2-19
Unbiased Roundingccoocveeriiiiiiiiiiiniiiiniicciieceieces 2-20
Biased Roundingccccovviiiiniiiiniiiiiiicenieccec e 2-22
Truncationcceeiiiiiiiiiiiiiiiiieee e 2-23

Special Rounding Instructionsccccecveevnieiiniieeniieenineene 2-24

Using Computational Statuscocceeeeviiiiniiiiniiieniieciiecenieens 2-24
ASTAT ReGISTEr ..ooiiiiiiiiiiiiiiiiiiiiiic e 2-25
Arithmetic Logic Unit (ALU)coooiiiiiiiiiiiiiiniiiciicceec e 2-26

ALU OPErationsccccuveviiiieeiiiiiiiiiiiiieieeeeesiiinieeeee e e 2-26
Single 16-Bit Operationscccceevvviiiiiiiiiiiiiiiiiieiieeae, 2-27
Dual 16-Bit Operationscoccueeevuveeniieeniiieiiieeenieeeen 2-27
Quad 16-Bit Operationscoccueeevueeeriieeriieeniieeenieeee 2-28
Single 32-Bit Operationscccceevvvviiiiiiiiiiiiiiiiieiieee, 2-29
Dual 32-Bit Operationsccoccueeevueeeriiieeriiieinieeenieeeen 2-29

ALU Instruction SUMMArycccccevveeeiiiiiniiiiiiiieeeee e 2-30

ALU Division Support Featurescccccovviiiiiiiiiiiiiinnnnnnnnn. 2-34

Special SIMD Video ALU Operationsccccceeeveeenuveennneen. 2-35

Multiply Accumulators (Multipliers)cccoovieviiiiniiiiniiiiiinieens 2-35

Multiplier Operationeceevviieiiniiiieeiniiieeeeieeee e 2-36

Placing Multiplier Results in Multiplier Accumulator
RegIStersccovviiiiiiiiii 2-37
Rounding or Saturating Multiplier Results 2-37

Saturating Multiplier Results on Overflowccocceeveiiiennnie. 2-38

Multiplier Instruction Summaryccccoeviiiniiiiniieeniieceee. 2-38
Multiplier Instruction Optionsccccevevieriiiiiniiieenneenne 2-40

vi ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

Multiplier Data Flow Detailsc.ooeeiniiiiiiiiiiiiiiiiiiiiciiee. 2-42
Multiply Without Accumulateccoovviiiiiiiiiniiiiiiiee 2-44
Special 32-Bit Integer MAC Instructioncccceeevveenveeennnee. 2-46
Dual MAC OPerationsceeeveeeeeeerniuiieeenniieeeeeniieeeeeseeeees 2-47
Barrel Shifter (Shifter)ooooiviiiiiiiiiiiiiiiieeee e 2-48
Shifter OPerationsccccueeerueeeriiieeiniieenieeerieee e 2-48
Two-Operand Shiftscoocvviriiiiiiiiiiicccee, 2-49
Immediate Shiftsooovviiiiiiiiiiiieeee e, 2-49
Register Shifts ..c.cceeeeviiiiriiiiiiiiciicccce 2-50
Three-Operand Shiftsccccovviiiiiiiiiiiiiiiice 2-50
Immediate Shiftsoovviiiiiiiiiiiiiee e, 2-50
Register Shifts ..cccceeeeviiiiniiiiiiiiiccc e 2-51
Bit Test, Set, Clear, Togglecccccoooiiiiiiiiiiiiiiiiiiiine, 2-52
Field Extract and Field Depositcccccceeveiiiniiiiiniicinineens 2-52
Shifter Instruction SUMMArycccccevieerniiiiniiiieniieeniieenee. 2-53
OPERATING MODES AND STATES
USEE MOAE ettt e 3-3
Protected Resources and Instructionsccccceeevveciivveeieeeenennnns 3-4
Protected MEmOIYccovviiiiiiiiiiiiiiiiiiice e 3-5
Entering User Modecccccoiviiiiiiiiiiiiiiiiiiiiicicecc, 3-5
Example Code to Enter User Mode Upon Reset 3-5
Return Instructions That Invoke User Modecccovvveeeennn. 3-5

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

vii

CONTENTS

SUpervisor Modeoc.eviiiiiiiiiiiiiiiiicc e 3-7

Non-OS ENVIIONIMENTS teuennineeeeee e eaenen 3-7

Example Code for Supervisor Mode Coming Out of Reset ... 3-8

Emulation Modeccocciiiiiiiiiiiiii 3-9
Idle STATE eeviiiiiiiiiiee e 3-9
Example Code for Transition to Idle Stateccceeiiiiiins 3-10
RESET STALE weviiiiiiiiiiiiiiiiiiice e 3-10
System Reset and POWEIUpcocuvveviiiiiiiiiiiiiiiniicceieceeecee 3-12
Hardware Resetcccveiiiiiiiniiiiiiiiiiiieceicceccec e 3-13
SYSCR ReGISTEr ...oviiiiiiiiiiiiiiiiiiiiiiiiiiccciii e 3-14
Software Resets and Watchdog Timerccocoveeviiiiniicnnnnen. 3-14
SWRST REGISTEL ...vvviiiiiiiiiiiiiiiii i 3-15
Core-Only Software Resetcoccveiiiiiiiniiiiniiiiniicciicceieee 3-16
Core and System ReSetc.cceerviiiiiiiiiiniiiiniiiciieceieceieene 3-16

PROGRAM SEQUENCER

INErOdUCTION tiiiiiiiiiiiiiiiiee e e 4-1
Sequencer Related Registerscccooouiiiiiiiiiiiiiiiiiiiniiiiin, 4-5
Instruction Pipelinecccoooviiiiiiiiiiiiiiiiiiiiccec e 4-7
Branchesooooiiiiiiiiiiie e 4-10
Direct Short and Long Jumpsccccceeieviiiiniiiiniiiiniciiicnieee 4-11
Direct Call ...ovviiiiiiiieeie e 4-12
Indirect Branch and Callccccciiiiiiiiiiiien 4-12
PC-Relative Indirect Branch and Callccoooiiiiiiiiiinnn. 4-13
viii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

SUDIOULINES uiiiiiiiiiiiieee e 4-13
Stack Variables and Parameter Passingccccovcvveennneennnn. 4-15
Condition Code Flagccccovviiiiiiiiiniiiiniiiiiicececen 4-18
Conditional Branchescccccooviiiiiiiiiiiiiiiiiiis 4-19
Conditional Register Movec..ccccovvviiiiiiiniiciniieeniieene, 4-20
Branch Predictionccoooviieiiiiiiiiiiiiiceiccceee e 4-20
Hardware Loopsocoiviiiiiiiiiiiiiiiiiccecc e 4-21
Two-Dimensional Loopscoocuvieiiiiiiiiiiiiniiicnieciicceieeee 4-24
Loop Unrollingeooeuiiiiiiiiiiiiiniicecceceecceec e 4-26
Saving and Resuming Loopsccccccooviiiiiiiiniiiiniiiii, 4-27
Example Code for Using Hardware Loops in an ISR 4-28
Events and INterruptscceeevvieiiniiiiniiiiiicceieceec e 4-29
System Interrupt Processingcccoecviiiiiiiiiiiiiniiiiniiiennnnen. 4-31
System Peripheral Interruptsc.ccccooviiiiiiiiiniiiiniiiciiicee. 4-33
SIC_ITWR REGISTET ..evvviiiiiiiiiiiiiiiiieieiiiee et 4-34
SIC_ISR ReGISTEr .uviviiiiiiiiiiiiiieiiecieeee e 4-35
SIC_IMASK ReEISTEr ..coouviiiiiiiiiiiiiniiieiiiec e 4-36
System Interrupt Assignment Registers (SIC_IARx) 4-37
Core Event Controller Registerscccoocviiiiiiiniiiiniiiennnn. 4-38
IMASK REGISTEL ..eeevuiiiiriiieiiiieeniieeeiieeeiie et 4-38
ILAT ReGISTEL eeiiviiiiiiiiiiiiiieieiiiee et 4-39
IPEND Registerccceiiiiiiiiiiiiiiiiiiiiiiciiiicciicccecccee 4-40
Event Vector Tableccooiviiiiiiiiiiiiiieieeeeeeeeen 4-41

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

X

CONTENTS

Return Registers and Instructionscccccoveviiviiiiniiiininnenn. 4-42

Executing RTX, RTN, or RTE in a Lower Priority Event ... 4-45

Emulation INterrupt ...ooooveiiniiiiniiiiniiieiiicenicc e 4-45
Reset INTEITUPT couevviiiiiiiiiiiciiiiiic e 4-46
NMI (Nonmaskable Interrupt)cccoovvvieviiiiniiiiniiiiiiice. 4-46
EXCEPLIONS eeviiiiiiiiiiiiiiiiiiec e 4-47
Hardware Error Interruptccceeeiiviiiiiiiniiiiiiiiiicc e 4-47
Core Timer INterrupt «oocceeeevviiiiiiiiniiiiiiccecceeceen 4-47
General-purpose Interrupts IVG7-IVG15) .oocvviviiiiniiicennen. 4-47
Interrupt Processingcocoueeiviiiiiiiiiiiiiiiiiiiicciiiccceee e 4-48
Global Enabling/Disabling of Interruptscccocuveevcuieenuneene 4-48
Servicing INTErrupts .ocooouvveiiiiiiiiiiiiiiieceeiee e 4-48
Software INTerrupes ..eeevveeeriiiiiniiiiiiiceee e 4-50
Nesting of INterrupts ..ooocvveereiieriiiiiiiieerieieeeceec e 4-51
Non-nested INterruptscocceeervuieeriieeniieciiieceiec e 4-51
Nested INTErrupes woooeeeveeeiiniiiiieeniiiiee e 4-51
Example Prolog Code for Nested Interrupt Service
ROULINE oot 4-53
Example Epilog Code for Nested Interrupt Service
ROUTINE .evviiiiiiiiiiiieiiiiee e 4-54
Logging of Nested Interrupt Requestsccoccveernuneeenee. 4-55
Self-Nesting of Core Interruptsccceevvevviienviieniiiiniennnens 4-55
Additional Usability Issuescccocviiiiiiiiniiieniiienieeen 4-56
Allocating the System Stackcccooviiiiniiiiniiiiiiie. 4-56
Latency in Servicing Eventsccccccociiiiiiiiiniiini, 4-56

X ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

Hardware Errors and Exception Handlingcc.ccoooiin. 4-58
SEQSTAT ReISTEr ...vviiiiiiiiiiieeiiieeniieeeiiee et 4-59
Hardware Error INterruptooocveeevciiieniiceniiiciieceniicenieeee 4-59
EXCEPLIONS teeiiiiiiiiiiiiiiic et 4-61

Exceptions While Executing an Exception Handler 4-66

Exceptions and the Pipelineccccooviiiiniiiiniiiiniiiinieens 4-67

Deferring Exception Processingcccoeeveevveiviiiniiienneennn 4-68

Example Code for an Exception Handlerccccceeeiis 4-68

Example Code for an Exception Routineccccceeeiennn 4-70
ADDRESS ARITHMETIC UNIT

Addressing With the AAU ..o, 5-5

Pointer Register Fileccccoiiiiniiiiiiiiiiiccee 5-6
Frame and Stack Pointersccccovviiiiiiinniiiiiiiiiiieeiniee, 5-6

DAG Register Setcoovviiiiiiiiiiiiiiiiiiii i 5-8
Indexed Addressing With Index & Pointer Registers 5-8
Loads With Zero or Sign Extensionccccccovvviiniiiinineennne. 5-9
Indexed Addressing With Immediate Offsetcoceeeunenee. 5-10
Auto-increment and Auto-decrement Addressingc....... 5-10
Pre-modify Stack Pointer Addressingcccoevveeeniieeeniecennnee. 5-11
Post-modify Addressingcccoeevvvieniiiiiiiiiiiniiieniceiceee 5-11
Addressing Circular Buffersccccoooiiiiiiiiiiiiniie, 5-12
Addressing With Bit-reversed Addressesccccovvveeriieennnnee. 5-15
Modifying DAG and Pointer Registersccccecuveriiiniiennennnnenne 5-15
Memory Address Alignmentcccoecveerviiiiniieeniieenee e 5-16

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

X1

CONTENTS

AAU Instruction SUMMATYoeeieiiiiiiniiiiiiiieeeeeeeiiiiireeeeee e 5-19
MEMORY

Memory ArchiteCturecoccuviiiiiiiiniiiiiiieeiecceec e 6-2

Overview of On-Chip Level 1 (L1) Memoryccccceeeviueeernnecne 6-2

Overview of Scratchpad Data SRAMccccciiviiiiiiniiiiiinnn 6-4

Overview of On-Chip Level 2 (L2) Memorycccccceeviveernnene 6-4

L1 Instruction Memorycccccovviiiiiiiiiiiiiiiiiiiiiiiiceeee e 6-5

IMEM_CONTROL Registerccccovvuiiiiiiiiniiiiiniiieiiiieenieeens 6-5

L1 Instruction SRAM ..o, 6-7

L1 Instruction Cacheccoeiiiiiiiiiiiiiiiiiiiic e 6-10

Cache Lines .oooooviiiiiiiiiiiiiiiiiiecee e 6-10

Cache Hits and MiSSesuvvviereeeeiiiiiiiiiiiieeeeeieiiiiieeeeennn 6-13

Cache Line Fillsoooiiiiiiiiiiiiiiiicec e 6-14

Line Fill Bufferc.ooiiviiiiiiiiiiiieeeieeeeee e 6-15

Cache Line Replacementccocoveveniiiiiniieiniiecinieeenn 6-15

Instruction Cache Managementccocceeeviiiiiiiecnnneenne. 6-16

Instruction Cache Locking by Linecoccovviiiiinninne. 6-16

Instruction Cache Locking by Waycccceeeniiiinnnnenne. 6-17

Instruction Cache Invalidationccccceevviiiiiiinniiiinnnn. 6-18

Instruction Test Registerscccooviiiiiiiiiiiiiiii, 6-19

ITEST_COMMAND Registercccccuveiimiiiiieiiiiiiiiiiiineeenns 6-21

ITEST_DATAT RegISter ...ccovviriiiiiiiiiiiiiiiieeiiieeeeeiieeee e 6-22

ITEST_DATAO Registerccccceiiiiiiiiiiiiiiiiiiiiiiiiiiiieees 6-23

xil ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

L1 Data MemOIyoveiiiiiiiiiiiiiiiieeeiiiece et 6-24
DMEM_CONTROL Registercccccvuviieriiiiieiiniiieeenieeen. 6-24

L1 Data SRAM ..ottt 6-27

L1 Data Cache ...ccoviiiiiiiiiiiiiieiiieeee e 6-29
Example of Mapping Cacheable Address Space 6-30

Data Cache ACCESS .ooeovviiiiiiiiiiieiiiiiiee e 6-33
Cache Write Methodccoviiiiiiiiiiiiiiiiiee e, 6-35
IPRIO Register and Write Buffer Depthcccccoveiiininins 6-35

Data Cache Control Instructionsccocceveeevniieeeennnnnnn. 6-37

Data Cache Invalidationccccooeiiiiiiiiiiiiiiiiiiieeeee 6-38

Data Test Registerscoccuviiviiiiniiiiiiiiiiiiceeieeeec e 6-38
DTEST_COMMAND Registercccceeemuiieniiiieniiieriieennee. 6-39
DTEST_DATAT Registerccccocviiviiiiiiiiiiiiiiiiiiiciiieeeen. 6-41
DTEST_DATAO Re@ISterccccccuvieiiiiiiiiiiiiiiieeiiiiieeeeieeen. 6-42
On-chip Level 2 (L2) MemoOIy ..cceeevoveieriiiieniiieeniicenieeeneee e 6-43
On-chip L2 Bank Accesscoocuveiriiiiiiiiiiiiiieniicenieeeeeeeee 6-43
LalENCY evtieeiiiiiiee e 6-44
Memory Protection and Propertiescoccceeevveeenveeeniieeenineeennnee. 6-45
Memory Management Unitcccccoevviiiiiiiiiiiiiiniiiiiieee, 6-45
Memory Pageseeeviiiiiiiiiiiiiciieece e 6-48
Memory Page Attributesccccevvuveeriieiiniiiiiniieenieeeieeee 6-48

Page Descriptor Table ..o, 6-50
CPLB Managementccceeeeviuiiieiiiiiiiieeiiiiieeeeeieeee e 6-50
MMU Application ...c..eeeviuiiiiiiiiiiiiieniiceeieeeeee e 6-52

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

xiil

CONTENTS

Examples of Protected Memory Regionscccccecveriiennene. 6-54
ICPLB_DATAX RegIStersccccuviiiiniiiiiiiiiiiieiiiiieeeeieeeenn 6-55
DCPLB_DATAX RegiStersueeiimiiiieiniiiiieeiniieeeeeiieeeens 6-57
DCPLB_ADDRx Registersccccceviuiiiiiiiiiiiiiiiiiiiiiiieciee 6-59
ICPLB_ADDRx RegiStersccccovviumiiiiiiiiiiiiiiiiiiiiiieens 6-60
DCPLB_STATUS and ICPLB_STATUS Registers 6-61
DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
REGISTELS .evveeiniiiiiiiieeeiie et 6-63
Memory Transaction Modelccocveiiiiiiiiiiiiniiiiiicee 6-65
Load/Store Operationccoccueeeeeriieeeeniiieeeeniieeeeniieeeeenieeeees 6-66
Interlocked Pipelineccccoviiiiniiiiiiiiiiiiiiice 6-66
Ordering of Loads and Storesccoccveeviiiiniiiiniiiciiiceee, 6-67
Synchronizing Instructionsccccceeviviiiniiiiniiiiiiiieeen. 6-68
Speculative Load Executioncccoccviiviiiiniiicniiiciniiceee. 6-69
Conditional Load Behaviorccccocoiiviiiiiiiiiiniiiiniicinieene 6-70
Working With Memoryccoccieiviieiiiiiieniiiiiieniieicceceee 6-71
ALIZNMENT 1ottt 6-71
Cache Coherencyooocviiviiiiniiiiiiiicic e 6-71
Atomic OPErationseevveriereeieiiiiiiiiiiieeeeeeeiiireeeeee e e s 6-72
Memory-mapped Registerscccoceevviiiriiiiiniiiieniiieeniieenee. 6-72
Core MMR Programming Code Examplecccceeieiiiie 6-73
Terminologycccovviiiiiiiiiiiiiii 6-74

X1V

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

PROGRAM FLOW CONTROL

JUmMp o

IF CC JUMP ottt

Call e

RTS, RTI, RTX, RTN, RTE (Return)cccooevvuiviiiiieiiiieeiiieeennnn. 7-10
LSETUD, LOOP ...ttt 7-13

LOAD / STORE

Load Immediateccooviiiiiiiniiiiiiiiiiiiccec e

Load Pointer RegisStercovvuiiiriiiiniiiiiiiiieiiieceiec e

Load Data Registercoouiiiiiiiiiniiiiiiiiiciiiceeceec e 8-10
Load Half-Word — Zero-Extendedocovviiiiiiiiiiiiiiiiiiieeee, 8-15
Load Half-Word — Sign-Extendedccoooviiiiiiiiniiiiniin 8-19
Load High Data Register Halfccccooiiiiiiiiiiec 8-23
Load Low Data Register Half ... 8-27
Load Byte — Zero-Extendedcccovviiiiiiiiiiiiiiiiiiec 8-31
Load Byte — Sign-Extendedccocoeeviiiiniiiiiiiiiiniicece 8-34
Store Pointer Registerccooiiiiiiiiiiiiiiiii, 8-37
Store Data Registerccccooviiiiiiiiiiiiiiiiiiiiceccec e 8-40
Store High Data Register Halfcccooiiiiiiiii, 8-45
Store Low Data Register Half ..o, 8-49
Store Byte ..ooviiiiiiiiiiii 8-54

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

XV

CONTENTS

MOVE
Move RegiStercoooiuiiiiiiiiiiiiiiiiiiii 9-2
Move Conditionalcceeiiiiiiiiiiiiiiiiiiiee e 9-8
Move Half to Full Word — Zero-Extendedccooevviiiieiinnnnnn.n. 9-10
Move Half to Full Word — Sign-Extendedcccoeeiiiiiniiinninens 9-13
Move Register Halfccooiiiiiiiiiiiiicecce 9-15
Move Byte — Zero-Extendedccoocoviiiiiiiiiiiiniiiiii 9-23
Move Byte — Sign-Extendedccocovviiiiiiiiiiiiiiiiic 9-25

STACK CONTROL
—=SP (PUSR) i 10-2
--SP (Push Multiple) .ooovveiiiiiiiiiiiiicccc e 10-5
SP4+ (POP) e 10-8
SP++ (Pop Multiple) oeeveiviiiiiiiiiiiiececeecec e 10-12
LINK, UNLINK ..ottt 10-17

CONTROL CODE BIT MANAGEMENT

Compare Data Registercccooiiiiiiiiiiiii, 11-2
Compare POINEroceiiiiiiiiiiiiiiiiiiiiiiiiee 11-6
Compare Accumulatorccceeiiiiiiiiiiiniiiiiiic e 11-9
Move CC e 11-12
Negate CC oiiiiiiiiiiiiiiic e 11-15
xvi ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

LOGICAL OPERATIONS
8 (AND) oo 12-2
~ (NOT One’s Complement) ...c.eeevcuveerniiieiniieeniiieeniiee e 12-4
| (OR) ettt e 12-6
A (Exclusive-OR) coovviiiiieeeeeieeeeeceee e 12-8
BXORSHIFT, BXOR ...ooiiiiiiiiiieeeeeeeeeeee e 12-10

BIT OPERATIONS
BITCLR oot saaaansesesssansnnnes 13-2
Bl S E T e 13-4
BITTGL oottt aaaaaaeaesssaaeanees 13-6
13 8 0 N SRR 13-8
DEPOSIT oo 13-10
EXTRACT oo 13-16
3 0 LY 1 6 13-21
ONES (One’s Population Count)ccceevceveeriveeenineeniieennneeene 13-26

SHIFT/ROTATE OPERATIONS
Add With SHIft ..uueeeeiiiiii 14-2
Shift With Add ...eeeiii e 14-5
Arithmetic ShIft ..oooiiiveiiiiiie e 14-7
Logical Shift ...oocviiiiiiiiii 14-14
ROT (ROTAE) eevveniiiiiiiee ettt e e e e 14-21

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xXvii

CONTENTS

ARITHMETIC OPERATIONS

A B S e e e a e e e e aaraaaeans 15-3
Add e 15-6
Add/Subtract — Prescale Downcccoooviiiiiiiiiiiiiiiiiiiiiiiieeeee, 15-10
Add/Subtract — Prescale Up ..o.coeoeviiiiiiiiiiiiiiiiiicecee 15-13
Add ITmmediate ...coeovvviiiiiiiiiiieiiiieee e 15-16
DIVS, DIVQ (Divide Primitive)ccceeveuveeeerniiieeenniiieeeenieeeen. 15-19
EXPADY] i e ees 15-26
IMAX e e 15-30
IMIN ettt 15-32
Modify — Decrementccoceeeriiiieiiiieeniieeniieeeiee e 15-34
Modify — INCremMent ..cocuveieviiiiniiiiniieeeiec e 15-37
Multiply 16-Bit Operandsccovvuiiieiiniiiiiiiniiiiieniieeceeeee. 15-43
Multiply 32-Bit Operandsc.cccceeviiieniiiiiniiieniiiciieceiee e, 15-51
Multiply and Multiply-Accumulate to Accumulator 15-53
Multiply and Multiply-Accumulate to Half-Register 15-58
Multiply and Multiply-Accumulate to Data Register 15-67
Negate (Two’'s Complement)coovuveeviiiinniiiiniieiiniieeneeeeeen 15-73
RND (Round to Half=Word)cooveeviiiiiiieiiiiieeeeeee e 15-77
SATULATE ittt 15-80
SIGNBITS e 15-83
SUDLIACT weviiiiiiiiii e 15-86
Subtract Immediateccovvviiiiiiiiiiieieie e 15-90
xviii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

EXTERNAL EVENT MANAGEMENT

G P PURRR P 16-3
Core Synchronizecoocveeviiiiiniiiiniiccee e 16-5
System Synchronizeccooiiiiiiiiiiiiiii 16-8
EMUEXCPT (Force Emulation)ccoviveeeeeiiiiiiiiiiiiiiieeeeen, 16-11
Disable INterrupts .o..eeevvveeriiiiiiiiiiiceccecce e 16-13
Enable INterruptsccooruiiiiiiiiiiiiiiiicceiccec e 16-15
RAISE (Force Interrupt / Reset)cccoveeiiiiiiiiiiiiiiiiiiiiiccee, 16-17
EXCPT (Force EXception)ccceeeevviiiiiiiiniiiieiiniiieeeeieee e 16-20
Test and Set Byte (Atomic)ccovvveeiiiniiiiiiiniiiiieiiieeeeeiieeeee 16-22
INO OP it 16-25
CACHE CONTROL
PREFETCH ..iiiiiiiiiiiiiiiii et e 17-3
FLUSH et 17-5
FLUSHINY et 17-7
TFLUSH ettt 17-9
VIDEO PIXEL OPERATIONS
ALIGNS, ALIGN16, ALIGIN24ouuviiiiiiiiiiiiiiiiiiiiiiineienenenennnenes 18-3
DISALGNEXCPT oottt 18-6
BYTEOP3P (Dual 16-Bit Add / Clip) .eooovvieriiieniiiiiieceieeeee, 18-8
Dual 16-Bit Accumulator Extraction with Addition 18-13
BYTEOP16P (Quad 8-Bit Add) «vveoveeeeeeeeeeeereeeeeee oo 18-15
BYTEOP1P (Quad 8-Bit Average — Byte)cccceevuveirniiiinnncnnnnn. 18-19

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

XiX

CONTENTS

BYTEOP2P (Quad 8-Bit Average — Half-Word)cccceeeenne. 18-24
BYTEPACK (Quad 8-Bit Pack)ccevevveiiiiiiiiiiiieeieeiiiiieeee, 18-30
BYTEOP16M (Quad 8-Bit Subtract)ccccovvvveieeeeeeiiiiiiieeennn. 18-32
SAA (Quad 8-Bit Subtract-Absolute-Accumulate)c.ceeeeeee. 18-36
BYTEUNPACK (Quad 8-Bit Unpack)cccoevrviiiiniiiinicennnen. 18-41
VECTOR OPERATIONS
Add 0N SIZN eiiiiiiii e 19-3
VIT_MAX (Compare-Select)ccoviiiiiiimiiiiciiniiiiieeniiieeene 19-8
Vector ABS oo 19-15
Vector Add / Subtract ...ocveveiiiiiiiiiiiiiccee 19-18
Vector Arithmetic Shiftcoooiiiiiiiiiiiiiiiiiic e 19-23
Vector Logical Shiftcoocoiiiiiiiiiiiiece 19-28
Vector MAX (oo 19-32
Vector MIIN L.oiiiiiiiiiiie et 19-35
Vector Multiplyooooiiiiiiiiiiiic e 19-38
Vector Multiply and Multiply-Accumulateccoocvveiniiiinnieeen. 19-41
Vector Negate (Two’s Complement)ccccceevviiiiiiiiiiiiiinninn. 19-46
Vector PACKuiiiiiiiieee ettt ee e e 19-48
Vector SEARCH ..o 19-50

ISSUING PARALLEL INSTRUCTIONS

Supported Parallel Combinationscccccceeviiiiiiiiniiiiniis 20-1
Parallel Issue Syntaxccocceiiiiiiiiniiiiiiiiiiieccc e 20-2
32-Bit ALU/MAC INStructionsccceeevvvcmiiiiiieeeenniniiiiiiieeeeenn. 20-3

XX ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CONTENTS

16-Bit INStrUCtiONS coeeeeeeeeeeeeeeeeeeeee e 20-6
EXamples .ooovviiiiiiiiii e 20-8
DEBUG

Watchpoint Unit c..eeevieiiiiiiiniieciic e 21-1
Instruction Watchpointscooocvieiiiiiiiiiiiniiiiciiieee e, 21-4
WPIAN RegiStersccccuviiiiiiiiiiiiiiiiiiiiiiiiccciiiiieeeeee 21-5
WPIACNT R REGISTEIS ..vvvviiiniiiiiiiiiiiieeiniiiee e 21-6
WPIACTL Registerccccoiiiiiiiiiiiiiiiiiiiiiiiic i 21-7
Data Address Watchpointscoocceveiiiiiiniiiiniiieniiiciieeee, 21-10
WPDAD Registerscccuviiiiiiiiiiiiiiiiiiiiieieiieiiiiiiieeeeee e 21-10
WPDACNTN Registerscccccoiiiiiiiiiiiiiiiiiiiiiiiiiin, 21-11
WPDACTL Registerccooviiiiiiiiiiiiiiiiiiiieeiiiiiee e 21-12
WPSTAT ReGISTEL eeevuiiiiiiiiiiiieeieiiiiee et 21-14
Trace UNIt ooovooiiiiiiiiiiiiiiiieceeeee e 21-15
TBUFCTL Registerccciiiiiiiiiiiiiiiiiiiiiiiiceeieee e 21-16
TBUFSTAT RegIStEr ...vvviiiiiiiiiieiiiiiieeeiiieeeeeiieeee e 21-17
TBUF Registercoocoviiiiiiiiiiiiiiiiiiiiiiciie 21-18
Code to Recreate the Execution Trace in Memory 21-18
Performance Monitoring Unitccoocveeeviiiiniiiieniiiciiie e 21-19
PFCNTRn Registerscccceiiiiiiiiiiiiiiiiiiiiiiiiiccc 21-20
PECTL ReGISTEr ...uvviiiiiiiiiiiiiiiiiice e 21-20
Event Monitor Tableccoocviiiiiiiiiiiiiiiiece e 21-21

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

XX1

CONTENTS

Cycle COUNLET uvviiiiiiiiiiiiiiiiit e 21-23
CYCLES and CYCLES2 RegiSterscovvuveercuveeriineennneeennnn 21-24
SYSCFG Register ...cooouuiiiiiiiiiiiiiiiiiiiiiicccceeiieceeee e 21-26

Product Identification Registerccccccviiviiiiiiiiiniiiiiniicinnnen. 21-27
DSPID Registercocccuiiiiiiiiiiiiiiiiiiiiiiiiicccceiiiiiieee e 21-27

ADSP-BF535 CONSIDERATIONS
ADSP-BF535 Operating Modes and Statesccooceeevueeenieeennnee. A-1
ADSP-BF535 Flagsccoooiiiiiiiiiiiiiiiiiiiiiiccic A-2
CORE MMR ASSIGNMENTS

L1 Data Memory Controller Registerscccceervviiiniiiiniiicnnnnens B-1

L1 Instruction Memory Controller Registerscccocoveeviiiinnneene B-3

Interrupt Controller Registersccocoiiiiiiiiiiiiiiiiiiiii, B-5

Debug, MP, and Emulation Unit Registersccocvieniiiinineennnn. B-7

Trace Unit RegISters ...cocvvveiiiiiiiiiiiiiiiiceeiecc e B-7

Watchpoint and Patch Registersccccooeieviiiiniiiiniiiiiiiniicnieenne. B-8

Performance Monitor Registersccoocvieviiiiriiiiiiniiieeniieciieeene B-9

INSTRUCTION OPCODES

TEEOAUCTION .+t e C-1

Appendix Organizationcccccceevviiiiiiiiiiiiiiiiiiiciieeee C-1

xxii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

GlOSSATY .oeiiiiiiiiiiiiii e
Register Namesccccocvviiiiiiiiiiiiiiie,
Functional Unitscccovvieiiniiiiniiiiniieniecec e,
Notation CONVENTIONSevvvreereeeeeriiiiiiiiieeeeeeeeninieneee
Arithmetic Status Flagsccccoooiiiiiiiiiiiiniic,

Core Register Encoding Mapcccccceevviiiiiiiiiiniiiiniicenee.

Opcode Representationcceeveveeeeenniiieeenniieeeeniieeeenne

Opcode Bit Terminologycccccecviemiiiiiiiiiiiniieiniieeen.

Undefined Opcodesoooviiiiniiiiniiiiiiiiiniiccneeceece

Holes In Opcode Rangescccccvviiviiiiiiiiiniiiiiiicie.

Opcode Representation In Listings, Memory Dumps

Program Flow Control Instructionsccocceervvvieiniieeenincens
Load / Store InStructionscceeeeeriuieeiiniiiieeiniiiiee e
Move InStructions ...cooeeeeeeeeeiee e
Stack Control InStructionsccceeeveeenieeinieeeniiieeniieeeieeenne
Control Code Bit Management Instructionsccccceevueens
Logical Operations INStructionscccecveevvveernieennneeennnenns
Bit Operations Instructionscccccceeeiiiiniiiiiiiiiiiiinnninee,
Shift / Rotate Operations Instructionsc.cceeevveeeniueeeniineens
Arithmetic Operations InStructionsccoecceeevviveeniieeenineene
External Event Management Instructionsccocceeeenveeennnen.
Cache Control Instructionscoccceeeeeevieeeeiniiieeeenniieeeennene
Video Pixel Operations Instructionsc.cceeeevveeeniiicenineennnn.

Vector Operations Instructionsccccevveciiiiiiiiiiiiiniiininnn..

CONTENTS

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

xX1i1

CONTENTS

Instructions Listed By Operation Codecccoecvviiiiniiiieennnnnnee. C-140
16-Bit Opcode InStructionscceeeeeveenieeeniineennieeenieeene C-140
32-Bit Opcode InStructionsecevveeerieeenniiecnnieeenieeenne. C-154

NUMERIC FORMATS

Unsigned or Signed: Two’s-complement Format ..o D-1
Integer or Fractionalcccccooiiiiiiiiiiniiiie D-1
Binary Multiplicationcccoociiiiiiiiiiiiiiiicciiccccee e D-5
Fractional Mode And Integer Modeccccooiiiiiiiiiniiiininiinn, D-6
Block Floating-point Formatccccceeviiiiiiiiiiniiiiniiiniicieeee D-6
XX1V ADSP-BF53x/BF56x Blackfin Processor Programming Reference

PREFACE

Thank you for purchasing and developing systems using an Analog
Devices Blackfin® processor.

Purpose of This Manual

The ADSP-BF53x/BF56x Blackfin Processor Programming Reference con-
tains information about the processor architecture and assembly language
for Blackfin processors. This manual is applicable to single-core and
dual-core Blackfin processors. In many ways, they are identical. The
exceptions to this are noted in Chapter 6, “Memory.”

The manual provides information on how assembly instructions execute
on the Blackfin processor’s architecture along with reference information
about processor operations.

Intended Audience

The primary audience for this manual is programmers who are familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the appropriate Blackfin architec-
ture and instruction set. Programmers who are unfamiliar with Analog
Devices processors can use this manual but should supplement it with
other texts (such as hardware reference manuals and data sheets that
describe your target architecture).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference XXV

Manual Contents

Manual Contents

The manual consists of:

Chapter 1, “Introduction”
This chapter provides a general description of the instruction syn-
tax and notation conventions.

Chapter 2, “Computational Units”
Describes the arithmetic/logic units (ALUs), multiplier/accumula-

tor units (MAC:s), shifter, and the set of video ALUs. The chapter

also discusses data formats, data types, and register files.

Chapter 3, “Operating Modes and States”
Describes the operating modes of the processor. The chapter also
describes Idle state and Reset state.

Chapter 4, “Program Sequencer”

Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

Chapter 5, “Address Arithmetic Unit”

Describes the Address Arithmetic Unit (AAU), including Data
Address Generators (DAGs), addressing modes, how to modify
DAG and Pointer registers, memory address alignment, and DAG
instructions.

Chapter 6, “Memory”

Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and
memory-mapped registers (MMRs). Discusses the instruction,
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.

XXVI1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Preface

* Chapter 7-Chapter 19, “Program Flow Control”, “Load / Store”,
“Move”, “Stack Control”, “Control Code Bit Management”, “Log-
ical Operations”, “Bit Operations”, “Shift/Rotate Operations”,
“Arithmetic Operations”, “External Event Management”, “Cache
Control”, “Video Pixel Operations”, and “Vector Operations”
Provide descriptions of assembly language instructions and describe
their execution.

* Chapter 20, “Issuing Parallel Instructions”
Provides a description of parallel instruction operations and shows
how to use parallel instruction syntax.

* Appendix A, “ADSP-BF535 Considerations”
Provides a description of the status flag bits for the ADSP-BF535
processor only.

* Appendix B, “Core MMR Assignments”
Lists the core memory-mapped registers, their addresses, and
cross-references to text.

* Appendix C, “Instruction Opcodes”
Identifies operation codes (opcodes) for instructions. Use this
chapter to learn how to construct opcodes.

e Appendix D, “Numeric Formats”
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.

What's New in This Manual

This is the first edition (Revision 1.0) of the ADSP-BF53x/BF56x Blackfin
Processor Programming Reference. In future revisions, this section will doc-
ument additions and corrections from previous revisions of the book.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference Xxvii

Technical or Customer Support

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following
ways:

* Visit the Embedded Processing and DSP products Web site at

http://www.analog.com/processors/technicalSupport

* E-mail tools questions to
dsptools.support@analog.com

* E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Phone questions to 1-800-ANALOGD

* Contact your Analog Devices, Inc. local sales office or authorized
distributor

* Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.0. Box 9106

Norwood, MA 02062-9106
USA

Supported Processors

The following is the list of Analog Devices, Inc. processors supported in

Visual DSP++®.

xxviil ADSP-BF53x/BF56x Blackfin Processor Programming Reference

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

TigerSHARC® (ADSP-TSxxx) Processors

The name 7igerSHARC refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC families: ADSP-TS101 and
ADSP-TS20x.

SHARC® (ADSP-21xxx) Processors
The name SHARC refers to a family of high-performance, 32-bit,

floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126%, and
ADSP-21306x.

Blackfin (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF53x and ADSP-BF56x.

Product Information

You can obtain product information from the Analog Devices Web site,

from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.conm is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly

ADSP-BF53x/BF56x Blackfin Processor Programming Reference XXIiX

http://www.analog.com
http://www.myanalog.com

Product Information

e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information

For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

* E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

» Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

e Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

XXX

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

http://www.myanalog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

Preface

Related Documents

The following publications that describe the ADSP-BF53x/BF56x proces-

sors (and related processors) can be ordered from any Analog Devices sales

office:

ADSP-BF533 Blackfin Processor Hardware Reference
ADSP-BF535 Blackfin Processor Hardware Reference
ADSP-BF561 Blackfin Processor Hardware Reference
ADSP-BF537 Blackfin Processor Hardware Reference
ADSP-BF538/ADSP-BF539 Blackfin Processor Hardware Reference

ADSP-BF531/ADSP-BF532/ADSP-BF533 Blackfin Embedded
Processor Data Sheet

ADSP-BF534 Blackfin Embedded Processor Data Sheet
ADSP-BF535 Blackfin Embedded Processor Data Sheet

ADSP-BF536/ADSP-BF537 Blackfin Embedded Processor Data
Sheet

ADSP-BF538 Blackfin Embedded Processor Data Sheet
ADSP-BF539 Blackfin Embedded Processor Data Sheet

For information on product related development software and Analog
Devices processors, see these publications:

VisualDSP++ User's Guide
VisualDSP++ C/C++ Compiler and Library Manual for Blackfin

Processors

VisualDSP++ Assembler and Preprocessor Manual

ADSP-BF53x/BF56x Blackfin Processor Programming Reference XXX1

Product Information

* VisualDSP++ Linker and Utilities Manual
o VisualDSP++ Kernel (VDK) User's Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/technical_Tlibrary

Online Technical Documentation

Online documentation comprises the Visual DSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire Visual DSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

File Description

.CHM Help system files and manuals in Help format

.HTM or Dinkum Abridged C++ library and FlexLM network license manager software doc-
CHTML umentation. Viewing and printing the . HTML files requires a browser, such as

Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the . PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the Visual DSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

XXXil ADSP-BF53x/BF56x Blackfin Processor Programming Reference

http://www.analog.com/processors/technical_library

Preface

Accessing Documentation From VisualDSP++
From the Visual DSP++ environment:

* Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

* Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open Visual DSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder, and . PDF files are
located in the Docs folder of your Visual DSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the

FlexLM network license manager software documentation.
Using Windows Explorer

* Double-click the vdsp-help.chn file, which is the master Help sys-
tem, to access all the other .CHM files.

* Double-click any file that is part of the Visual DSP++ documenta-
tion set.

Using the Windows Start Button

* Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, Visual DSP++, and
VisualDSP++ Documentation.

* Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxxiil

Product Information

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technical_library

Select a processor family and book title. Download archive (.Z1P) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals

For general questions regarding literature ordering, call the Literature

Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

XXXIV ADSP-BF53x/BF56x Blackfin Processor Programming Reference

http://www.analog.com/processors/technical_library
http://www.analog.com/salesdir

Preface

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,

check for it on the Web site.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference XXXV

Conventions

Conventions

Text conventions used in this manual are identified and described as

follows.

Example Description

Close command Titles in reference sections indicate the location of an item within the

(File menu) Visual DSP++ environment’s menu system. For example, the Close
command appears on the File menu.

this|that Alternative items in syntax descriptions are delimited with a vertical
bar; read the example as this or that. One or the other is required.

{this | that} Optional items in syntax descriptions appear within curly braces; read
the example as an optional this or that.

CEC{S|SU] Optional items for some lists may appear within parenthesis. If an
option is chosen, the parenthesis must be used (for example, (S)). If
no option is chosen, omit the parenthsis.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

SWRST Software Reset | Register names appear in UPPERCASE and a special typeface. The
register descriptive names of registers are in mixed case and regular typeface.

TMROE, RESET Pin names appear in UPPERCASE and a special typeface.
Active low signals appear with an OVERBAR.

DRx, SIC_IMASKXx, Register, bit, and pin names in the text may refer to groups of registers
1[3:0] or pins:

SMS[3:0] A lowercase x in a register name (DRx) indicates a set of registers (for
example, DR2, DR1, and DRO) for those processors with more than
one register of that name. For processors with only a single register of
that name, the x can be disregarded (for example, SIC_IMASKXx refers
to SIC_IMASK in the ADSP-BF533 processor, and to SIC_IMASKO
and SIC_IMASKI in the ADSP-BF561).

A colon between numbers within brackets indicates a range of registers

or pins (for example, 1[3:0] indicates I3, 12, I1, and 10; SMS[3:0] indi-
cates SMS3, SMS2, SMS1, and SMSO0).

XXXV1 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Preface

Example

Description

OxFBCD CBA9

Hexadecimal numbers use the Ox prefix and are typically shown with a
space between the upper four and lower four digits.

b#f1010 0101

Binary numbers use the b# prefix and are typically shown with a space
between each four digit group.

Note: For correct operation, ...

A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

X ©

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

N

Warning: Injury to device users may result if ...

A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference XXXVil

Conventions

XXXViil ADSP-BF53x/BF56x Blackfin Processor Programming Reference

1 INTRODUCTION

This ADSP-BF53x/BF56x Blackfin Processor Programming Reference pro-
vides details on the assembly language instructions used by the Micro
Signal Architecture (MSA) core developed jointly by Analog Devices, Inc.
and Intel Corporation. This manual is applicable to all ADSP-BF53x and
ADSP-BF56x processor derivatives. With the exception of the first-gener-
ation ADSP-BF535 processor, all devices provide an identical core
architecture and instruction set. Specifics of the ADSP-BF535 processor
are highlighted where applicable and are summarized in Appendix A.
Dual-core derivatives and derivatives with on-chip L2 memory have
slightly different system interfaces. Differences and commonalities at a
global level are discussed in Chapter 6, "Memory." For a full description
of the system architecture beyond the Blackfin core, refer to the specific
Hardware Reference Manual for your derivative. This section points out
some of the conventions used in this document.

The Blackfin processor core architecture combines a dual MAC signal
processing engine, an orthogonal RISC-like microprocessor instruction
set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and
multimedia features into a single instruction set architecture.

Core Architecture

The Blackfin processor core contains two 16-bit multipliers, two 40-bit
accumulators, two 40-bit arithmetic logic units (ALUs), four 8-bit video
ALUs, and a 40-bit shifter, shown in Figure 1-1. The computational units
process 8-, 16-, or 32-bit data from the register file.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-1

Co

re Architecture

ST T ADDRESS ARITHMETICUNIT — — — — — — — — — —
\
' |
| | | |
' |
| SP |
| 13 [L3 | B3 M3 v vy 'y FP |
| 12 L2 B2 M2 NV — P5
| TR M1 ; DAG1 ; P4 '
|
| 0 | Lo | Bo Mo DAGO :Z |
DAz | A A4 7] I
< 2A1, I
«DA0,32 ‘ »| [P0 |
]
N]
- ______T " —
% 432 32
s RAB PREG
w
=
o - __
[7
/ ‘ \
SD ,32 , IR
LD1,3 732 STAT \I / v \
LD0’,3 7 | |
—T 32
yvly || v A Y by | [
| | ||| sEquencer |,
| |[RzH] [R7L | | | |
| |[R&H| [ReL | | |
| |[ReH] [ReL | | ALIGN |
e | w2 AW w) AW | '
| |[ReH] [ReL | |
| R2.H R2.L : | DECODE |
| |[REH] [ReR | | :
| |[RO-H | [ROL | : LOOP BUFFER | | |
| A A [
: | A | '\ controL
| UNIT
| |
\ /
\ /

Figure 1-1. Processor Core Architecture

The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates
as 16 independent 16-bit registers. All operands for compute operations
come from the multiported register file and instruction constant fields.

1-2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as
field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of
video instructions include byte alignment and packing operations, 16-bit
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the
compare/select and vector search instructions. For some instructions, two
16-bit ALU operations can be performed simultaneously on register pairs
(a 16-bit high half and 16-bit low half of a compute register). By also
using the second ALU, quad 16-bit operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. For program flow control, the
sequencer supports PC-relative and indirect conditional jumps (with static
branch prediction) and subroutine calls. Hardware is provided to support
zero-overhead looping. The architecture is fully interlocked, meaning
there are no visible pipeline effects when executing instructions with data
dependencies.

The address arithmetic unit provides two addresses for simultaneous dual
fetches from memory. It contains a multiported register file consisting of
four sets of 32-bit Index, Modify, Length, and Base registers (for circular
buffering) and eight additional 32-bit pointer registers (for C-style
indexed stack manipulation).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-3

Memory Architecture

Blackfin processors support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically
operate at the full processor speed with little or no latency. At the L1 level,
the instruction memory holds instructions only. The two data memories
hold data, and a dedicated scratchpad data memory stores stack and local
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The Memory Management Unit
(MMU) provides memory protection for individual tasks that may be
operating on the core and may protect system registers from unintended
access.

The architecture provides three modes of operation: User, Supervisor, and
Emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The Blackfin processor instruction set is optimized so that 16-bit opcodes
represent the most frequently used instructions. Complex DSP instruc-
tions are encoded into 32-bit opcodes as multifunction instructions.
Blackfin products support a limited multi-issue capability, where a 32-bit
instruction can be issued in parallel with two 16-bit instructions. This
allows the programmer to use many of the core resources in a single
instruction cycle.

The Blackfin processor assembly language uses an algebraic syntax. The
architecture is optimized for use with the C compiler.

Memory Architecture

The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses, regardless of the specific
Blackfin product. All resources, including internal memory, external
memory, and I/O control registers, occupy separate sections of this com-

1-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

mon address space. The memory portions of this address space are
arranged in a hierarchical structure to provide a good cost/performance
balance of some very fast, low latency on-chip memory as cache or SRAM,
and larger, lower cost and lower performance off-chip memory systems.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-

ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Internal Memory

At a minimum, each Blackfin processors has three blocks of on-chip mem-
ory that provide high bandwidth access to the core:

e L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

e L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

* L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

In addition, some Blackfin processors share a low latency, high bandwidth
on-chip Level 2 (L2) memory. It forms an on-chip memory hierarchy with
L1 memory and provides much more capacity than L1 memory, but the
latency is higher. The on-chip L2 memory is SRAM and cannot be config-
ured as cache. On-chip L2 memory is capable of storing both instructions
and data and is accessible by both cores.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-5

Event Handling

External Memory

External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,

and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 512M bytes of SDRAM (certain products have SDRAM up
to 128M bytes).

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a 1M byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

I/0 Memory Space

Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRys)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRSs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in Supervisor mode. They appear as reserved space to on-chip peripherals.

Event Handling

The event controller on the Blackfin processor handles all asynchronous
and synchronous events to the processor. The processor event handling
supports both nesting and prioritization. Nesting allows multiple event
service routines to be active simultaneously. Prioritization ensures that

1-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

servicing a higher priority event takes precedence over servicing a lower
priority event. The controller provides support for five different types of
events:

* Emulation — Causes the processor to enter Emulation mode, allow-
ing command and control of the processor via the JTAG interface.

* Reset — Resets the processor.

* Nonmaskable Interrupt (NMI) — The software watchdog timer or
the NMI input signal to the processor generates this event. The
NMI event is frequently used as a power-down indicator to initiate
an orderly shutdown of the system.

* Exceptions — Synchronous to program flow. That is, the exception
is taken before the instruction is allowed to complete. Conditions
such as data alignment violations and undefined instructions cause
exceptions.

* Interrupts — Asynchronous to program flow. These are caused by
input pins, timers, and other peripherals.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the Core Event Con-
troller (CEC) and the System Interrupt Controller (SIC). The CEC works
with the SIC to prioritize and control all system events. Conceptually,
interrupts from the peripherals arrive at the SIC and are routed directly
into the general-purpose interrupts of the CEC.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-7

Syntax Conventions

Core Event Controller (CEC)

The Core Event Controller supports nine general-purpose interrupts
(IVG15-7), in addition to the dedicated interrupt and exception events.
Of these general-purpose interrupts, the two lowest priority interrupts
(IVG15-14) are recommended to be reserved for software interrupt han-
dlers, leaving seven prioritized interrupt inputs to support peripherals.

System Interrupt Controller (SIC)

The System Interrupt Controller provides the mapping and routing of
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor
provides a default mapping, the user can alter the mappings and priorities
of interrupt events by writing the appropriate values into the Interrupt

Assignment Registers (IAR).

Syntax Conventions

The Blackfin processor instruction set supports several syntactic conven-
tions that appear throughout this document. Those conventions are given
below.

Case Sensitivity

The instruction syntax is case insensitive. Upper and lower case letters can
be used and intermixed arbitrarily.

The assembler treats register names and instruction keywords in a
case-insensitive manner. User identifiers are case sensitive. Thus, R3.1,
R3.L, r3.1, r3.L are all valid, equivalent input to the assembler.

1-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

This manual shows register names and instruction keywords in examples
using lower case. Otherwise, in explanations and descriptions, this manual

uses upper case to help the register names and keywords stand out among
text.

Free Format

Assembler input is free format, and may appear anywhere on the line. One
instruction may extend across multiple lines, or more than one instruction
may appear on the same line. White space (space, tab, comments, or new-
line) may appear anywhere between tokens. A token must not have
embedded spaces. Tokens include numbers, register names, keywords,
user identifiers, and also some multicharacter special symbols like “+=7,
<« » <« »

/*7,0r |,

Instruction Delimiting

A semicolon must terminate every instruction. Several instructions can be
y

placed together on a single line at the programmer’s discretion, provided

each instruction ends with a semicolon.

Each complete instruction must end with a semicolon. Sometimes, a com-
plete instruction will consist of more than one operation. There are two
cases where this occurs.

* Two general operations are combined. Normally a comma sepa-
rates the different parts, as in

a0 = r3.h * r2.1 , al = r3.1 * r2.h ;

e A general instruction is combined with one or two memory refer-
ences for joint issue. The latter portions are set off by a | |”
For example,

token.

a0

r3.h % r2.1 || rl = [p3++]1 || rd4 = [i2++]

s

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-9

Notation Conventions

Comments

The assembler supports various kinds of comments, including the
following.

End of line: A double forward slash token (“//”) indicates the
beginning of a comment that concludes at the next newline
character.

General comment: A general comment begins with the token “/*”
and ends with “*/”. It may contain any characters and extend over
multiple lines.

Comments are not recursive; if the assembler sees a “/*” within a general
comment, it issues an assembler warning. A comment functions as white

space.

Notation Conventions

This manual and the assembler use the following conventions.

Register names are alphabetical, followed by a number in cases
where there are more than one register in a logical group. Thus,
examples include ASTAT, FP, R3, and M2.

Register names are reserved and may not be used as program
identifiers.

Some operations (such as “Move Register”) require a register pair.
Register pairs are always Data Registers and are denoted using a
colon, for example, R3:2. The larger number must be written first.
Note that the hardware supports only odd-even pairs, for example,
R7:6, R5:4, R3:2, and R1:0.

1-10

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

* Some instructions (such as “--SP (Push Multiple)”) require a group
of adjacent registers. Adjacent registers are denoted in syntax by the
range enclosed in parentheses and separated by a colon, for exam-
ple, (R7:3). Again, the larger number appears first.

* Dortions of a particular register may be individually specified. This
is written in syntax with a dot (“.”) following the register name,
then a letter denoting the desired portion. For 32-bit registers, “.H
denotes the most-significant (“High”) portion, “.L” denotes the
least-significant portion. The subdivisions of the 40-bit registers

are described later.

»

Register names are reserved and may not be used as program identifiers.
This manual uses the following conventions.

e When there is a choice of any one register within a register group,
this manual shows the register set using an en-dash (“-”). For
example, “R7-0” in text means that any one of the eight data regis-
ters (R7, R6, R5, R4, R3, R2, R1, or RO) can be used in syntax.

* Immediate values are designated as “imm” with the following
modifiers.

e “imm” indicates a signed value; for example, imm7.

e The “u” prefix indicates an unsigned value; for example,
uimm4.

* The decimal number indicates how many bits the value can
include; for example, imm5 is a 5-bit value.

* Any alignment requirements are designated by an optional
“m” suffix followed by a number; for example, uimmiém? is
an unsigned, 16-bit integer that must be an even number,

and imm7m4 is a signed, 7-bit integer that must be a multiple

of 4.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-11

Behavior Conventions

* DPC-relative, signed values are designated as “pcre]” with the
following modifiers:

the decimal number indicates how many bits the
value can include; for example, pcreis is a 5-bit
value.

any alignment requirements are designated by an
optional “n” suffix followed by a number; for exam-
ple, pcrel13mz is a 13-bit integer that must be an
even number.

* Loop PC-relative, signed values are designated as “7ppcrei”
with the following modifiers:

the decimal number indicates how many bits the
value can include; for example, Tppcrels is a 5-bit
value.

any alignment requirements are designated by an
optional “n” suffix followed by a number; for exam-
ple, Tppcrellim? is an 11-bit integer that must be an
even number.

Behavior Conventions

All operations that produce a result in an Accumulator saturate to a 40-bit

quantity unless noted otherwise. See “Saturation” on page 1-17 for a
description of saturation behavior.
p

1-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Glossary

Infroduction

The following terms appear throughout this document. Without trying to
explain the Blackfin processor, here are the terms used with their defini-
tions. See the Blackfin Processor Hardware Reference for your specific
product for more details on the architecture.

Register Names

The architecture includes the registers shown in Table 1-1.

Table 1-1. Registers

Register

Description

Accumulators

The set of 40-bit registers Al and A0 that normally contain data that is being
manipulated. Each Accumulator can be accessed in five ways: as one 40-bit regis-
ter, as one 32-bit register (designated as A1.W or A0.W), as two 16-bit registers
similar to Data Registers (designated as A1.H, Al1.L, A0.H, or A0.L) and as one
8-bit register (designated A1.X or A0.X) for the bits that extend beyond bit 31.

Data
Registers

The set of 32-bit registers (RO, R1, R2, R3, R4, R5, R6, and R7) that normally
contain data for manipulation. Abbreviated D-register or Dreg. Data Registers
can be accessed as 32-bit registers, or optionally as two independent 16-bit regis-
ters. The least significant 16 bits of each register is called the “low” half and is
designated with “.L” following the register name. The most significant 16 bit is
called the “high” half and is designated with “.H” following the name. Example:
R7.L, r2.h, r4.L, RO.h.

Pointer
Registers

The set of 32-bit registers (PO, P1, P2, P3, P4, P5, including SP and FP) that
normally contain byte addresses of data structures. Accessed only as a 32-bit reg-
ister. Abbreviated P-register or Preg. Example: p2, p5, fp, sp.

Stack Pointer

SP; contains the 32-bit address of the last occupied byte location in the stack.
The stack grows by decrementing the Stack Pointer. A subset of the Pointer Reg-
isters.

Frame Pointer

FP; contains the 32-bit address of the previous Frame Pointer in the stack,
located at the top of a frame. A subset of the Pointer Registers.

Loop Top

LT0 and LT1; contains 32-bit address of the top of a zero overhead loop.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-13

Glossary

Table 1-1. Registers (Contd)

Register Description

Loop Count LCO0 and LC1; contains 32-bit counter of the zero overhead loop executions.

Loop Bottom | LBO and LB1; contains 32-bit address of the bottom of a zero overhead loop.

Index The set of 32-bit registers 10, I1, 12, 13 that normally contain byte addresses of

Register data structures. Abbreviated I-register or Ireg.

Modify The set of 32-bit registers MO, M1, M2, M3 that normally contain offset values

Registers that are added or subtracted to one of the Index Registers. Abbreviated as Mreg.

Length The set of 32-bit registers L0, L1, L2, L3 that normally contain the length (in

Registers bytes) of the circular buffer. Abbreviated as Lreg. Clear Lreg to disable circular
addressing for the corresponding Ireg. Example: Clear L3 to disable circular
addressing for I3.

Base The set of 32-bit registers BO, B1, B2, B3 that normally contain the base address

Registers (in bytes) of the circular buffer. Abbreviated as Breg.

Functional Units

The architecture includes the three processor sections shown in Table 1-2.

Table 1-2. Processor Sections

Processor Description

Data Address Calculates the effective address for indirect and indexed memory

Generator (DAG) accesses. Consists of two sections—DAGO and DAGI.

Multiply and Performs the arithmetic functions on data. Consists of two sections

Accumulate Unit (MACO0 and MAC1)—each associated with an Accumulator (A0 and A1,

(MAC) respectively).

Arithmetic Logical Performs arithmetic computations and binary shifts on data. Operates

Unit (ALU) on the Data Registers and Accumulators. Consists of two units (ALUO
and ALU1), each associated with an Accumulator (A0 and Al, respec-
tively). Each ALU operates in conjunction with a Multiply and Accu-
mulate Unit.

1-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

Arithmetic Status Flags

The MSA includes 12 arithmetic status flags that indicate specific results
of a prior operation. These flags reside in the Arithmetic Status (ASTAT)
Register. A summary of the flags appears below. All flags are active high.
Instructions regarding P-registers, I-registers, L-registers, M-registers, or
B-registers do not affect flags.

See the Blackfin Processor Hardware Reference for your specific product for
more details on the architecture.

Table 1-3. Arithmetic Status Flag Summary

Flag Description
ACO Carry (ALUO)
AC0_COPY Carry (ALUO), copy
AC1 Carry (ALU1)
AN Negative
AQ Quotient
AV0 Accumulator 0 Overflow
AVSO Accumulator 0 Sticky Overflow
Set when AVO is set, but remains set until explicitly cleared by user code.
AV1 Accumulator 1 Overflow
AVS1 Accumulator 1 Sticky Overflow
Set when AV1 is set, but remains set until explicitly cleared by user code.
AZ Zero
CC Control Code bit
Multipurpose flag set, cleared and tested by specific instructions.
\% Overflow for Data Register results
V_COPY Overflow for Data Register results. copy
VS Sticky Overflow for Data Register results
Set when V is set, but remains set until explicitly cleared by user code.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-15

Glossary

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Fractional Convention

Fractional numbers include subinteger components less than +1. Whereas
decimal fractions appear to the right of a decimal point, binary fractions
appear to the right of a binal point.

In DSP instructions that assume placement of a binal point, for example
in computing sign bits for normalization or for alignment purposes, the

binal point convention depends on the size of the register being used as

shown in Table 1-4 and Figure 1-2 on page 1-17.

This processor does not represent fractional values in 8-bit
registers.

Table 1-4. Fractional Conventions

g =
=t S
Registers Size Format Notation & '8
=] LV Q w
R R % .= g .=
wv M 3=l /M
40-bit registers Signed Fractional 9.31 1 8 31
Unsigned Fractional 8.32 0 8 32
32-bit registers Signed Fractional 1.31 1 0 31
Unsigned Fractional 0.32 0 0 32
16-bit registers Signed Fractional 1.15 1 0 15
Unsigned Fractional 0.16 0 0 16

1-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

40-bit accumulator
[S] 8-hitextension | 31-bit fraction |
32-bit register
[S] 31-bit fraction |
16-bit register half
[S] 15-bit fraction
binal point alignment j

Figure 1-2. Conventional Placement of Binal Point

Saturation

When the result of an arithmetic operation exceeds the range of the desti-
nation register, important information can be lost.

Saturation is a technique used to contain the quantity within the values
that the destination register can represent. When a value is computed that
exceeds the capacity of the destination register, then the value written to
the register is the largest value that the register can hold with the same sign
as the original.

* If an operation would otherwise cause a positive value to overflow
and become negative, instead, saturation limits the result to the
maximum positive value for the size register being used.

* Conversely, if an operation would otherwise cause a negative value
to overflow and become positive, saturation limits the result to the
maximum negative value for the register size.

The overflow arithmetic flag is never set by an operation that enforces
saturation.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-17

Glossary

The maximum positive value in a 16-bit register is 0x7FFF. The maxi-
mum negative value is 0x8000. For a signed two’s complement 1.15
fractional notation, the allowable range is —1 through (1-2-15).

The maximum positive value in a 32-bit register is 0x7FFF FFFF. The
maximum negative value is 0x8000 0000. For a signed two’s complement
fractional data in 1.31 format, the range of values that the register can

hold are -1 through (1-2-31).

The maximum positive value in a 40-bit register is 0x7F FFFF FFFF. The
maximum negative value is 0x80 0000 0000. For a signed two’s comple-
ment 9.31 fractional notation, the range of values that can be represented

is =256 through (256-2-31).

For example, if a 16-bit register containing 0x1000 (decimal integer
+4096) was shifted left 3 places without saturation, it would overflow to
0x8000 (decimal —32,768). With saturation, however, a left shift of 3 or
more places would always produce the largest positive 16-bit number,
0x7FFF (decimal +32,767).

Another common example is copying the lower half of a 32-bit register
into a 16-bit register. If the 32-bit register contains 0OxFEED 0ACE and
the lower half of this negative number is copied into a 16-bit register with-
out saturation, the result is 0xOACE, a positive number. But if saturation
is enforced, the 16-bit result maintains its negative sign and becomes
0x8000.

The MSA implements 40-bit saturation for all arithmetic operations that
write an Accumulator destination except as noted in the individual
instruction descriptions when an optional 32-bit saturation mode can
constrain a 40-bit Accumulator to the 32-bit register range. The MSA per-
forms 32-bit saturation for 32-bit register destinations only as noted in the
instruction descriptions.

Overflow is the alternative to saturation. The number is allowed to simply
exceed its bounds and lose its most significant bit(s); only the lowest
(least-significant) portion of the number can be retained. Overflow can

1-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

occur when a 40-bit value is written to a 32-bit destination. If there was
any useful information in the upper 8 bits of the 40-bit value, then infor-
mation is lost in the process. Some processor instructions report overflow
conditions in the arithmetic flags, as noted in the instruction descriptions.
The arithmetic flags reside in the Arithmetic Status (ASTAT) Register. See
the Blackfin Processor Hardware Reference for your specific product for
more details on the ASTAT Register.

Rounding and Truncating

Rounding is a means of reducing the precision of a number by removing a
lower-order range of bits from that number’s representation and possibly
modifying the remaining portion of the number to more accurately repre-
sent its former value. For example, the original number will have N bits of
precision, whereas the new number will have only M bits of precision
(where N>M), so N-M bits of precision are removed from the number in
the process of rounding.

The round-to-nearest method returns the closest number to the original.
By convention, an original number lying exactly halfway between two
numbers always rounds up to the larger of the two. For example, when
rounding the 3-bit, two’s complement fraction 0.25 (binary 0.01) to the
nearest 2-bit two’s complement fraction, this method returns 0.5 (binary
0.1). The original fraction lies exactly midway between 0.5 and 0.0
(binary 0.0), so this method rounds up. Because it always rounds up, this
method is called biased rounding.

The convergent rounding method also returns the closest number to the
original. However, in cases where the original number lies exactly halfway
between two numbers, this method returns the nearest even number, the
one containing an LSB of 0. So for the example above, the result would be
0.0, since that is the even numbered choice of 0.5 and 0.0. Since it rounds
up and down based on the surrounding values, this method is called unbi-
ased rounding.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-19

Glossary

Some instructions for this processor support biased and unbiased round-
ing. The RND_MOD bit in the Arithmetic Status (ASTAT) Register determines
which mode is used. See the Blackfin Processor Hardware Reference for your
specific product for more details on the ASTAT Register.

Another common way to reduce the significant bits representing a number
is to simply mask off the N-M lower bits. This process is known as trunca-
tion and results in a relatively large bias.

Figure 1-3 shows other examples of rounding and truncation methods.

0 1 0 0 1 0 0 0 original 8-bit number (0.5625)
0 1 0 1 4-bit biased rounding (0.625)
0 1 0 0 4-bit unbiased rounding (0.5)
0 1 0 0 4-bit truncation (0.5)

0 1 0 0 1 0 1 0 original 8-bit number (0.578125)
0 1 0 1 4-bit biased rounding (0.625)

0 1 0 1 4-bit unbiased rounding (0.625)
0 1 0 0 4-bit truncation (0.5)

Figure 1-3. 8-Bit Number Reduced to 4 Bits of Precision

1-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Infroduction

Automatic Circular Addressing

The Blackfin processor provides an optional circular (or “modulo”)
addressing feature that increments an Index Register (Ireg) through a pre-
defined address range, then automatically resets the Ireg to repeat that
range. This feature improves input/output loop performance by eliminat-
ing the need to manually reinitialize the address index pointer each time.
Circular addressing is useful, for instance, when repetitively loading or
storing a string of fixed-sized data blocks.

The circular buffer contents must meet the following conditions:

* The maximum length of a circular buffer (that is, the value held in
any L register) must be an unsigned number with magnitude less
than 231,

* The magnitude of the modifier should be less than the length of
the circular buffer.

* The initial location of the pointer I should be within the circular

buffer defined by the base B and length L.

If any of these conditions is not satisfied, then processor behavior is not

specified.
There are two elements of automatic circular addressing:
* Indexed address instructions

* Four sets of circular addressing buffer registers composed of one
each Ireg, Breg, and Lreg (i.e., 10/B0/L0, I1/B1/L1, I12/B2/L2, and
13/B3/L3)

To qualify for circular addressing, the indexed address instruction must
explicitly modify an Index Register. Some indexed address instructions use
a Modify Register (Mreg) to increment the Ireg value. In that case, any
Mreg can be used to increment any Ireg. The Ireg used in the instruction
specifies which of the four circular buffer sets to use.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-21

Glossary

The circular buffer registers define the length (Lreg) of the data block in
bytes and the base (Breg) address to reinitialize the Ireg.

Some instructions modify an Index Register without using it for address-
ing; for example, the Add Immediate and Modify — Decrement
instructions. Such instructions are still affected by circular addressing, if

enabled.

Disable circular addressing for an Ireg by clearing the Lreg that corre-
sponds to the Ireg used in the instruction. For example, clear L2 to disable
circular addressing for register 12. Any nonzero value in an Lreg enables
circular addressing for its corresponding buffer registers.

See the Blackfin Processor Hardware Reference for your specific product for
more details on circular addressing capabilities and operation.

1-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a
shifter, and a set of video ALUs. These units get data from registers in the
Data Register File. Computational instructions for these units provide
fixed-point operations, and each computational instruction can execute
every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform Single Instruction,
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register
File. The syntax lets programs move data to and from these registers and
specify a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Studying the details of the computational units, register files, and data

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-1

buses leads to a better understanding of proper data flow for computa-
tions. Next, details about the processor’s advanced parallelism reveal how
to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the Data Register File and the
computational units—multipliers, ALUs, and shifter.

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that
particular operation.

Two additional registers, AO and A1, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status and conditions for the
results of the computational operations.

2-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

TO MEMORY

Computational Units

-
4)
|
: | | |
| SP :
(B 8l
: 1" L1 B1 M1 DAG1 \T7 \'I'7 P4 |
| 10 L0 B0 MO DAGO :;; :
<DA1,32 YY) |
I P1
DAO 32 ‘ »| 5o |
N]
- A~ -+ -
432 132
RAB PREG
S ———
/ A \
sD ,32, L
LD0’,33 v |
_/__V v | 32)
| | SEQUENCER
| |[ReA] [Rec I |
| |[ReH] [ReL I |
| |[RsH] [RsL | I ALIGN
| [[RaH] [RaL | |
| |[R3H] [R3L |
| R2.H R2.L : | DECODE
| [|RH] |R1H BARREL | |
| |[RoH] [RoL SHIFTER | : LOOP BUFFER
| A A L
40| 40
: T T U controL
| - uNT T
| |
\ 32 | 32 /
F /
——————— e —— DATAARITHMETICUNIT — — — — — — — — — -
Figure 2-1. Processor Core Architecture
ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-3

Using Data Formats

Using Data Formats

ADSP-BF53x/56x processors are primarily 16-bit, fixed-point machines.
Most operations assume a two’s-complement number representation,
while others assume unsigned numbers or simple binary strings. Other
instructions support 32-bit integer arithmetic, with further special fea-
tures supporting 8-bit arithmetic and block floating point. For detailed
information about each number format, see Appendix D, “Numeric
Formats.”

In the ADSP-BF53x/56x processor family arithmetic, signed numbers are
always in two’s-complement format. These processors do not use
signed-magnitude, one’s-complement, binary-coded decimal (BCD), or
excess-n formats.

Binary String

The binary string format is the least complex binary notation; in it, 16 bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.

Unsigned

Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

2-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Sighed Numbers: Two’'s-Complement

In ADSP-BF53x/56x processor arithmetic, the word signed refers to
two’s-complement numbers. Most ADSP-BF53x/56x processor family
operations presume or support two’s-complement arithmetic.

Fractional Representation: 1.15

ADSP-BF53x processor arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15

format, 1 sign bit (the Most Significant Bit (MSB)) and 15 fractional bits
represent values from —1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some
examples of 1.15 numbers and their decimal equivalents.

1.15 NUMBER DECIMAL
(HEXADECIMAL) EQUIVALENT
0x0001 0.000031
Ox7FFF 0.999969
OxFFFF —0.000031
0x8000 —1.000000

_20 2—1 2—2 2—3 2-4 2—5 2—6 2—7 2—3 2—9 2—10 2—11 2—12 2—13 2—14 2—15

Figure 2-2. Bit Weighting for 1.15 Numbers

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-5

Register Files

Register Files

The processor’s computational units have three definitive register
groups—a Data Register File, a Pointer Register File, and set of Data
Address Generation (DAG) registers.

e The Data Register File receives operands from the data buses for
the computational units and stores computational results.

* The Pointer Register File has pointers for addressing operations.

e The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information on Pointer and DAG registers, see Chapter 5,

“Address Arithmetic Unit.”

In the processor, a word is 32 bits long; H denotes the high order
16 bits of a 32-bit register; L denotes the low order 16 bits of a
32-bit register; W denotes the low order 32 bits of a 40-bit accu-
mulator register; and X denotes the high order 8 bits. For example,
AO.W contains the lower 32 bits of the 40-bit A0 register; A0.L con-
tains the lower 16 bits of A0.W, and A0.H contains the upper 16 bits
of A0.W.

2-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Address Arithmetic Unit Registers

/ Pointer \

Data Address Registers Registers
A
0 | Lo | BO Mo PO
1 L1 | B1 M1 P1
2 | L2 | B2 M2 P2
I3 | L3 | B3 M3 P3
P4
P5

| User SP |

Supervisor SP

- L)

Supervisor only register. Attempted read or
write in User mode causes an exception error.

Figure 2-3. Register Files

Data Register File

The Data Register File consists of eight registers, each 32 bits wide. Each
register may be viewed as a pair of independent 16-bit registers. Each is
denoted as the low half or high half. Thus the 32-bit register R0 may be
regarded as two independent register halves, RO. L and RO.H.

For example, these instructions represent a 32-bit and a 16-bit operation:

R2 = Rl + R2; /* 32-bit addition */
R2.L = Rl.H * RO.L; /* 16-bit multiplication */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-7

Register Files

Three separate buses (two load, one store) connect the Register File to the
L1 data memory, each bus being 32 bits wide. Transfers between the Data
Register File and the data memory can move up to two 32-bit words of
valid data in each cycle. Often, these represent four 16-bit words.

Accumulator Registers

In addition to the Data Register File, the processor has two dedicated,
40-bit accumulator registers, called A0 and Al. Each can be referred to as
its 16-bit low half (An.L) or high half (An.H) plus its 8-bit extension
(An.X). Each can also be referred to as a 32-bit register (An.W) consisting of
the lower 32 bits, or as a complete 40-bit result register (An).

These examples illustrate this convention:

A0 = Al; /* 40-bit move */

Al.W = R7; /* 32-bit move */

AO.H = R5.H; /* 16-bit move */

R6.H = A0O.X; /* read 8-bit value and sign extend to 16 bits */

39 0 39 0
A0 A1

39 32 31 0 39 3231 0

A0.X AO.W A1X AW

39 3231 16 15 0 39 32 31 1615 0

A0.X A0.H AO.L A1X A1H A1L

Figure 2-4. 40-Bit Accumulator Registers

2-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Register File Instruction Summary

Table 2-1 lists the register file instructions. In Table 2-1, note the mean-
ing of these symbols:

Allreg denotes: R[7:01, P[5:01, SP, FP, I[3:0], M[3:07,
B[3:01, L[3:01, AO.X, AO.W, Al.X, ALl.W, ASTAT, RETS, RETI,
RETX, RETN, RETE, LC[1:01, LT[1:0], LB[1:01, USP, SEQSTAT,
SYSCFG, CYCLES, and CYCLES?.

An denotes either ALU Result register A0 or Al.
Dreg denotes any Data Register File register.

Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI,
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:01, LB[1:01, CYCLES, and
CYCLES?.

Preg denotes any Pointer register, FP, or SP register.
Dreg_even denotes R0O,R2,R4, or R6.
Dreg_odd denotes R1,R3,R5, or R7.

DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.
An.L denotes the lower 16 bits of Accumulator A0.W or A1.W.
An.H denotes the upper 16 bits of Accumulator A0.W or A1.W.

Dreg_byte denotes the low order 8 bits of each Data register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-9

Register Files

* Option (X) denotes sign extended.
* Option (Z) denotes zero extended.

* * Indicates the flag may be set or cleared, depending on the result
of the instruction.

e **Indicates the flag is cleared.

¢ _ Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction ASTAT Status Flags
AZ AN ACO AV0 | AVl CC \%
ACO_COPY | AVS | AV1S V_COPY
AC1 VS

allreg = allreg ; 1 - - - - - _ _

An=An; - - - - — _ _

An = Dreg; — — — — — _ _

Dreg_even = A0 ; — _ _ _

Dreg_odd = Al ; * * _ _ _ _ *

Dreg_even = A0, — _ _ _
Dreg_odd = Al ;

Dreg_odd = Al, * * — — _ _ *
Dreg_even = A0 ;

IF CC DPreg = DPreg ; - - - - - _ _

IF ! CC DPreg = DPreg; | — - - - - _ _

Dreg = Dreg_lo (Z) ; * ok ok — — - ok [_

Dreg = Dreg_lo (X) ; * * ok — — — ok [

AnX = Dreg_lo; - - - - — _ _

Dreg_lo = AnX; - - - - _ _ _

An.L = Dreg_lo; - - - - - _ _

2-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Table 2-1. Register File Instruction Summary (Cont'd)

Instruction ASTAT Status Flags
AZ AN ACO AV0 | AVl CC A\
ACO0_COPY | AVS |AV1S V_COPY
AC1 VS
AnH = Dreg_hi; - - - - _ _ _
Dreg_lo = A0 ; * * — — _ _ *
Dreg_hi=Al; * * — _ _ _ *
Dreg_hi=Al; * * — _ _ _ *
Dreg_lo = A0 ;
Dreg_lo = A0 ; * * - - _ _ *
Dreg hi=Al;
Dreg = Dreg_byte (Z) ; * *k *k - - - **/
Dreg = Dreg_byte (X) ; * * ok - - - **)

1 Warning: Not all register combinations are allowed. For details, see the functional description of
the Move Register instruction in Chapter 9, “Move.”

Data Types

The processor supports 32-bit words, 16-bit half words, and bytes. The
32- and 16-bit words can be integer or fractional, but bytes are always
integers. Integer data types can be signed or unsigned, but fractional data
types are always signed.

Table 2-3 illustrates the formats for data that resides in memory, in the
register file, and in the accumulators. In the table, the letter & represents
one bit, and the letter s represents one signed bit.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

2-11

Data Types

Some instructions manipulate data in the registers by sign-extending or
zero-extending the data to 32 bits:

* Instructions zero-extend unsigned data
 Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.

In Table 2-2, note the meaning of these symbols:
* s =sign bit(s)
e d = data bit(s)

« »

e “.” = decimal point by convention; however, a decimal point does
not literally appear in the number.

* Italics denotes data from a source other than adjacent bits.

2-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 2-2. Data Formats

Computational Units

Format Representation in Memory Representation in 32-bit Register
32.0 Unsigned | dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd
Word dddd dddd dddd dddd
32.0 Signed sddd dddd dddd dddd dddd sddd dddd dddd dddd dddd dddd dddd
Word dddd dddd dddd dddd
16.0 Unsigned | dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
Half Word dddd
16.0 Signed sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd
Half Word
8.0 Unsigned | dddd dddd 0000 0000 0000 0000 0000 0000 dddd
Byte dddd
8.0 Signed sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd
Byte
1.15 Signed s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd
Fraction
1.31 Signed s.ddd dddd dddd dddd dddd s.ddd dddd dddd dddd dddd dddd dddd
Fraction dddd dddd dddd dddd
Packed 8.0 dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd
Unsigned Byte | dddd dddd dddd
Packed 1.15 s.ddd dddd dddd dddd s.ddd s.ddd dddd dddd dddd s.ddd dddd dddd
Signed dddd dddd dddd dddd
Fraction

Endianess

Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page 6-65.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

2-13

Data Types

ALU Data Types

Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (D1VS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by
writing directly to the ASTAT register. An additional V flag is set or cleared
depending on the transfer of the result from both accumulators to the reg-
ister file. Furthermore, the sticky VS bit is set with the V bit and remains
set until cleared.

The logic of the overflow bits (V, VS, AVO, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Signifi-
cant Bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AVn, the corresponding overflow flags. Add-
ing a negative and a positive number may result in either a negative or
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-30.

Multiplier Data Types

Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by

2-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign-extended across the full
40-bit width of the A0 or Al registers.

The processor supports two modes of format adjustment: the fractional
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30

(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of
the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-5 on page 2-18.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-6 on page 2-19.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register
file. For more information, see “Multiplier Instruction Summary” on page
2-38.

Shifter Data Types

Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude
or binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-15

Data Types

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-53.

Arithmetic Formats

Summary

Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the

arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats
Addition Signed or unsigned Interpret flags
Subtraction Signed or unsigned Interpret flags
Logical Binary string Same as operands
Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Frac

tional Modes Formats

Operation

Operand Formats

Result Formats

Multiplication

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Addition

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats
Multiplication 16.0 explicitly signed or 32.0 not shifted
unsigned
2-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Table 2-5. Multiplier Arithmetic Integer Modes Formats (Cont'd)

Operation Operand Formats Result Formats

Multiplication/Addition 16.0 explicitly signed or 32.0 not shifted
unsigned

Multiplication/Subtraction 16.0 explicitly signed or 32.0 not shifted
unsigned

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands
Arithmetic Shift Signed Same as operands
Exponent Detect Signed Same as operands

Using Multiplier Integer and Fractional Formats

For multiply-and-accumulate functions, the processor provides two
choices—fractional arithmetic for fractional numbers (1.15) and integer
arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to accu-
mulator A0 or Al. For example, bit 31 of the product lines up with bit 32
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1
of A0 (which is bit 1 of A0.W). The Least Significant Bit (LSB) is zero
filled. The fractional multiplier result format appears in Figure 2-5.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or Al. Figure 2-6 shows the integer mode result
placement.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-17

Data Types

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or Al register to produce the final
40-bit result.

SHIFTED ZERO
out FILLED

P SIGN,
7 BITS MULTIPLIER P OUTPUT

A
I

31]31|31]3131|31|31|31] 31|30 29|28|27 26|25|24 23|22 21 20|19 18|17 16|15|14 13|12 1" 10| 9|8|7|6|5]|4|3]|2|1]|0

7|16|5]4]|3]2|1]0|31|30|29|28|27|26]25|24|23 1]20|19|18|17|16|15|14|13|12|11|10|9 |8 | 7|6 |5]|4|3|2|1 |0
\Y_/ —
A0.X A0.W

Figure 2-5. Fractional Multiplier Results Format

2-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

P SIGN,
8 BITS MULTIPLIER P OUTPUT

A

31|31|31)31|31|31|31| 31|31} 30 29|28|27 26|25|24 23)22|21|20 19|18|17 16|15|14 13|12|11|10] 9| 8| 7|6]|5|4|3|2|1]|0

7|16|5]4|3]2]|1]|0|31]30 29|28|2726|25|2423|22 211200111 |1 16|15|14 13|12|11|10] 9| 8| 7|6|5|4|3|2|1]|0

A0.X AO.W

Figure 2-6. Integer Multiplier Results Format

Rounding Multiplier Results

On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N — M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

@ For most algorithms, unbiased rounding is preferred.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-19

Data Types

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called #nbiased rounding.

Unbiased rounding uses the ALU’s capability of rounding the 40-bit result
at the boundary between bit 15 and bit 16. Rounding can be specified as
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/Al.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect
of rounding odd A0.L/Al.L values upward and even values downward,
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-7 shows a typical rounding operation for A0; the
example also applies for Al.

2-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

A0.X AO.W

Figure 2-7. Typical Unbiased Multiplier Rounding

The compensation to avoid net bias becomes visible when all lower 15 bits
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7.

In Figure 2-8, A0 bit 16 is forced to 0. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-21

Data Types

UNROUNDED VALUE:

ADD 1 AND CARRY:

AOBIT16=1:

ROUNDED VALUE:

A0.X A0.W

Figure 2-8. Avoiding Net Bias in Unbiased Multiplier Rounding

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.

2-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-20.

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see

Table 2-7.
Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000

0x00 0001 8000

0x00 0000 0000

0x00 0001 8000

0x00 0002 0000

0x00 0002 0000

0x00 0000 8001

0x00 0001 0001

0x00 0001 0001

0x00 0001 8001

0x00 0002 0001

0x00 0002 0001

0x00 0000 7FFF

0x00 0000 FFFF

0x00 0000 FFFF

0x00 0001 7FFF

0x00 0001 FFFF

0x00 0001 FFFF

Biased rounding affects the result only when the A0.L/AL.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding (for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines).

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N — M lower bits. This process is known as trun-
cation and results in a relatively large bias. Instructions that do not
support rounding revert to truncation. The RND_MOD bit in ASTAT has no
effect on truncation.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-23

Using Computational Status

Special Rounding Instructions

The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 round at bit 12, bit 16, and bit 20, respectively,
regardless of the state of the RND_MOD bit in ASTAT.

For example:

R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.
R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12,
depositing the result in a half word.

R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20,
depositing the result in a half word.

Using Computational Status

The multiplier, ALU, and shifter update the overflow and other status
flags in the processor’s Arithmetic Status (ASTAT) register. To use status
conditions from computations in program sequencing, use conditional
instructions to test the CC flag in the ASTAT register after the instruction
executes. This method permits monitoring each instruction’s outcome.
The ASTAT register is a 32-bit register, with some bits reserved. To ensure
compatibility with future implementations, writes to this register should
write back the values read from these reserved bits.

2-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ASTAT Register

Computational Units

Figure 2-9 describes the Arithmetic Status (ASTAT) register. The processor
updates the status bits in ASTAT, indicating the status of the most recent

ALU, multiplier, or shifter operation.

Arithmetic Status Register (ASTAT)

31 30 29 28 27 26 25 24 23 22 21 20

19 18 17 16

|o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |0| Reset = 0x0000 0000

VS (Sticky Dreg Overflow) g

Sticky version of V

V (Dreg Overflow)

0 - Last result written from
ALU to Data Register File
register has not overflowed

1 - Last result has overflowed

AVO0 (A0 Overflow)

0 - Last result written to A0
has not overflowed

1 - Last result written to AO
has overflowed

AVO0S (Sticky A0 Overflow)
Sticky version of AVO
AV1 (A1 Overflow)

AV1S (Sticky A1 Overflow)
Sticky version of AV1

15 14 13 12 11 10 9

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

[efofofo]o]e]e

8 7 6 5 4 3 2 1 0
[ofefofofodefo]o]e]

AC1 (ALU1 Carry) 4|

0 - Operation in ALU1 does not
generate a carry

1 - Operation generates a carry

ACO (ALUO Carry)

0 - Operation in ALUO does not
generate a carry

1 - Operation generates a
carry

RND_MOD (Rounding Mode)

0 - Unbiased rounding
1 - Biased rounding

AQ (Quotient)

Quotient bit

Figure 2-9. Arithmetic Status Register

|— AZ (Zero Result)

0 - Result from last ALUO,
ALU1, or shifter operation
is not zero

1 - Result is zero

AN (Negative Result)

0 - Result from last ALUO,
ALUT1, or shifter operation
is not negative

1 - Result is negative

ACO0_COPY
Identical to bit 12
V_COPY
Identical to bit 24

CC (Condition Code)

Multipurpose flag, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-25

Arithmetic Logic Unit (ALU)

Arithmetic Logic Unit (ALU)

The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results.
ALU instructions include:

Fixed-point addition and subtraction of registers
Addition and subtraction of immediate values
Accumulation and subtraction of multiplier results
Logical AND, OR, NOT, XOR, bitwise XOR, Negate
Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations

Primary ALU operations occur on ALUO, while parallel operations occur
on ALU1, which performs a subset of ALUO operations.

Table 2-8 describes the possible inputs and outputs of each ALU.

Table 2-8. Inputs and Outputs of Each ALU

Input Output
Two or four 16-bit operands One or two 16-bit results
Two 32-bit operands One 32-bit result

32-bit result from the multiplier | Combination of 32-bit result from the multiplier

with a 40-bit accumulation result

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

2-26

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALUO is used for this operation, because it is the primary resource for

ALU operations.

For example:

R3.H = R1.H + RZ2.L (NS) ;

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2

low half) and deposits the result in R3.H (R3 high half) with no saturation.
Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALUO is used for
this operation, because it is the primary resource for ALU operations.

For example:
R3 = Rl +|- R2 (S) :

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1
high half) and deposits the result in R3.H (R3 high half) with saturation.

The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3
low half) with saturation (see Figure 2-10 on page 2-39).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-27

Arithmetic Logic Unit (ALU)

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALUO and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit
results that are deposited into two arbitrary, 32-bit destination registers.
Both ALUO and ALUT are used for this operation. Because there are only
two 32-bit data paths from the Data Register File to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALUO.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:
R3 = RO +|+ R1, R2 = RO -|- Rl (S) ;
performs four operations:

* Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of RO.H (RO high half) and deposits the result in R3.H with
saturation.

e AddsR1.L to RO.L and deposits the result in R3.L with saturation.

* Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (RO high half) and deposits the result in R2.H
with saturation.

* Subtracts R1.L from RO.L and deposits the result in R2. L with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = RO.H + RI.H (S) ;
R3.L = RO.L + RI.L (S)
R2.H = RO.H - RI.H (S) ;
R2.L = RO.L - RI.L (S) ;

2-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALUO is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register
File, operands may be sourced and deposited into the Pointer Register
File, consisting of the eight registers P[5:01, SP, FP.

Instructions may not intermingle Pointer registers with Data
registers.

For example:
R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

R3 = R1 + R2 (S) ;

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALUO and ALUI, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALUO and ALU1 are used for this
operation. Because only two 32-bit data paths go from the Data Register
File to the arithmetic units, the same two 32-bit input registers are pre-
sented to ALUO and ALUI.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-29

Arithmetic Logic Unit (ALU)

For example:
R3 = Rl + RZ2, R4 = RI - RZ2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and Al
registers.

For example:
R3 = A0 + A1, R4 = A0 - A1l (S) ;
transfers to the result registers two 32-bit, saturated, sum and difference

values of the ALU registers.

ALU Instruction Summary

Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status flags,
see Chapter 15, “Arithmetic Operations.”

In Table 2-9, note the meaning of these symbols:
* Dreg denotes any Data Register File register.

* Dreg lo_hi denotes any 16-bit register half in any Data Register
File register.

* Dreg lo denotes the lower 16 bits of any Data Register File
register.

* imm?7 denotes a signed, 7-bit wide, immediate value.

2-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

* An denotes either ALU Result register A0 or Al.
* DIVS denotes a Divide Sign primitive.
* DIVQ denotes a Divide Quotient primitive.

e MAX denotes the maximum, or most positive, value of the source
registers.

* MIN denotes the minimum value of the source registers.

* ABS denotes the absolute value of the upper and lower halves of a
single 32-bit register.

* RND denotes rounding a half word.

e RND12 denotes saturating the result of an addition or subtraction
and rounding the result on bit 12.

* RND20 denotes saturating the result of an addition or subtraction
and rounding the result on bit 20.

* SIGNBITS denotes the number of sign bits in a number, minus
one.

e EXPADJ denotes the lesser of the number of sign bits in a number
minus one, and a threshold value.

e *Indicates the flag may be set or cleared, depending on the results
of the instruction.

* **Indicates the flag is cleared.
e — Indicates no effect.

e dindicates AQ contains the dividend MSB Exclusive-OR divisor
MSB.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-31

Arithmetic Logic Unit (ALU)

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Flags
AZ AN | ACO AV0 | AVl \' AQ
ACO0_COPY | AVO0S | AVIS | V_COPY
AC1 \'A
Dreg = Dreg + Dreg ; * * * — — * —
Dreg = Dreg — Dreg (S) ; * * * - - * -
Dreg = Dreg + Dreg, * * * - - * -
Dreg = Dreg — Dreg ;
Dreg_lo_hi = Dreg_lo_hi + * * * — - * _
Dreg_lo_hi ;
Dreg_lo_hi = Dreg_lo_hi — * * * - - * _
Dreg_lo_hi (S) ;
Dreg = Dreg +|+ Dreg ; * * * - - * -
Dreg = Dreg +|— Dreg ; * * * - - * -
Dreg = Dreg —|+ Dreg ; * * * - - * -
Dreg = Dreg —|- Dreg ; * * * - - * -
Dreg = Dreg +|+Dreg, * * - - - * —
Dreg = Dreg —|- Dreg ;
Dreg = Dreg +|- Dreg, * * - - - * -
Dreg = Dreg —|+ Dreg ;
Dreg = An + An, * * * — — * _
Dreg = An— An;
Dreg += imm7 ; * * * — — * _
Dreg = (A0 += Al); * * * * - * -
Dreg_lo_hi = (A0 += Al) ; * * * * - * -
A0 += Al ; * * * * - — —
A0 —= Al ; || * - - -
DIVS (Dreg, Dreg) ; * * * * - — d
DIVQ (Dreg, Dreg) ; * * * * - - d

2-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Table 2-9. ALU Instruction Summary (Contd)

Instruction ASTAT Status Flags

AZ | AN | ACO AVO0 | AVl |V AQ

AC0_COPY | AVO0S | AV1S | V_COPY
AC1 A

Dreg = MAX (Dreg, Dreg) | * * - - - k[_
V)
Dreg = MIN (Dreg, Dreg) | * * - - _ K[_
V)
Dreg = ABS Dreg (V) ; * ** - - - * _
An=ABS An; * *K - * * * _
An = ABS An, * *K - * * * _
An=ABS An;
An=-An; * * * * * * _
An=-An, An =— An; * * * * % « ~
An=An(S); * * - * * — _
An=An(S), An=An(S); * * - * * - _
Dreg_lo_hi = Dreg (RND) ; | * * - - - * _
Dreg_lo_hi = Dreg + Dreg * * - - — * _
(RND12) ;
Dreg_lo_hi = Dreg — Dreg * * — — — * _
(RND12) ;
Dreg_lo_hi = Dreg + Dreg * * - _ _ * _
(RND20) ;

* * *

Dreg_lo_hi = Dreg — Dreg - - - _
(RND20) ;

Dreg_lo = SIGNBITS Dreg ; | - - - - - — _

Dreg_lo = SIGNBITS - - - - - _ _
Dreg_lo_hi ;

Dreg_lo = SIGNBITS An ; - - - - - _ _

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-33

Arithmetic Logic Unit (ALU)

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags
AZ | AN | ACO AV0 |AV1 |V AQ
AC0_COPY | AVO0S | AV1S | V_COPY
AC1 \'S

Dreg_lo = EXPAD]J (Dreg, |- - - - _ — _
Dreg_lo) (V) ;

Dreg_lo = EXPAD]J - - - _ _ — _
(Dreg_lo_hi, Dreg_lo);

Dreg = Dreg & Dreg ; * * ok - — k[_

Dreg = - Dreg ; * * ok - - k[_

Dreg = Dreg | Dreg ; * * ok _ — k[_

Dreg = Dreg A Dreg ; * * ok - — k[_
* * * *

Dreg =— Dreg ; — _ _

ALU Division Support Features

The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in Chapter 15, “Arithmetic Operations.”

2-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Special SIMD Video ALU Operations

Four 8-bit Video ALUs enable the processor to process video information
with high efficiency. Each Video ALU instruction may take from one to
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs
are presented to the Video ALUs in two 32-bit words from the Data Reg-
ister File. The possible operations include:

* Quad 8-Bit Add or Subtract

* Quad 8-Bit Average

* Quad 8-Bit Pack or Unpack

* Quad 8-Bit Subtract-Absolute-Accumulate
e Byte Align

For more information about the operation of these instructions, see Chap-
ter 18, “Video Pixel Operations.”

Multiply Accumulators (Multipliers)

The two multipliers (MACO and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate
operations are available with either cumulative addition or cumulative
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-35

Multiply Accumulators (Multipliers)

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

* Multiplication
e Multiply and accumulate with addition, rounding optional
* Multiply and accumulate with subtraction, rounding optional

e Dual versions of the above

Multiplier Operation

Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any Data registers in the Data Register File. Each multiplier can
accumulate results in its Accumulator register, Al or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MACO, both inputs are treated as
signed or unsigned. In MACI1, there is a mixed-mode option.

If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit
correction. Multiplier instruction options specify the data format of the
inputs. See “Multiplier Instruction Options” on page 2-40 for more
information.

2-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-10 on page 2-42, each multiplier has a dedicated
accumulator, A0 or Al. Each Accumulator register is divided into three sec-
tions—AO0.L/AL.L (bits 15:0), A0.H/AL.H (bits 31:16), and A0.X/A1.X (bits
39:32).

When the multiplier writes to its result Accumulator registers, the 32-bit
result is deposited into the lower bits of the combined Accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register
(AO.X/AL.X).

Multiplier output can be deposited not only in the A0 or Al registers, but
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation
operations work as follows.

* Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result.

For the IH option, the rounded result is obtained by adding 0x8000
to the accumulator (for MAC) or multiply result (for mult) and
then saturating to 32-bits. For more information, see “Rounding
Multiplier Results” on page 2-19.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-37

Multiply Accumulators (Multipliers)

If an overflow or underflow has occurred, the saturate operation
sets the specified Result register to the maximum positive or nega-
tive value. For more information, see the following section.

Saturating Multiplier Results on Overflow

The following bits in ASTAT indicate multiplier overflow status:

Bit 16 (Av0) and bit 18 (AV1) record overflow condition (whether
the result has overflowed 32 bits) for the A0 and Al accumulators,
respectively.

If the bit is cleared (=0), no overflow or underflow has occurred. If
the bit is set (=1), an overflow or underflow has occurred. The AV0S
and AV1S bits are sticky bits.

Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the
accumulator result to a register.

Multiplier Instruction Summary

Table 2-10 lists the multiplier instructions. For more information about
assembly language syntax and the effect of multiplier instructions on the
status flags, see Chapter 15, “Arithmetic Operations.”

In Table 2-10, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg lo_hi denotes any 16-bit register half in any Data Register
File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.

2-38

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

* An denotes either MAC Accumulator register A0 or Al.

* *Indicates the flag may be set or cleared, depending on the results
of the instruction.

¢ _ Indicates no effect.

Multiplier instruction options are described on page 2-40.

Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Flags
AVO AV1 \%
AVO0S AV1S V_COPY
\'A)
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; - - *
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; - - *
Dreg = Dreg_lo_hi * Dreg_lo_hi ; - - *
An = Dreg_lo_hi * Dreg_lo_hi ; * * -
An += Dreg_lo_hi * Dreg_lo_hi ; * * -
An —= Dreg_lo_hi * Dreg_lo_hi ; * * -
Dreg lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg_lo = (A0 += Dreg_lo_hi * Dreg lo_hi); |* * *
Dreg lo = (A0 —= Dreg_lo_hi * Dreg lo_hi); |* * *
Dreg_hi = (Al = Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg_hi = (Al += Dreg_lo_hi * Dreg_lo_hi); |* * *
Dreg_hi = (Al —= Dreg_lo_hi * Dreg_lo_hi); |* * *
Dreg = (An = Dreg_lo_hi * Dreg_lo_hi) ; * * "
Dreg = (Az += Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg = (Az —= Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg *= Dreg ; - - B

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-39

Multiply Accumulators (Multipliers)

Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Chapter 15, “Arithmetic Operations.”

default
(IS)

(FU)

I1u)

(T)

(TFU)

(ISS2)

No option; input data is signed fraction.

Input data operands are signed integer. No shift
correction is made.

Input data operands are unsigned fraction. No shift
correction is made.

Input data operands are unsigned integer. No shift
correction is made.

Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, Accumulator
contents are scaled (multiplied x2 by a one-place
shift-left). If scaling produces a signed value larger
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

If multiplying and accumulating to a half register:

2-40

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

When copying the lower 16 bits to the destination
half register, the Accumulator contents are scaled. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the
Accumulator are rounded, and then copied into the
destination half register.

(W32) Input data operands are signed fraction with no
extension bits in the Accumulators at 32 bits.
Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit Accu-
mulators. For this option only, this special case
applies: 0x8000 x 0x8000 = Ox7FFF.

(M) Operation uses mixed-multiply mode. Valid only
for MACI versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction. Operand one is signed;
operand two is unsigned. MACO performs an
unmixed multiply on signed fractions by default, or
another format as specified. That is, MACO exe-
cutes the specified signed/signed or unsigned/
unsigned multiplication. The (M) option can be
used alone or in conjunction with one other format
option.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-41

Multiply Accumulators (Multipliers)

Multiplier Data Flow Details

Figure 2-10 shows the Register files and ALUs, along with the multiplier/

accumulators.
TO MEMORY
A ALUs
A
32b 32b Y\32b
\A 4 A\ 4
OPERAND OPERAND
ﬁ RO.H RO-L\ SELECTION SELECTION
R1| R1H R1.L
MAC1 MACO
R2 | R2H R2.L
R3 | R3H R3.L
R4 | RaH R4.L Al A0
R5| RsH R5.L SHIFTER
R6 | R6H R6.L
w R7H R7.LJ
AA AA
32b
\ §\32b v
A4

FROM MEMORY

Figure 2-10. Register Files and ALUs

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with

four possible input operand combinations. The two 32-bit words can con-

2-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

tain the same register information, giving the options for squaring and
multiplying the high half and low half of the same register. Figure 2-11
show these possible combinations.

A B
31 31
1 1
1 Rm 1 Rm
1 1
1 1
I | Rp ! Rp
! MACO ! MACO
ary -
Ay
39 39
| | A0 | | A0
C D
31 31

| a0 | | o

Figure 2-11. Four Possible Combinations of MAC Operations

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the Accumulator Result
register or pass the new product directly to the Data Register File Results
register. For results, the A0 and A1 registers are 40 bits wide. Each of these
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0.X, and
Al.X.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-43

Multiply Accumulators (Multipliers)

For example:
Al += R3.H * R4.H ;

In this instruction, the MAC1 multiplier/accumulator performs a multiply
and accumulates the result with the previous results in the Al
Accumulator.

Multiply Without Accumulate

The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
Data Register File or the Accumulator register. The destination register
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MACO is used; if it is a high half, then MACI1 is used. For a 32-bit desti-
nation register, either MACO or MACI is used.

If the destination register is 16 bits, then the word that is extracted from
the multiplier depends on the data type of the input.

 If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-12).

 If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the
resultant 16-bit word for the data type chosen (see Figure 2-13).

2-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

A0.X AO.H AO.L
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

—

DESHINAON | XXX XXXX XXXX XXXX | XHXXHK XXXX XXX XXXX |
gister
A1.X A1H AlL

A1 0000 0000 | XXXXXXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

!

XK XXXX XXX XXX | XXX XXXX XXXX XXXX |

Destination
Register

Figure 2-12. Multiplication of Fractional Operands
For example, this instruction uses fractional, unsigned operands:
RO.L = R1.L * RZ.L (FU)

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MACO. This
instruction uses unsigned integer operands:

RO.H = R2.H * R3.H (IU)

The instruction deposits the lower 16 bits of the multiply answer with any
required saturation into the high half of R0, using MACI.

RO = R1.L * R2.L

Regardless of operand type, the preceding operation deposits 32 bits of the
multiplier answer with saturation into R0, using MACO.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-45

Multiply Accumulators (Multipliers)

A0.X AO.H AO.L
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

l

DESHINAON | XXX XXXX XXXX XXXX | XXXHK XXXX XXX XXXX |
gister
A1.X A1H AlL

A1 0000 0000 | XXXXXXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

v/\)

XK XXXX XXX XXX | XXX XXXX XXXX XXXX |

Destination
Register

Figure 2-13. Multiplication of Integer Operands

Special 32-Bit Integer MAC Instruction

The processor supports a multicycle 32-bit MAC instruction:
Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.

The instruction takes multiple cycles to execute. For more information
about the exact operation of this instruction, refer to Chapter 15, “Arith-
metic Operations.” This macro function is interruptable and does not
modify the data in either Accumulator register A0 or Al.

2-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Dual MAC Operations

The processor has two 16-bit MACs. Both MACs can be used in the same
operation to double the MAC throughput. The same two 32-bit input
registers are offered to each MAC unit, providing each with four possible
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store
vectors of samples in the four input operands and perform vector
computations.

An example of a dual multiply and accumulate instruction is
Al += R1.H * R2.L, A0 += R1.L * R2.H ;
This instruction represents two multiply and accumulate operations.

* In one operation (MAC1) the high half of R1 is multiplied by the
low half of R2 and added to the contents of the A1 Accumulator.

* In the second operation (MACO) the low half of R1 is multiplied by
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:
R3.H = (Al += RI.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit Accumulator is packed into a 16-bit half
register. The result from MAC1 must be transferred to a high half of a
destination register and the result from MACO must be transferred to the
low half of the same destination register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-47

Barrel Shifter (Shifter)

The operand type determines the correct bits to extract from the Accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-44.

R3 = (Al += R1.H * R2.L), RZ = (A0 += R1.L * R2.L)

In this instruction, the 40-bit Accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:01, R[3:2], R[5:417,
R[7:61).

R3.H = (Al += RI.H * R2.L), A0 += RI1.L * R2.L ;

This instruction is an example of one Accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)

The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit
inputs, yielding a 16-, 32-, or 40-bit output. These functions include
arithmetic shift, logical shift, rotate, and various bit test, set, pack,
unpack, and exponent detection functions. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation.

Shifter Operations

The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT,
<<, and >> instructions represent the logical shift.

2-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values (as would occur in many DSP algorithms) can
use the instructions ASHIFT and LSHIFT. These are typically three-operand
instructions.

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter related instructions, see “Shifter
Instruction Summary” on page 2-53.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.

The following example shows the input value downshifted.

RO contains 0000 B6A3
RO >>= 0x04

results in

RO contains 0000 OB6A

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-49

Barrel Shifter (Shifter)

The following example shows the input value upshifted.

RO contains 0000 B6A3
RO <<= 0x04

results in

RO contains 000B 6A30

Register Shifts

Register-based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than or equal to 32, then the result is either 0 or —1.

The following example shows the input value upshifted.

RO contains 0000 B6A3 ;
R2 contains 0000 0004
RO <K= R2 ;

results in

RO contains 000B 6A30

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the
result in a destination register.

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

2-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

The following example shows the input value downshifted.

RO contains 0000 B6A3
R1 = RO >> 0x04

results in
R1 contains 0000 O0B6A ;
The following example shows the input value upshifted.

RO.L contains B6A3 ;
R1.H = RO.L << 0x04 ;

results in

R1.H contains 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. When a register
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift
value is always found in the low half of a register (Rn.L). The bottom six
bits of Rn. L are masked off and used as the shift value.

The following example shows the input value upshifted.

RO contains 0000 B6A3
R2.L contains 0004 ;
R1 = RO ASHIFT by R2.L ;

results in

R1 contains 000B 6A30

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-51

Barrel Shifter (Shifter)

The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see
“Condition Code Flag” on page 4-18.

RO contains ABCD EF12 ;
R2.L contains 0004 ;
R1 = RO ROT by R2.L ;

results in
R1 contains BCDE F125 ;

Note the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

The following examples show a variety of operations.

BITCLR (RO, 6) ;
BITSET (RZ2, 9) ;
BITTGL (R3, 2)

CC = BITTST (R3, 0)

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.

In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.

2-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source.

Shifter Instruction Summary

Table 2-11 lists the shifter instructions. For more information about
assembly language syntax and the effect of shifter instructions on the sta-

tus flags, see Chapter 14, “Shift/Rotate Operations.”

In Table 2-11, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.

* Indicates the flag may be set or cleared, depending on the results
of the instruction.

* 0 Indicates versions of the instruction that send results to Accu-
mulator A0 set or clear AVO.

* 1 Indicates versions of the instruction that send results to Accu-
mulator Al set or clear AV1.

** Indicates the flag is cleared.
*** Tndicates CC contains the latest value shifted into it.

— Indicates no effect.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-53

Barrel Shifter (Shifter)

Table 2-11. Shifter Instruction Summary

Instruction ASTAT Status Flag

AZ | AN | ACO AV0 | AV1 CC |V

AC0_COPY |AVOS | AV1S V_COPY
AC1 \'A

BITCLR (Dreg, uimm5) ; * * ok — — - ok
BITSET (Dreg, uimm5) ; N *x - - - k[
BITTGL (Dreg, uimm5) ; * * ok _ _ - k[
CC-= - - _ - — * _
BITTST (Dreg, uimm5) ;
CC-= - - _ - — * _
IBITTST (Dreg, uimm5) ;
Dreg = * * *k _ _ _ **/_
DEPOSIT (Dreg, Dreg) ;
Dreg = * * *k _ _ _ **/_
EXTRACT (Dreg, Dreg) ;
BITMUX (Dreg, Dreg, A0) ; - - - - — _ _
Dreg_lo = ONES Dreg ; - - - — _ _ _
Dreg = PACK (Dreg_lo_hi, - - - - - _ _
Dreg_lo_hi);
Dreg >>>= uimm5 ; * * - - - - ¥ [
Dreg >>= uimmb5 ; * * - — _ _ ok [_
Dreg <<= uimmb5 ; * * - — _ _ ok [_
Dreg = Dreg >>> uimmS5 ; * * - - - — k[
Dreg = Dreg >> uimm5 ; * * — _ _ _ ok
Dreg = Dreg << uimm5 ; * * — — — — *
Dreg = Dreg >>> uimm4 (V) ; * * - - _ - k[
Dreg = Dreg >> uimm4 (V) ; * * - - - - X [
Dreg = Dreg << uimm4 (V) ; * * - - - - *

2-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Computational Units

Table 2-11. Shifter Instruction Summary (Contd)

Instruction ASTAT Status Flag

AZ | AN | ACO AV0 | AVl CC|V

AC0_COPY | AVO0S | AV1S V_COPY
AC1 VS

An = An >>> uimm5 ; * * — *0f | **1/- |- —
An = An >> uimm5 ; * * — *0/ | **1/- |- —
An = An << uimm5 ; * * - *0 *1 — —
Dreg_lo_hi = Dreg_lo_hi >>> * * - - - - k[
uimm4 ;
Dreg_lo_hi = Dreg_lo_hi >> * * - — — _ *ok [
uimm4 ;
Dreg_lo_hi = Dreg_lo_hi << * * - — _ _ *
uimm4 ;
Dreg >>>= Dreg ; * * - - - - *¥ [
Dreg >>= Dreg ; * * - - - - *x[_
Dreg <<= Dreg ; * * - - - - *H[_
Dreg = ASHIFT Dreg BY * * - - - - *
Dreg_lo;
Dreg = LSHIFT Dreg BY * * - - - - HKf—
Dreg_lo;
Dreg = ROT Dreg BY imm6 ; — - - - - rork |
Dreg = ASHIFT Dreg BY * * - - - - *
Dreg_lo (V) ;
Dreg = LSHIFT Dreg BY * * - - - - -
Dreg_lo (V) ;
Dreg_lo_hi = ASHIFT * * - - - _ *
Dreg_lo_hi BY Dreg_lo ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-55

Barrel Shifter (Shifter)

Table 2-11. Shifter Instruction Summary (Contd)

Instruction ASTAT Status Flag
AZ | AN | ACO AV0 | AVl CC |V
AC0_COPY | AVO0S | AV1S V_COPY
AC1 \'A
Dreg_lo_hi = LSHIFT * * - — - — ok [_
Dreg_lo_hi BY Dreg_lo ;
An=An ASHIFT BY Dreg _lo; | * * — *0 *1 — —
An = An ROT BY imm6 ; — - - — _ work
Dreg = (Dreg + Dreg) << 1 ; * * * - - - *
* * * *

Dreg = (Dreg + Dreg) << 2 ; - - _

2-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

3 OPERATING MODES AND
STATES

The processor supports the following three processor modes:
e User mode
* Supervisor mode
* Emulation mode

Emulation and Supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and Emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, a nonmaskable interrupt (NMI), or an exception, the
processor is in Supervisor mode. When servicing an emulation event, the
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

@ MMRs cannot be read while the processor is in User mode.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-1

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor > 0x10
but IPEND[0], IPEND[1], IPEND|2], and
IPEND[3] = 0.

Exception Supervisor > 0x08
The core is processing an exception event if
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0,
IPEND(3] = 1, and IPEND[15:4] are 0’s or 1.

NMI Supervisor > 0x04
The core is processing an NMI event if IPENDJ0]
- 0, IPENDI1] = 0, IPEND[2] = 1, and
IPEND[15:2] are 0’s or 1s.

Reset Supervisor = 0x02
As the reset state is exited, IPEND is set to 0x02,
and the reset vector runs in Supervisor mode.

Emulation Emulator = 0x01
The processor is in Emulation mode if
IPEND[0] = 1, regardless of the state of the
remaining bits IPEND[15:1].

None User = 0x00

In addition, the processor supports the following two non-processing

states:
e Idle state

e Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-

tion conditions between them.

3-2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

IDLE instruction
o(USER
4 Application
Level Code

| Interrupt
or
| Exception

System Code,

RTI, Event Handlers
RTX, RTN

[IDLE

instruction

SUPERVISOR Emulation RTE

Event

Emulation
Event

Interrupt

| RST Inactive

RST
Active

RESET)

Y

" EMULATION
I Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may
have initiated a reset. If so, exit from Reset is to Emulation.

Figure 3-1. Processor Modes and States

User Mode

The processor is in User mode when it is not in Reset or Idle state, and
when it is not servicing an interrupt, NMI, exception, or emulation event.
User mode is used to process application level code that does not require
explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. Table 3-2 lists the registers that may
be accessed in User mode.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-3

User Mode

Table 3-2. Registers Accessible in User Mode

Processor Registers

Register Names

Data Registers

R[7:0], A[1:0]

Pointer Registers

P[5:0], SP, FP, 1[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers

RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES,
CYCLES2

Protected Resources and Instructions

System resources consist of a subset of processor registers, all MMRs, and
a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFCO 0000. This region of memory is pro-
tected from User mode access. Any attempt to access MMR space in User
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue
any of the protected instructions from User mode causes an exception

event.

Table 3-3. Protected Instructions

Instruction Description
RTI Return from Interrupt
RTX Return from Exception
RTN Return from NMI
CLI Disable Interrupts
STI Enable Interrupts
RAISE Force Interrupt/Reset
RTE Return from Emulation
Causes an exception only if executed outside Emulation mode

3-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

Protected Memory

Additional memory locations can be protected from User mode access. A
Cacheability Protection Lookaside Buffer (CPLB) entry can be created
and enabled. See “Memory Management Unit” on page 6-45 for further
information.

Entering User Mode

When coming out of reset, the processor is in Supervisor mode because it
is servicing a reset event. To enter User mode from the Reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued. The following example code
shows how to enter User mode upon reset.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from reset.

Listing 3-1. Entering User Mode from Reset

P1.L = START ; /* Point to start of user code */
P1.H = START ;

RETI = P1

RTI /* Return from Reset Event */

START /* Place user code here */

Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke User mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. In the

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-5

User Mode

case of an interrupt routine, if the service routine is interruptible, the
return address is stored on the stack. For this case, the address can be
found by popping the value from the stack into RETI. Once RETI has been
loaded, the RTI instruction can be issued.

Note the stack pop is optional. If the RETI register is not
pushed/popped, then the interrupt service routine becomes
non-interruptible, because the return address is not saved on the
stack.

The processor remains in User mode until one of these events occurs:
* An interrupt, NMI, or exception event invokes Supervisor mode.
¢ An emulation event invokes Emulation mode.

e A reset event invokes the Reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at
Address in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt RTN RETN

Service Routine

Emulation Service Routine RTE RETE

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

Supervisor Mode

The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources, unless a CPLB has been con-
figured and enabled. See “Memory Management Unit” on page 6-45 for a
further description. Only Supervisor mode can use the register alias USP,
which references the User Stack Pointer in memory. This register alias is
necessary because in Supervisor mode, SP refers to the kernel stack pointer
rather than to the user stack pointer.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to
Supervisor mode where it remains until an emulation event or Return
instruction occurs to change the mode. Before the Return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments

For non-OS environments, application code should remain in Supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can pre-empt this activity. Therefore,
lower priority events cannot be processed.

One way of keeping the processor in Supervisor mode and still allowing
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in
“Events and Interrupts” on page 4-29. After the low priority interrupt has
been forced using the RAISE 15 instruction, RETI can be loaded with a
return address that points to user code that can execute until 1VG15 is
issued. After RETI has been loaded, the RTI instruction can be issued to
return from the reset event.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-7

Supervisor Mode

The interrupt handler for 1VG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

PO.L = LOCEVT15) ; /* Point to IVG15 in Event Vector Table */
PO.H = HI(CEVT15) ;

P1.L = START ; /* Point to start of User code */

P1.H = START ;

[PO] = P1 ; /* Place the address of start code in IVG15 of EVT
*/

PO.L = LOCIMASK)

RO [PO] ;
R1.L = EVT_IVG15 & OxFFFF

RO RO | RL ;
[PO] = RO ; /* Set (enable) IVG15 bit in Interrupt Mask Register
*/

RAISE 15 ; /* Invoke IVG15 interrupt */
PO.L = WAIT_HERE
PO.H = WAIT_HERE ;
RETI = PO ; /* RETI Toaded with return address */
3-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

RTI ; /* Return from Reset Event */
WAIT_HERE : /* Wait here till IVGL5 interrupt is serviced */

JUMP WAIT_HERE

START: /* IVG15 vectors here */
[--SP] = RETI ; /* Enables interrupts and saves return address
to stack */

Emulation Mode

The processor enters Emulation mode if Emulation mode is enabled and
either of these conditions is met:

e An external emulation event occurs.
e The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service
routine executes an RTE instruction. If no interrupts are pending when the
RTE instruction executes, the processor switches to User mode. Otherwise,
the processor switches to Supervisor mode to service the interrupt.

Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State

Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential IDLE instruction. The
IDLE instruction notifies the processor hardware that the Idle state is
requested.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-9

Reset State

The processor remains in the Idle state until a peripheral or external
device, such as a SPORT or the Real-Time Clock (RTC), generates an

interrupt that requires servicing.

In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables
its clocks. Since interrupts are disabled, Idle state can be terminated only
by asserting a WAKEUP signal. For more information, see “SIC_IWR Regis-
ter” on page 4-34. (While not required, an interrupt could also be enabled
in conjunction with the WAKEUP signal.)

When the WAKEUP signal is asserted, the processor wakes up, and the STI
instruction enables interrupts again.

Example Code for Transition to Idle State
To transition to the Idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI RO ; /* disable interrupts */
IDLE ; /* drain pipeline and send core into IDLE state */
STI RO /* re-enable interrupts after wakeup */

Reset State

Reset state initializes the processor logic. During Reset state, application
programs and the operating system do not execute. Clocks are stopped
while in Reset state.

The processor remains in the Reset state as long as external logic asserts
the external RESET signal. Upon deassertion, the processor completes the
reset sequence and switches to Supervisor mode, where it executes code
found at the reset event vector.

3-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

Software in Supervisor or Emulation mode can invoke the Reset state
without involving the external RESET signal. This can be done by issuing
the Reset version of the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

Table 3-5. Processor State Upon Reset

Item Description of Reset State

Core

Operating Mode Supervisor mode in reset event, clocks stopped
Rounding Mode Unbiased rounding

Cycle Counters

Disabled, zero

DAG Registers (I, L, B, M)

Random values (must be cleared at initialization)

Data and Address Registers

Random values (must be cleared at initialization)

IPEND, IMASK, ILAT

Cleared, interrupts globally disabled with IPEND bit 4

CPLBs

Disabled

L1 Instruction Memory

SRAM (cache disabled)

L1 Data Memory

SRAM (cache disabled)

Cache Validity Bits Invalid
System
Booting Methods Determined by the values of BMODE pins at reset

MSEL Clock Frequency

Reset value = 10

PLL Bypass Mode

Disabled

VCO/Core Clock Ratio

Reset value = 1

VCO/System Clock Ratio

Reset value = 5

Peripheral Clocks

Disabled

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-11

System Reset and Powerup

System Reset and Powerup

Table 3-6 describes the five types of resets. Note all resets, except System

Software, reset the core.

Table 3-6. Resets

Reset

Source

Result

Hardware Reset

The RESET pin causes a
hardware reset.

Resets both the core and the peripherals,
including the Dynamic Power Management
Controller (DPMC).

Resets the No Boot on Software Reset bit in
SYSCR. For more information, see “SYSCR
Register” on page 3-14.

System Software

Writing b#111 to bits [2:0]

Resets only the peripherals, excluding the RTC

Timer Reset

timer appropriately causes a
Watchdog Timer reset.

Reset in the system MMR (Real-Time Clock) block and most of the
SWRST at address 0xFFCO | DPMC. The DPMC resets only the No Boot
0100 causes a System Soft- | on Software Reset bit in SYSCR. Does not reset
ware reset. the core. Does not initiate a boot sequence.

Watchdog Programming the watchdog | Resets both the core and the peripherals,

excluding the RTC block and most of the
DPMC.

The Software Reset register (SWRST) can be
read to determine whether the reset source was
the watchdog timer.

3-12

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

Table 3-6. Resets (Cont’d)

Reset Source Result
Core Double- If the core enters a dou- Resets both the core and the peripherals,
Fault Reset ble-fault state, a reset can be | excluding the RT'C block and most of the

caused by unmasking the DPMC.

Core Double Fault Reset The SWRST register can be read to determine
Mask bit in the System whether the reset source was Core Double
Interrupt Controller Inter- | Fault.

rupt Mask register
(SIC_IMASK).

Core-Only Soft- | This reset is caused by exe- | Resets only the core.

ware Reset cuting a RAISEI instruction | The peripherals do not recognize this reset.
or by setting the Software
Reset (SYSRST) bit in the
core Debug Control register
(DBGCTL) via emulation
software through the JTAG
port. The DBGCTL regis-
ter is not visible to the mem-
ory map.

Hardware Reset

The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the Boot mode
sequence configured by the BMODE state.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either Vpp or Vgg. The pins and the corresponding bits
in SYSCR configure the Boot mode that is employed after hardware reset or

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-13

System Reset and Powerup

System Software reset. See “Reset Interrupt” on page 4-46, and
Table 4-11, “Events That Cause Exceptions,” on page 4-63 for further
information.

SYSCR Register

The values sensed from the BMODE pins are latched into the System Reset
Configuration register (SYSCR) upon the deassertion of the RESET pin. The
values are made available for software access and modification after the
hardware reset sequence. Software can modify only the No Boot on Soft-
ware Reset bit.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR. Refer to the Reset and Booting chapter of your
Blackfin Processor Hardware Reference for details.

Software Resets and Watchdog Timer

A software reset may be initiated in three ways:
* By the watchdog timer, if appropriately configured

* By setting the System Software Reset field in the Software Reset
register (see Figure 3-2 on page 3-16)

* By the RAISEL instruction

The watchdog timer resets both the core and the peripherals. A System
Software reset results in a reset of the peripherals without resetting the
core and without initiating a booting sequence.

The System Software reset must be performed while executing
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the Sys-
tem Software reset sequence has been read into the cache.

3-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

After either the watchdog or System Software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by the watchdog timer, the processors transitions
into the Boot mode sequence. The Boot mode is configured by the state of
the BMODE and the No Boot on Software Reset control bits.

If the No Boot on Software Reset bit in SYSCR is cleared, the reset
sequence is determined by the BMODE control bits.

SWRST Register

A software reset can be initiated by setting the System Software Reset field
in the Software Reset register (SWRST). Bit 15 indicates whether a software
reset has occurred since the last time SWRST was read. Bit 14 and Bit 13,
respectively, indicate whether the Software Watchdog Timer or a Core
Double Fault has generated a software reset. Bits [15:13] are read-only
and cleared when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#00 and the No Boot on Software
Reset bit in SYSCR is set, the processor starts executing from the start of
on-chip L1 memory. In this configuration, the core begins fetching
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions
from address 0x2000 0000 (the beginning of ASYNC Bank 0).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-15

System Reset and Powerup

Software Reset Register (SWRST)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 0100 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |Reset=0x0000
System Software Reset
Software Reset 0x0 — 0x6 - No SW reset
Status - RO 0x7 - Triggers SW reset
0 - No SW reset since last L Core Double Fault Reset
SWRST read Enable
1 - SW reset occurred since
last SWRST read 0 - No reset caused by
Software Watchdog Timer- . gzrseeth;):nb(l,?a't::;Iltjpon
Source-RO — M — | °
0 - SW reset not generated by Core Double Fault
watchdog
1 - SW reset generated by
watchdog
Core Double Fault Reset - RO -

0 - SW reset not generated by double fault
1 - SW reset generated by double fault

Figure 3-2. Software Reset Register

Core-Only Software Reset

A Core-Only Software reset is initiated by executing the RAISE 1 instruc-
tion or by setting the Software Reset (SYSRST) bit in the core Debug
Control register (DBGCTL) via emulation software through the JTAG port.
(DBGCTL is not visible to the memory map.)

A Core-Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,
depending on the system activity during the reset period.

Core and System Reset

To perform a system and core reset, use the code sequence shown in

Listing 3-4.

3-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Operating Modes and States

Listing 3-4. Core and System Reset

/* Issue soft reset */
PO.L = LO(SWRST)

PO.H = HI(CSWRST) ;
RO.L = 0x0007
WLPO] = RO ;

SSYNC

/* Clear soft reset */

PO.L = LOCSWRST) ;
PO.H = HI(SWRST)
RO.L = 0x0000
WLPO] = RO ;

SSYNC

/* Core reset - forces reboot */

RAISE 1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-17

System Reset and Powerup

3-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

4 PROGRAM SEQUENCER

This chapter describes the Blackfin processor program sequencing and
interrupt processing modules. For information about instructions that
control program flow, see Chapter 7, “Program Flow Control.” For infor-
mation about instructions that control interrupt processing, see Chapter
16, “External Event Management.” Discussion of derivative-specific inter-
rupt sources can be found in the Hardware Reference manual for the
specific part.

Infroduction

In the processor, the program sequencer controls program flow, constantly
providing the address of the next instruction to be executed by other parts
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially.

The linear flow varies occasionally when the program uses nonsequential
program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the processor to execute an instruction that is not at the
next sequential address. These structures include:

* Loops. One sequence of instructions executes several times with
zero overhead.

* Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

* Jumps. Program flow transfers permanently to another part of
memory.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-1

Infroduction

* Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

e Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

LINEAR FLOW LOOP JUMP
ADDRESS:N [INSTRUCTION Loop JumpP
N +1|INSTRUCTION INSTRUCTION INSTRUCTION
N + 2 |INSTRUCTION INSTRUCTION INSTRUCTION
N + 3 |INSTRUCTION INSTRUCTION | N TIMES INSTRUCTION
N + 4 |INSTRUCTION INSTRUCTION INSTRUCTION
N + 5| INSTRUCTION INSTRUCTION INSTRUCTION
SUBROUTINE INTERRUPT IDLE
IRQ
CALL —»{ INSTRUCTION IDLE)]
—» INSTRUCTION —»{ INSTRUCTION INSTRUCTION| WAITING
FOR IRQ
INSTRUCTION INSTRUCTION INSTRUCTION| OR
VECTOR WAKEUP
INSTRUCTION
INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
L] RTS L] RTI

Figure 4-1. Program Flow Variations

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

4-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses
generated by the sequencer are 32-bit memory instruction addresses.

To manage events, the event controller handles interrupt and event pro-
cessing, determines whether an interrupt is masked, and generates the
appropriate event vector address.

In addition to providing data addresses, the data address generators
(DAGsS) can provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Figure 4-2 shows the core Program Sequencer module and how it inter-
connects with the Core Event Controller and the System Event
Controller.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-3

Infroduction

~ — - SYSTEM INTERRUPT CONTROLLER

! |
| SIC_IARO »| [sic_isr | DYNAMIC
| SIC_IAR1 SIC_IWR > POWER
PERIPHERALS |[——————— = - I
SIC 1AR2_| |4p-»-| [_SIC_MASK] | | MANAGEMENT
1 I SIC_IAR3 |
|
N)
¢ + -
SCLK PAB 16/32
CCLK
 — — COREEVENTCONTROLLER — — — — — — — — — — — — — — — — — == =<
| . y |<— EMULATION
I I EE wlelolo ~ of = > ILAT | -— RESET
' [IEEEEEEEBEEEIEEEEE]S MASK | | [=— NI
| el B T Tl R el el T T R e el R T | IPEND |-+— EXCEPTIONS
I |<— HARDWARE ERRORS
|)< CORE TIMER
N e e e e e o — — — — — o — o — e — R e
RAB32,
F—t
~ — PROGRAM SEQUENCER — — — — — — — — — — — — —| —-—-
/ 5 \ PREG |32,
7
| Y] i1 PyE
| | ARITHMETIC
| SYSCFG RETS Lco LTo LBo| [_, | PROGRAM | UNIT
| SEQSTAT RETI LC1 LT1 LB1 COUNTER | -
| RETX || ¢ r |
| RETN 1] 1] ' |
RETE
| CYCLES LOOP FETCH |8 132,
| CYCLES2 COMPARATORS COUNTER |
| | L1
| »| INSTRUCTION
P | MEMORY
| INSTRUCTION | ALIGNMENT DB 64
- L
| DECODER >~ UNIT N [7
| |
| LOOP |
\ o BUFFERS |
\ /
JTAG TEST
DEBUG AND
EMULATION

Figure 4-2. Program Sequencing and Interrupt Processing Block Diagram

4-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Sequencer Related Registers

Table 4-1 lists the non-memory-mapped registers within the processor
that are related to the sequencer. Except for the PC and SEQSTAT registers,
all sequencer-related registers are directly readable and writable by move
instructions, for example:

SYSCFG = RO ;
PO = RETI ;

Manually pushing or popping registers to or from the stack is done using
the explicit instructions:

[--SP] = Rn ; /* for push */
Rn = [SP++]1 ; /* for pop */

Similarly, all non-memory-mapped sequencer registers can be pushed and
popped to or from the system stack:

[--SP]
SYSCFG

CYCLES ;
[SP++]

However, load/store operations and immediate loads are not supported.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-5

Infroduction

Table 4-1. Non-memory-mapped Sequencer Registers

Register Name Description

SEQSTAT Sequencer Status register: See “Hardware Errors and
Exception Handling” on page 4-58.
Return Address registers: See “Events and Interrupts”
on page 4-29.

RETX Exception Return

RETN NMI Return

RETI Interrupt Return

RETE Emulation Return

RETS Subroutine Return
Zero-Overhead Loop registers: See “Hardware Loops”
on page 4-21.:

LCO, LC1 Loop Counters

LTo, LT1 Loop Tops

LBO, LB1 Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack
Pointers” on page 5-6

SYSCEFG System Configuration register: See “SYSCFG Register”
on page 21-26

CYCLES, CYCLES2 Cycle Counters: See “CYCLES and CYCLES2 Regis-
ters” on page 21-24

PC Program Counter. The PC is an embedded register. It is
not directly accessible with program instructions.

In addition to these central sequencer registers, there is a set of mem-
ory-mapped registers that interact closely with the program sequencer. For
information about the interrupt control registers, see “Events and Inter-
rupts” on page 4-29. Although the registers of the Core Event Controller
are memory-mapped, they still connect to the same 32-bit Register Access
Bus (RAB) and perform in the same way. Registers of the System Interrupt
Controller connect to the Peripheral Access Bus (PAB) which resides in
the SCLK domain. On some derivatives the PAB bus is 16 bits wide; on
others it is 32 bits wide. For debug and test registers see Chapter 21,

“Debug.”

4-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Instruction Pipeline

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes

instructions from memory in sequential order by incrementing the look-

ahead address.

The processor has a ten-stage instruction pipeline, shown in Table 4-2.

Table 4-2. Stages of Instruction Pipeline

Pipeline Stage

Description

Instruction Fetch 1 (IF1)

Issue instruction address to IAB bus, start compare tag of
instruction cache

Instruction Fetch 2 (IF2)

Wait for instruction data

Instruction Fetch 3 (IF3)

Read from IDB bus and align instruction

Instruction Decode (DEC)

Decode instructions

Address Calculation (AC)

Calculation of data addresses and branch target address

Data Fetch 1 (DF1)

Issue data address to DAO and DA1 bus, start compare tag of
data cache

Data Fetch 2 (DF2)

Read register files

Execute 1 (EX1)

Read data from LDO and LD1 bus, start multiply and video
instructions

Execute 2 (EX2)

Execute/Complete instructions (shift, add, logic, etc.)

Write Back (WB)

Writes back to register files, SD bus, and pointer updates (also

referred to as the “commit” stage)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-7

Instruction Pipeline

Figure 4-3 shows a diagram of the pipeline.

Instr Instr Instr Instr Addr | Data Data Ex1 Ex2 WB
Fetch | Fetch | Fetch [Decode| Calc Fetch | Fetch
1 2 3 1 2

Instr Instr Instr Instr Addr | Data Data Ex1 Ex2 WB
Fetch | Fetch [Fetch |[Decode| Calc Fetch | Fetch
1 2 3 1 2

Figure 4-3. Processor Pipeline

The instruction fetch and branch logic generates 32-bit fetch addresses for
the Instruction Memory Unit. The Instruction Alignment Unit returns
instructions and their width information at the end of the IF3 stage.

For each instruction type (16, 32, or 64 bits), the Instruction Alignment
Unit ensures that the alignment buffers have enough valid instructions to
be able to provide an instruction every cycle. Since the instructions can be
16, 32, or 64 bits wide, the Instruction Alignment Unit may not need to
fetch an instruction from the cache every cycle. For example, for a series of
16-bit instructions, the Instruction Alignment Unit gets an instruction
from the Instruction Memory Unit once in four cycles. The alignment
logic requests the next instruction address based on the status of the align-
ment buffers. The sequencer responds by generating the next fetch address
in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. The sequencer always
increments the previous fetch address by 8 (the next 8 bytes). If a change
of flow occurs, such as a branch or an interrupt, data in the Instruction
Alignment Unit is invalidated. The sequencer decodes and distributes
instruction data to the appropriate locations such as the register file and
data memory.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs,
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit Data Register File.

4-8

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Register file reads occur in the DF2 pipeline stage (for operands).

Register file writes occur in the WB stage (for stores). The multipliers and
the video units are active in the EX1 stage, and the ALUs and shifter are
active in the EX2 stage. The accumulators are written at the end of the
EX2 stage.

The program sequencer also controls stalling and invalidating the instruc-
tions in the pipeline. Multi-cycle instruction stalls occur between the IF3
and DEC stages. DAG and sequencer stalls occur between the DEC and
AC stages. Computation and register file stalls occur between the DF2 and
EX1 stages. Data memory stalls occur between the EX1 and EX2 stages.

The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being
issued from the decoder over several clock cycles. For example, the Push
Multiple or Pop Multiple instruction can push or pop from 1 to 14 DREGS
and/or PREGS, and the instruction remains in the decode stage for a num-
ber of clock cycles equal to the number of registers being accessed.

Multi-issue instructions are 64 bits in length and consist of one 32-bit
instruction and two 16-bit instructions. All three instructions execute in
the same amount of time as the slowest of the three.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

* Jumps
e Subroutine calls and returns
* Interrupts and returns

* Loops

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-9

Branches

Branches

One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-

tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Chapter 7,
“Program Flow Control.” Briefly:

A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically loads the return address into the RETS register.
The return address is the next sequential address after the CALL
instruction. This push makes the address available for the CALL
instruction’s matching return instruction, allowing easy return
from the subroutine.

A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored in the RETS register (for subrou-
tine returns). The types of return instructions include: return from
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from
nonmaskable interrupt (RTN). Each return type has its own register
for holding the return address.

A JUMP instruction can be conditional, depending on the status of
the CC bit of the ASTAT register. These instructions are immediate
and may not be delayed. The program sequencer can evaluate the
CC status bit to decide whether to execute a branch. If no condition
is specified, the branch is always taken.

Conditional JUMP instructions use static branch prediction to
reduce the branch latency caused by the length of the pipeline.

4-10

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Branches can be direct or indirect. A direct branch address is determined
solely by the instruction word (for example, JUMP 0x30), while an indirect
branch gets its address from the contents of a DAG register (for example,
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and
CALL can be absolute or PC-relative.

Direct Short and Long Jumps

The sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit 0 must be a 0). The 13-bit value
gives an effective dynamic range of 4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit 0 must be a 0). The 25-bit value gives
an effective dynamic range of =16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S Oxnnnn
instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L Oxnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset,
then use the instruction JUMP Oxnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP. L instruction.

Rather than hard coding jump target addresses, use symbolic addresses in
assembly source files. Symbolic addresses are called labels and are marked
by a trailing colon. See the Visual DSP++ Assembly and Preprocessor man-
ual for details.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-11

Branches

JUMP myTabel
/* skip any code placed here */
mylabel:
/* continue to fetch and execute instruction here */

Direct Call

The CALL instruction is a branch instruction that copies the address of the
instruction which would have executed next (had the CALL instruction not
executed) into the RETS register. The direct CALL instruction has a 25-bit,
PC-relative offset that must be a multiple of two (bit 0 must be a 0). The
25-bit value gives an effective dynamic range of —16,777,216 to
+16,777,214 bytes. A direct CALL instruction is always a 4-byte
instruction.

Indirect Branch and Call

The indirect JUMP and CALL instructions get their destination address from
a data address generator (DAG) P-register. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next in the absence of the CALL instruction.

For example:

JUMP (P3)
CALL (PO)

To load a P-register with a symbolic target label you may use one of the
following syntax styles. The syntax may differ in various assembly tools
sets.

Modern style:

P4.H = HI(mytarget);
P4.L = LO(mytarget);
JUMP (P4);

4-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

mytarget:
/* continue here */

Legacy style:

P4 . H mytarget;

P4.L = mytarget;

JUMP (P4);
mytarget:

/* continue here */

PC-Relative Indirect Branch and Call

The PC-relative indirect JUMP and CALL instructions use the contents of a
P-register as an offset to the branch target. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next (had the CALL instruction not executed).

For example:

JUMP (PC + P3)
CALL (PC + PO)

Subrovutines

Subroutines are code sequences that are invoked by a CALL instruction.
Assuming the stack pointer SP has been initialized properly, a typical sce-
nario could look like the following:

/* parent function */
RO = 0x1234 (Z); /* pass a parameter */
CALL myfunction;
/* continue here after the call */
[PO] = RO; /* save return value */
JUMP somewhereelse;
myfunction: /* subroutine label */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-13

Branches

[--SP] = (R7:7, P5:5); /* multiple push instruction */
P5.H = HI(myregister); /* P5 used locally */

P5.L = LO(myregister);

R7 [P5]; /* R7 used Tlocally */

RO RO + R7; /* RO user for parameter passing */
(R7:7, P5:5) = [SP++]; /* multiple pop instruction */
RTS; /* return from subroutine */

myfunction.end: /* closing subroutine label */

Due to the syntax of the multiple-push, multiple-pop instructions, often
the upper R- and P-registers are used for local purposes, while lower regis-
ters pass the parameters. See the “Address Arithmetic Unit” chapter for
more details on stack management.

The CALL instruction not only redirects the program flow to the myfunc-
tion routine, it also writes the return address into the RETS register. The
RETS register holds the address where program execution resumes after the
RTS instruction executes. In the example this is the location that holds the
[P0]=R0O; instruction.

The return address is not passed to any stack in the background. Rather,
the RETS register functions as single-entry hardware stack. This scheme
enables “leaf functions” (subroutines that do not contain further CALL
instructions) to execute with less possible overhead, as no bus transfers
need to be performed.

If a subroutine calls other functions, it must temporarily save the content
of the RETS register explicitly. Most likely this is performed by stack oper-
ations as shown below.

/* parent function */
CALL function_a;
/* continue here after the call */
JUMP somewhereelse;

function_a: /* subroutine label */

4-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

[--SP] (R7:7, P5:5); /* optional multiple push instruction */
[--SP] RETS; /* save RETS onto stack */
CALL function_b; /* call further subroutines */
CALL function_c;
RETS = [SP++]; /* restore RETS */
(R7:7, P5:5) = [SP++]; /* optional multiple pop instruction */
RTS; /* return from subroutine */
function_a.end: /* closing subroutine label */
function_b:

/* do something */
RTS;
function_b.end:
function_c:
/* do something else */
RTS;
function_c.end:

Stack Variables and Parameter Passing

Many subroutines require input arguments from the calling function and
need to return their results. Often, this is accomplished by project-wide
conventions, that certain core registers are used for passing arguments,
where others return the result. It is also recommended that assembly pro-
grams meet the conventions used by the C/C++ compiler. See the
VisualDSP++ C/C++ Compiler and Library Manual for details.

Extensive arguments are typically passed over the stack rather than by reg-
isters. The following example passes and returns two 32-bit arguments:

_parent:
RO =1
R1 = 3;
[--SP] = RO;
[--SP] = R1;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-15

Branches

CALL _sub;

R1
RO

[SP++1; /* Rl = 4 */
[SP++1; /* RO = 2 */

_parent.end:

_sub:
[--SP] = FP; /* save frame pointer */
FP = SP; /* new frame */

[--SP]1 = (R7:5); /* multiple push */

R6 = [FP+41; /* R6 = 3 */

R7 = [FP+8]; /* R7 =1 */
R5 = R6 + R7; /* calculate anything */
R6 = R6 - R7;
[FP+4] = Rb; /* Rb = 4 %/
[FP+8] = R6; /* R6 =2 */
(R7:5) = [SP++]; /* multiple pop */
FP = [SP++]; /* restore frame pointer */
RTS;
_sub.end:

Since the stack pointer SP is modified inside the subroutine for local stack
operations, the frame pointer FP is used to save the original state of SP.
Because the 32-bit frame pointer itself must be pushed onto the stack first,
the FP is four bytes off the original SP value.

4-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

The Blackfin instruction set features a pair of instructions that provides
cleaner and more efficient functionality than the above example: the LINK
and UNLINK instructions. These multi-cycle instructions perform multiple
operations that can be best explained by the equivalent code sequences:

Table 4-3. Link and Unlink Code Sequencer

LINK n; UNLINK;
[--SP] = RETS; SP = FP;

[--SP] = FP; FP = [SP++];
FP = SP; RETS = [SP++];
SP += -n;

The following subroutine does the same job as the one above, but it also
saves the RETS register to enable nested subroutine calls. Therefore, the
value stored to FP is 8 bytes off the original SP value. Since no local frame
is required, the LINK instruction gets the parameter “0”.

_sub?2:
LINK 0;
[--SP] = (R7:5);

Re = [FP+8]; /* R6 = 3 */
R7 = [FP+12]; /* R7T =1 %/
R5 = R6 + R7;
R6 = R6 - R7;

[FP+8] = R5; /* Rb = 4 %/
[FP+12] = R6; /* R6 =2 */

(R7:5) = [SP++1;
UNLINK;
RTS;

_sub?2.end:

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-17

Branches

If subroutines require local, private, and temporary variables beyond the
capabilities of core registers, it is a good idea to place these variables on the
stack as well. The LINK instruction takes a parameter that specifies the size
of the stack memory required for this local purpose. The following exam-
ple provides two local 32-bit variables and initializes them to zero when
the routine is entered:

_sub3:
LINK 8;
[--SP] = (R7:0, P5:0);

R7 =0 (Z2);
[FP-4] = R7;
[FP-8] = R7;

(R7:0, P5:0) = [SP++1];
UNLINK;
RTS;

_sub3.end:

For more information on the LINK and UNLINK instructions, see “LINK,

UNLINK” on page 10-17.

Condition Code Flag

The processor supports a Condition Code (CC) flag bit, which is used to
resolve the direction of a branch. This flag may be accessed eight ways:

* A conditional branch is resolved by the value in CC.

* A Data register value may be copied into CC, and the value in CC
may be copied to a Data register.

e The BITTST instruction accesses the CC flag.

4-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

* A status flag may be copied into CC, and the value in CC may be
copied to a status flag.

* The cc flag bit may be set to the result of a Pointer register
comparison.

e The cc flag bit may be set to the result of a Data register
comparison.

* Some shifter instructions (rotate or BXOR) use CC as a portion of the
shift operand/result.

e Test and set instructions can set and clear the CC bit.

These eight ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies
the interpretation for the value of cC. The interpretation is to “branch on
true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves a
pair of registers of the same type (for example, Data registers or Pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (-4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are
JUMP instructions whose execution branches or continues linearly, depend-
ing on the value of the CC bit. The target of the branch is a PC-relative
address from the location of the instruction, plus an offset. The

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-19

Branches

PC-relative offset is an 11-bit immediate value that must be a multiple of

two (bit 0 must be a 0). This gives an effective dynamic range of —=1024 to
+1022 bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address:

IF CC JUMP dest_address ;

Take care when conditional branches are followed by load opera-
tions. For more information, see “Load/Store Operation” on

page 6-66.

Conditional Register Move

Register moves can be performed depending on whether the value of the
CC flag is true or false (1 or 0). In some cases, using this instruction instead
of a branch eliminates the cycles lost because of the branch. These condi-
tional moves can be done between any R- or P-registers (including SP and
FP).

Example code:

IF CC RO = PO ;

Branch Prediction

The sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the cC bit.

In the EX2 stage, the sequencer compares the actual CC bit value to the
predicted value. If the value was mispredicted, the branch is corrected, and
the correct address is available for the WB stage of the pipeline.

4-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

The branch latency for conditional branches is as follows.

* If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

* If prediction was “not to take branch,” and branch was actually
taken: 8 CCLK cycles.

e If prediction was “to take branch,” and branch was actually taken:
4 CCLK cycles.

e If prediction was “to take branch,” and branch was actually not
taken: 8 CCLK cycles.

For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the Instruction Fetch Address bus at the
beginning of the DF1 stage. All unconditional branches have a latency of
4 CCLK cycles.

Consider the example in Table 4-4.

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC flag, and if it is set,
jumps to a location, identified by the label, dest.
If the CC flag is set, the branch is correctly pre-

dicted and the branch latency is reduced. Other-
wise, the branch is incorrectly predicted and the

branch latency increases.

Hardware Loops

The sequencer supports a mechanism of zero-overhead looping. The
sequencer contains two loop units, each containing three registers. Each
loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (L8O,
LB1), and a Loop Count register (LCO, LC1).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-21

Hardware Loops

Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom
(LB) registers.

Table 4-11 describes the 32-bit loop register sets.

Table 4-5. Loop Registers

Registers Description Function

LCo, LC1 Loop Counters Maintains a count of the remaining iterations of the loop
LTo, LT1 Loop Tops Holds the address of the first instruction within a loop
LBo, LB1 Loop Bottoms Holds the address of the last instruction of the loop

When an instruction at address X is executed, and X matches the contents
of LBO, then the next instruction executed will be from the address in LTO.
In other words, when PC == LB0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count is
2. Upon reaching the first loop end, the count is decremented to 1 and the
program flow jumps back to the top of the loop (to execute a second
time). Upon reaching the end of the loop again, the count is decremented
to 0, but no loopback occurs (because the body of the loop has already
been executed twice).

The LSETUP instruction can be used to load all three registers of a loop unit
at once. Each loop register can also be loaded individually with a register
transfer, but this incurs a significant overhead if the loop count is nonzero
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions
and iterates 32 times.

4-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Listing 4-1. Loop Example

P5 = 0x20

LSETUP (Tp_start, lp_end) LCO = P5
Tp_start: R5 = RO + Rl(ns) || R2 = [P2++] || R3 = [I1++] ;
Tp_end: R5 = R5 + R2

When executing an LSETUP instruction, the program sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction, plus an
offset. In each case, the offset value is added to the location of the LSETUP
instruction.

The LCO and LC1 registers are unsigned 32-bit registers, each supporting
232 _1 iterations through the loop.

When LCx = 0, the loop is disabled, and a single pass of the code
executes. If the loop counter is derived from a variable with a range
that may include zero, it is recommended to guard the loop against
the zero case.

P5 [P47T;
cC P ==
IF CC JUMP 1p_skip;
LSETUP (l1p_start, lp_end) LCO = Pb5;
Ip_start:
1p_end:
ITp_skip: /* first instruction outside the Toop */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-23

Hardware Loops

Table 4-6. Loop Registers

First/Last Address of the | PC-Relative Offset Used to Effective Range of the Loop Start
Loop Compute the Loop Start Instruction
Address
Top / First 5-bit signed immediate; must be | 0 to 30 bytes away from LSETUP
a multiple of 2. instruction.
Bottom / Last 11-bit signed immediate; must | 0 to 2046 bytes away from
be a multiple of 2. LSETUP instruction (the defined
loop can be 2046 bytes long).

The processor supports a four-location instruction loop buffer that
reduces instruction fetches while in loops. If the loop code contains four
or fewer instructions, then no fetches to instruction memory are necessary
for any number of loop iterations, because the instructions are stored
locally. The loop buffer effectively eliminates the instruction fetch time in
loops with more than four instructions by allowing fetches to take place
while instructions in the loop buffer are being executed.

A four-cycle latency occurs on the first loopback when the LSETUP specifies
a nonzero start offset (1p_start). Therefore, zero start offsets are pre-
ferred, that is, the 1p_start label is next the LSETUP instruction.

The processor has no restrictions regarding which instructions can occur

in a loop end position. Branches and calls are allowed in that position.

Two-Dimensional Loops

The processor features two loop units. Each provides its own set of loop
registers.

* LC[1:0] — the Loop Count registers
e LT[1:0] — the Loop Top address registers

* LB[1:0] — the Loop Bottom address registers

4-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Therefore, two-dimensional loops are supported directly in hardware,
consisting of an outer loop and a nested inner loop.

The outer loop is always represented by loop unit 0 (LCO, LT0, LBO)
while loop unit 1 (LC1, LT1, LB1) manages the inner loop.

To enable the two nested loops to end at the same instruction (LB1 equals
LB0), loop unit 1 is assigned higher priority than loop unit 0. A loopback
caused by loop unit 1 on a particular instruction (PC==LB81, LC1>=2) will
prevent loop unit 0 from looping back on that same instruction, even if
the address matches. Loop unit 0 is allowed to loop back only after the
loop count 1 is exhausted. The following example shows a two-dimen-
sional loop.

ffdefine M 32
ffdefine N 1024
P4 M (Z);
P5 = N-1 (Z);
LSETUP (Tpo_start, l1po_end) LCO = P4;
Ipo_start: R7 = 0;
MNOP || R2 = [I0++] || R3 = [I1++]
LSETUP (l1pi_start, Tpi_end) LC1 = P5;

Tpi_start: RS = R2 + R3 (NS) || R2 = [I0] || R3 = [I1++]
1pi_end: R7 = R5 + R7 (NS) || [I0++] = R5;

R5 = R2 + R3;

R7 = R5 + R7 (NS) || [I0++] = R5;
Tpo_end: [I2++] = R7;

The example processes an M by N data structure. The inner loop is
unrolled and passes only N-1 times. The outer loop is not unrolled and
still provides room for optimization.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-25

Hardware Loops

Loop Unrolling

Typical DSP algorithms are coded for speed rather than for small code
size. Especially when fetching data from circular buffers, loops are often
unrolled in order to pass only N-1 times. The initial data fetch is executed
before the loop is entered. Similarly, the final calculations are done after
the loop terminates, for example:

jfdefine N 1024

global_setup:
I0.H = 0xFF80; I0.L 0x0000; BO I0; LO N*2 (Z);
I[1.H = OxFF90; I1.L = 0x0000; Bl = I1; L1 = N*2 (Z);
P5 N-1 (Z);

algorithm:
AO =0 || RO.H = WLIO++] || R1.L

WLI1++];

LSETUP (1p,1p) LCO = P5;
1p: AO+= RO.H * R1.L || RO.H = W[IO++] || RI.L = W[Il++]1;
AO+= RO.H * R1.L;

This technique has the advantage that data is fetched exactly N times and
the I-Registers have their initial value after processing. The “algorithm”
sequence can be executed multiple times without any need to initialize
DAG-Registers again.

4-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Saving and Resuming Loops

Normally, loops can process and terminate without regard to system-level
concepts. Even if interrupted by interrupts or exceptions, no special care is
needed. There are, however, a few situations that require special atten-
tion—whenever a loop is interrupted by events that require the loop
resources themselves, that is:

e If the loop is interrupted by an interrupt service routine that also
contains a hardware loop and requires the same loop unit

* If the loop is interrupted by a preemptive task switch

* If the loop contains a CALL instruction that invokes an unknown
subroutine that may have local loops

In scenarios like these, the loop environment can be saved and restored by
pushing and popping the loop registers. For example, to save Loop Unit 0
onto the system stack, use this code:

[--SPT = LCO;
[--SP]1 = LBO;
[--SP] = LTO;

To restore Loop Unit 0 from system stack, use:

LTO = [SP++1];
LBO = [SP++];
LCO = [SP++];

It is obvious that writes or pops to the loop registers cause some internal
side effects to re-initialize the loop hardware properly. The hardware does
not force the user to save and restore all three loop registers, as there might
be cases where saving one or two of them is sufficient. Consequently,
every pop instruction in the example above may require the loop hardware
to re-initialize again. This takes multiple cycles, as the loop buffers must

also be prefilled again.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-27

Hardware Loops

To avoid unnecessary penalty cycles, the loop hardware follows these
rules:

* Restoring LC0 and LC1 registers always re-initializes the loop hard-
ware and causes a ten-cycle “replay” penalty.

* Restoring LT0, LT1, LBO, and LB1 performs in a single cycle if the
respective loop counter register is zero.

e If LCx is non-zero, every write to the LTx and LBx registers also
attempts to re-initialize the loop hardware and causes a ten-cycle
penalty.

In terms of performance, there is a difference depending on the order that
the loop registers are popped. For best performance, restore the LCx regis-
ters last. Furthermore, it is reccommended that interrupt service routines
and global subroutines that contain hardware loops terminate their local
loops cleanly, that is, do not artificially break the loops and do not execute
return instructions within their loops. This guarantees that the LCx regis-
ters are 0 when LTx and LBx registers are popped.

Example Code for Using Hardware Loops in an ISR

The following code shows the optimal method of saving and restoring
when using hardware loops in an interrupt service routine.

Listing 4-2. Saving and Restoring With Hardware Loops

lThandler:

{Save other registers here>
[--SP] = LCO; /* save loop 0 */
[--SP] LBO;

[--SP] LTO;

<{Handler code here>

4-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

/* If the handler uses Toop 0, it is a good idea to have

it leave LCO equal to zero at the end. Normally, this will
happen naturally as a loop is fully executed. If LCO == 0,
then LTO and LBO restores will not incur additional cycles.
I[f LCO != 0 when the following pops happen, each pop will
incur a ten-cycle “replay” penalty. Popping or writing LCO
always incurs the penalty. */

LTO = [SP++1;
LBO = [SP++];
LCO = [SP++]; /* This will cause a “replay,” that is, a

ten-cycle refetch. */
{Restore other registers here>

RTI;

Events and Interrupts

The Event Controller of the processor manages five types of activities or
events:

* Emulation

* Reset

e Nonmaskable interrupts (NMI)
e Exceptions

* Interrupts

Note the word event describes all five types of activities. The Event Con-
troller manages fifteen different events in all: Emulation, Reset, NMI,
Exception, and eleven Interrupts.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-29

Events and Interrupts

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be
pre-empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor System Interrupt Controller (SIC) works with the Core Event
Controller (CEC) to prioritize and control all system interrupts. The SIC
provides mapping between the many peripheral interrupt sources and the
prioritized general-purpose interrupt inputs of the core. This mapping is
programmable, and individual interrupt sources can be masked in the

SIC.

The CEC supports nine general-purpose interrupts (I1VG7 — IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-7. It is recommended that the two lowest priority interrupts
(IvG14 and 1VG15) be reserved for software interrupt handlers, leaving
seven prioritized interrupt inputs (IVG7 — IVG13) to support the system.
Refer to the product data sheet for the default system interrupt mapping.

Table 4-7. Core Event Mapping

Event Source Core Event
Name
Core Events Emulation (highest priority) EMU
Reset RST
NMI NMI
Exception EVX
Reserved -
Hardware Error IVHW
Core Timer IVITMR

4-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Note the System Interrupt to Core Event mappings shown are the default
values at reset and can be changed by software.

System Interrupt Processing

Referring to Figure 4-4 on page 4-33, note when an interrupt (Interrupt
A) is generated by an interrupt-enabled peripheral:

1.

SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If Interrupt A is not masked, the request proceeds to

Step 4.

The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 - IVG15),
determine the core priority of Interrupt A.

ILAT adds Interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to Interrupt A is not masked, the process

proceeds to Step 7.
The Event Vector Table (EVT) is accessed to look up the appropri-

ate vector for Interrupt A’s interrupt service routine (ISR).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-31

Events and Interrupts

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for Interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARX).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

4-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

"INTERRUPT
A"

7 PERIPHERAL
= INTERRUPT
REQUESTS SYSTEM

Program Sequencer

EMU
RESET
NMI
EVX
IVTMR
IVHW

INTERRUPT
MASK
(SIC_IMASK)

ASSIGN
SYSTEM
PRIORITY
(SIC_IARX)

CORE
%::> STATUS
(ILAT)

—>

CORE

INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS
(SIC_ISR)

TO DYNAMIC POWER

— MANAGEMENT

CONTROLLER

SYSTEM INTERRUPT CONTROLLER

CORE
EVENT
VECTOR
TABLE
(EVT[15:0])

CORE

PENDING

(IPEND)

CORE EVENT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

Figure 4-4. Interrupt Processing Block Diagram

System Peripheral Interrupts

The processor system has numerous peripherals, which therefore require

many supporting interrupts.

The peripheral interrupt structure of the processor is flexible. By default
upon reset, multiple peripheral interrupts share a single, general-purpose
interrupt in the core, as shown in the System Interrupt Appendix of the

Blackfin Processor Hardware Reference for your part.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

4-33

Events and Interrupts

If the default assignments shown in the System Interrupt Appendix of the
Blackfin Processor Hardware Reference for your part are acceptable, then
interrupt initialization involves only:

e Initialization of the core Event Vector Table (EVT) vector address
entries

* Initialization of the IMASK register

e Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

SIC_IWR Register

The System Interrupt Wakeup-Enable register (SIC_IWR) provides the
mapping between the peripheral interrupt source and the Dynamic Power
Management Controller (DPMC). Any of the peripherals can be config-
ured to wake up the core from its idled state to process the interrupt,
simply by enabling the appropriate bit in the System Interrupt
Wakeup-enable register (SIC_IWR, refer to the System Interrupt Appendix
of the Blackfin Processor Hardware Reference for your part). If a periph-
eral interrupt source is enabled in SIC_IWR and the core is idled, the
interrupt causes the DPMC to initiate the core wakeup sequence in order
to process the interrupt. Note this mode of operation may add latency to
interrupt processing, depending on the power control state. For further
discussion of power modes and the idled state of the core, see the
Dynamic Power Management chapter of the Blackfin Processor Hardware
Reference for your part.

By default, as shown in the System Interrupt Appendix of the Blackfin
Processor Hardware Reference for your part, all interrupts generate a
wakeup request to the core. However, for some applications it may be
desirable to disable this function for some peripherals, such as for a

SPORTx Transmit Interrupt.

4-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

The SIC_IWR register has no effect unless the core is idled. The bits in this
register correspond to those of the System Interrupt Mask (SIC_IMASK)
and Interrupt Status (SIC_ISR) registers.

After reset, all valid bits of this register are set to 1, enabling the wakeup
function for all interrupts that are not masked. Before enabling interrupts,
configure this register in the reset initialization sequence. The SIC_IWR
register can be read from or written to at any time. To prevent spurious or
lost interrupt activity, this register should be written to only when all
peripheral interrupts are disabled.

Note the wakeup function is independent of the interrupt mask
function. If an interrupt source is enabled in SIC_IWR but masked
off in SIC_IMASK, the core wakes up if it is idled, but it does not
generate an interrupt.

For a listing of the default System Interrupt Wakeup-Enable register set-
tings, refer to the System Interrupt Appendix of the Blackfin Processor
Hardware Reference for your part.

SIC_ISR Register

The System Interrupt Controller (SIC) includes a read-only status regis-
ter, the System Interrupt Status register (SIC_ISR), shown in the System
Interrupt Appendix of the Blackfin Processor Hardware Reference for
your part. Each valid bit in this register corresponds to one of the periph-
eral interrupt sources. The bit is set when the SIC detects the interrupt is
asserted and cleared when the SIC detects that the peripheral interrupt
input has been deasserted. Note for some peripherals, such as programma-
ble flag asynchronous input interrupts, many cycles of latency may pass
from the time an interrupt service routine initiates the clearing of the
interrupt (usually by writing a system MMR) to the time the SIC senses
that the interrupt has been deasserted.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-35

Events and Interrupts

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the System Interrupt
Mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.

SIC_IMASK Register

The System Interrupt Mask register (SIC_IMASK, shown in the System
Interrupt Appendix of the Blackfin Processor Hardware Reference for
your part) allows masking of any peripheral interrupt source at the System
Interrupt Controller (SIC), independently of whether it is enabled at the
peripheral itself.

A reset forces the contents of SIC_IMASK to all Os to mask off all peripheral
interrupts. Writing a 1 to a bit location turns off the mask and enables the
interrupt.

4-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Although this register can be read from or written to at any time (in
Supervisor mode), it should be configured in the reset initialization
sequence before enabling interrupts.

System Interrupt Assignment Registers (SIC_IARX)

The relative priority of peripheral interrupts can be set by mapping the
peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the System Interrupt Assignment
register settings, as detailed in the System Interrupt Appendix of the
Blackfin Processor Hardware Reference for your part. If more than one
interrupt source is mapped to the same interrupt, they are logically ORed,
with no hardware prioritization. Software can prioritize the interrupt pro-
cessing as required for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

These registers can be read from or written to at any time in Supervisor
mode. It is advisable, however, to configure them in the Reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-37

Events and Interrupts

Core Event Controller Registers

The Event Controller uses three MMRs to coordinate pending event
requests. In each of these MMRs, the 16 lower bits correspond to the 16
event levels (for example, bit 0 corresponds to “Emulator mode”). The
registers are:

* IMASK - interrupt mask
* ILAT - interrupt latch
e IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.

IMASK Register

The Core Interrupt Mask register (IMASK) indicates which interrupt levels
are allowed to be taken. The IMASK register may be read and written in
Supervisor mode. Bits [15:5] have significance; bits [4:0] are hard-coded
to 1 and events of these levels are always enabled. If IMASKIN] == 1 and
ILATIN] == 1, then interrupt N will be taken if a higher priority is not
already recognized. If IMASK[N] == 0, and ILAT[N] gets set by interrupt N,
the interrupt will not be taken, and ILAT[N] will remain set.

4-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Core Interrupt Mask Register (IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFEO 2104 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 001F
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofs]o]e]e]r]

IVG15 J \—IVHW (Hardware Error)

IVG14 IVTMR (Core Timer)

IVG13 IVG7

IVG12 IVG8

IVG11 IVGo

IVG10

Figure 4-5. Core Interrupt Mask Register

ILAT Register

Each bit in the Core Interrupt Latch register (ILAT) indicates that the cor-
responding event is latched, but not yet accepted into the processor (see
Figure 4-6). The bit is reset before the first instruction in the correspond-
ing ISR is executed. At the point the interrupt is accepted, ILATIN] will be
cleared and IPENDLN] will be set simultaneously. The ILAT register can be
read in Supervisor mode. Writes to ILAT are used to clear bits only (in
Supervisor mode). To clear bit N from ILAT, first make sure that

IMASKIN] == 0, and then write ILAT[N] = 1. This write functionality to
ILAT is provided for cases where latched interrupt requests need to be
cleared (cancelled) instead of serviced.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and
also TLAT[2] or TLAT[1].

Only the JTAG TRST pin can clear ILAT[O0].

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-39

Events and Interrupts

Core Interrupt Latch Register (ILAT)
Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OXFFEO 210C foloJoJoJoJoofofoJoJofoJoJoJo[o] Reset=oxo000000x

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

o [o]o Jo fo oo o fofo Jofofofofo]x]
IVG15 J EMU (Emulation) - RO
IVG14 RST (Reset) - RO
IVG13 NMI (Nonmaskable Interrupt) - RO
IVG12 EVX (Exception) - RO
IVG11 IVHW (Hardware Error)
IVG10 L IVTMR (Core Timer)
IVG9 IVG7

IVG8

Figure 4-6. Core Interrupt Latch Register

IPEND Register

The Core Interrupt Pending register (IPEND) keeps track of all currently
nested interrupts (see Figure 4-7). Each bit in IPEND indicates that the cor-
responding interrupt is currently active or nested at some level. It may be
read in Supervisor mode, but not written. The IPEND[4] bit is used by the
Event Controller to temporarily disable interrupts on entry and exit to an
interrupt service routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.

4-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Core Interrupt Pending Register (IPEND)
RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0XFFEO 2108 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o fofo Jo foJofo o Jofofo]t fofofolo|

IVG15 J EMU (Emulation)

IVG14 RST (Reset)

IVG13 NMI (Nonmaskable Interrupt)
IVG12 EVX (Exception)

IVG11 Global Interrupt Disable
IVG10 0 - Interrupts globally enabled

1 - Interrupts globally disabled
Set and cleared by Event Con-
troller only

IVHW (Hardware Error)

IVTMR (Core Timer)
IVG7
IVG8

IVG9

Figure 4-7. Core Interrupt Pending Register

Event Vector Table

The Event Vector Table (EVT) is a hardware table with sixteen entries
that are each 32 bits wide. The EVT contains an entry for each possible
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt
service routine. When an event occurs, instruction fetch starts at the
address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into
each of the interrupt vectors; that is, interrupt vectors are not determined
by a fixed offset from an interrupt vector table base address. This approach
minimizes latency by not requiring a long jump from the vector table to

the actual ISR code.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-41

Events and Interrupts

Table 4-8 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

Table 4-8. Core Event Vector Table

Name Event Class Event Vector MMR Location | Notes
Register

EMU Emulation EVTO 0xFFEO0 2000 Highest priority. Vec-
tor address is provided
by JTAG.

RST Reset EVT1 O0xFFEO 2004

NMI NMI EVT2 0xFFE0 2008

EVX Exception EVT3 0xFFEO0 200C

Reserved Reserved EVT4 0xFFEO0 2010 Reserved vector

IVHW Hardware Error | EVT5 0xFFEO 2014

IVITMR Core Timer EVT6 0xFFEO0 2018

IVG7 Interrupt 7 EVT7 0xFFE0 201C System interrupt

IVGS Interrupt 8 EVT8 0xFFEO 2020 System interrupt

IVGY Interrupt 9 EVT9 O0xFFEO 2024 System interrupt

IVG10 Interrupt 10 EVT10 0xFFE0 2028 System interrupt

IVG11 Interrupt 11 EVT11 0xFFEO 202C System interrupt

IVG12 Interrupt 12 EVT12 0xFFEO 2030 System interrupt

IVG13 Interrupt 13 EVT13 0xFFEO 2034 System interrupt

IVG14 Interrupt 14 EVT14 0xFFEO0 2038 System interrupt

IVG15 Interrupt 15 EVT15 0xFFEO 203C Software interrupt

Return Registers and Instructions

Similarly to the RETS register controlled by CALL and RTS instructions,
interrupts and exceptions also use single-entry hardware stack registers. If
an interrupt is serviced, the program sequencer saves the return address

4-42

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

into the RETI register prior to jumping to the event vector. A typical inter-
rupt service routine terminates with an RTI instruction that instructs the
sequencer to reload the Program Counter, PC, from the RETI register. The
following example shows a simple interrupt service routine.

isr:
[--SP] = (R7:0, P5:0); /* push core registers */
[--SP] ASTAT; /* push arithmetic status */
/* place core of service routine here */
ASTAT = [SP++]; /* pop arithmetic status */
(R7:0, P5:0) = [SP++]; /* pop core registers */
RTI; /* return from interrupt */

isr.end:

There is no need to manage the RETI register when interrupt nesting is not
enabled. If however, nesting is enabled and the respective service routine

must be interruptible by an interrupt of higher priority, the RETI register

must be saved, most likely onto the stack.

Instructions that access the RETI register do have an implicit site effect—
reading the RETI register enables interrupt nesting. Writing to it disables
nesting again. This enables the service routine to break itself down into
interruptible and non-interruptible sections, for example:

isr:
[--SP] = (R7:0, P5:0); /* push core registers */
[--SP]1 = ASTAT; /* push arithmetic status */
/* place critical or atomic code here */
[--SP] = RETI; /* enable nesting */
/* place core of service routine here */
RETI = [SP++]; /* disable nesting */
/* more critical or atomic instructions */
ASTAT = [SP++]; /* pop arithmetic status */
(R7:0, P5:0) = [SP++]; /* pop core registers */
RTI; /* return from interrupt */
isr.end:

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-43

Events and Interrupts

If there isn’t any need for non-interruptible code inside the service rou-
tine, it is good programming practice to enable nesting immediately. This
avoids unnecessary delay to high priority interrupt routines, for example:

isr:
[--SP] RETI; /* enable nesting */
[--SP] = (R7:0, P5:0); /* push core registers */
[--SP] ASTAT; /* push arithmetic status */
/* place core of service routine here */
ASTAT = [SP++]; /* pop arithmetic status */
(R7:0, P5:0) = [SP++]; /* pop core registers */
RETI = [SP++]; /* disable nesting */
RTI; /* return from interrupt */

isr.end:

See “Nesting of Interrupts” on page 4-51 for more details on interrupt
nesting.

Emulation Events, NMI, and Exceptions use a technique similar to “nor-
mal” interrupts. However, they have their own return register and return
instruction counterparts. Table 4-9provides an overview.

Table 4-9. Return Registers and Instructions

Name Event Class Return Register | Return
Instruction

EMU Emulation RETE RTE

RST Reset RETI RTI

NMI NMI RETN RTN

EVX Exception RETX RTX

Reserved Reserved - -

IVHW Hardware Error | RETI RTI

IVITMR Core Timer RETI RTI

IvVG7 Interrupt 7 RETI RTI

4-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Table 4-9. Return Registers and Instructions (Contd)

Name Event Class Return Register | Return
Instruction
IVG8 Interrupt 8 RETI RTI
IVGY Interrupt 9 RETI RTI
IVG10 Interrupt 10 RETI RTI
IVG11 Interrupt 11 RETI RTI
IVG12 Interrupt 12 RETI RTI
IVG13 Interrupt 13 RETI RTI
IVG14 Interrupt 14 RETI RTI
IVG15 Interrupt 15 RETI RTI

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction may produce unintended results.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the
highest priority interrupt in IPEND is cleared.

Emulation Interrupt

An emulation event causes the processor to enter Emulation mode, where
instructions are read from the JTAG interface. It is the highest priority
interrupt to the core.

For detailed information about emulation, see the Blackfin Processor
Debug chapter of the Blackfin Processor Hardware Reference for your
part.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-45

Events and Interrupts

Reset Interrupt

The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the watchdog timer. This location differs from that of other
interrupts in that its content is read-only. Writes to this address change
the register but do not change where the processor vectors upon reset. The
processor always vectors to the reset vector address upon reset. For more
information, see “Reset State” on page 3-10.

The core has an output that indicates that a double fault has occurred.
This is a nonrecoverable state. The system (via the SWRST register) can be
programmed to send a reset request if a double fault condition is detected.
Subsequently, the reset request forces a system reset for core and

peripherals.

The reset vector is determined by the processor system. It points to the
start of the on-chip boot ROM, or to the start of external asynchronous
memory, depending on the state of the BMODE pins.

NMI (Nonmaskable Interrupt)

The NMI entry is reserved for a nonmaskable interrupt, which can be gen-
erated by the Watchdog timer or by the NMI input signal to the
processor. An example of an event that requires immediate processor
attention, and thus is appropriate as an NMI, is a powerdown warning,.

If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

If unused, the NMI pin should always be pulled to its deasserted state. On
some derivatives, the NMI input is active high and on some it is active low.
Please refer to the specific data sheet for your processor.

4-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Exceptions

Exceptions are discussed in “Hardware Errors and Exception Handling”

on page 4-58.

Hardware Error Interrupt

Hardware Errors are discussed in “Hardware Errors and Exception Han-
dling” on page 4-58.

Core Timer Interrupt

The Core Timer Interrupt (IVTMR) is triggered when the core timer value
reaches zero. For more information about the core timer, see the Hard-
ware Reference Manual for your processor.

General-purpose Interrupts (IVG7-1IVG15)

General-purpose interrupts are used for any event that requires processor
attention. For instance, a DMA controller may use them to signal the end
of a data transmission, or a serial communications device may use them to
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction forces events for interrupts IVG15-1VG7,
IVTMR, IVHW, NMI, and RST, but not for exceptions and emulation (EVX and
EMU, respectively).

It is recommended to reserve the two lowest priority interrupts
(1vG15 and 1vG14) for software interrupt handlers.

For system interrupts available on specific Blackfin processors, see the
Hardware Reference Manual for that processor.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-47

Interrupt Processing

Interrupt Processing

The following sections describe interrupt processing.

Global Enabling/Disabling of Interrupts

General-purpose interrupts can be globally disabled with the CLI Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state.

CLI R5; /* save IMASK to R5 and mask all */
/* place critical instructions here */
STI R5; /* restore IMASK from R5 again */

See “Enable Interrupts” and “Disable Interrupts” in Chapter 16, “External
Event Management.”

When multiple instructions need to be atomic or are too time-critical to
be delayed by an interrupt, disable the general-purpose interrupts, but be
sure to re-enable them at the conclusion of the code sequence.

Servicing Interrupts

The Core Event Controller (CEC) has a single interrupt queueing element
per event—a bit in the ILAT register. The appropriate ILAT bit is set when
an interrupt rising edge is detected (which takes two core clock cycles) and
cleared when the respective IPEND register bit is set. The IPEND bit indi-
cates that the event vector has entered the core pipeline. At this point, the
CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition
of the general-purpose interrupt to the IPEND output assertion is three core
clock cycles. However, the latency can be much higher, depending on the
core’s activity level and state.

4-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.

Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the
next fetch address.

On an interrupt, most instructions currently in the pipeline are
aborted. On a service exception, all instructions after the excepting
instruction are aborted. On an error exception, the excepting
instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register.

The return register is RETI for interrupts, RETX for exceptions, RETN
for NMlIs, and RETE for debug emulation. The return address is the
address of the instruction after the last instruction executed from
normal program flow.

3. Processor mode is set to the level of the event taken.

If the event is an NMI, exception, or interrupt, the processor mode
is Supervisor. If the event is an emulation exception, the processor
mode is Emulation.

4. Before the first instruction starts execution, the corresponding
interrupt bit in ILAT is cleared and the corresponding bit in IPEND
s set.

Bit IPEND[4] is also set to disable all interrupts until the return
address in RETI is saved.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-49

Interrupt Processing

Software Interrupts

Software cannot set bits of the ILAT register directly, as writes to ILAT
cause write-1-to-clear (W1C) operation. Instead, use the RAISE instruction
to set individual ILAT bits by software. It safely sets any of the ILAT bits
without affecting the rest of the register.

RAISE 1; /* fire reset interrupt request */

The RAISE instruction must not be used to fire emulation events or excep-
tions, which are managed by the related EMUEXCPT and EXCPT instructions.
For details, see Chapter 16, “External Event Management.”

Often, the RAISE instruction is executed in interrupt service routines to
degrade the interrupt priority. This enables less urgent parts of the service
routine to be interrupted even by low priority interrupts.

isr7/: /* service routine for IVG7 */

/* execute high priority instructions here */
/* handshake with signalling peripheral */
RAISE 14;
RTT;

isr7.end:

isrl4: /* service routine for IVGl14 */

/* further process event initiated by IVG7 */
RTI;
isrld.end:

The example above may read data from any receiving interface, post it to a
queue, and let the lower priority service routine process the queue after
the isr7 routine returns. Since 1VG15 is used for normal program execu-
tion in non-multi-tasking system, IVG14 is often dedicated to software
interrupt purposes.

4-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

“Example Code for an Exception Handler” on page 4-68 uses the same
principle to handle an exception with normal interrupt priority level.

Nesting of Interrupts

Interrupts are handled either with or without nesting, individually. For
more information, see “Return Registers and Instructions” on page 4-42.

Non-nested Interrupts

If interrupts do not require nesting, all interrupts are disabled during the
interrupt service routine. Note, however, that emulation, NMI, and
exceptions are still accepted by the system.

When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
Supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Figure 4-8 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.

Nested Interrupts

If interrupts require nesting, the return address to the interrupted point in
the original interrupt service routine must be explicitly saved and subse-
quently restored when execution of the nested interrupt service routine
has completed. The first instruction in an interrupt service routine that
supports nesting must save the return address currently held in RETI by
pushing it onto the Supervisor stack ([--SP]1 = RETI). This clears the glo-
bal interrupt disable bit IPEND[4], enabling interrupts. Next, all registers
that are modified by the interrupt service routine are saved onto the

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-51

Interrupt Processing

INTERRUPTS DISABLED
DURING THIS INTERVAL.

CYCLE: 1 2 3 4 5 6 m m+1 m+2 m+3 m+4

IF1 A9 [A10 10 " 12 A3 A4 A5 A6 A7

IF2 | A8 | A9 | a0 0 | n A3 | A4 | A5 | A6
wlIF3 | A7 | A8 V' 10 A3 | A4 | A5
g DEC | A6 | A7 | A8~ A3 | A4
® A5 | A A
u AC 5 | A6 | a7 3
2 DF1 | A4 | A5 | A6 RTI
o |(DF2 | A3 | A4 | A5 In | RTI
o

EX1 | A2 | A3 | ad In-1 RTI

EX2 | A1 | A2 | A 2 | In1 | 1, | RTI

WB A0 | A1 A2 In-3 [In-2 | In1 | In RTI

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.

CYCLE 2: INTERRUPT IS PRIORITIZED.

CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTIOR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.

CYCLE 4: 10 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.

CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE DF1 STAGE, INSTRUCTION A3 IS

FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.
CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

Figure 4-8. Non-nested Interrupt Handling

Supervisor stack. Processor state is stored in the Supervisor stack, not in
the User stack. Hence, the instructions to push RETI ([--SP] = RETI) and
pop RETI (RETI

[SP++]) use the Supervisor stack.

4-52

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Figure 4-9 illustrates that by pushing RETI onto the stack, interrupts can
be re-enabled during an interrupt service routine, resulting in a short
duration where interrupts are globally disabled.

INTERRUPTS DISABLED INTERRUPTS DISABLED
DURING THIS INTERVAL. DURING THIS INTERVAL.
CYCLE: 1 2 3 4 5 6 7 8 9 10 m m+l m+2 m+3 m+d m+5
IF1 | A9 | At0 PUSH| 11 [12 |13 |14 |15 [16 |... A3 | A4 [a5 [a6 | A7
IF2 | A8 | A9 |0 PUSH| 1 [12 | 13 |14 |15 |... A3 | A4 | A5 | e
wl F3 | A7 A8 | A5 PUSH| 11 | 12 [13 | 14 A3 | A4 | A5
g DEC | A6 | A7 | A8~ PUSH| 1 | 12 | 1B | ... A3 | A4
(7]
0 AC | A5 [A6 | a7 PUSH| 11 | I2 RTI A3
= oF1 [|as e PUSH| 11 | ... |PoP |RTI
o | DF2 | A3 | A4 | A5~ PUSH| ... | 1, |POP| RT
o
EX1 | A2 | A3 | ad In | 1 | PoP | RTI
EX2 | A1 | A2 | A5 In2 [In1| 1, | POP| RTI
WB | A0 | A1 | A2 In-3 [In-2 | In1 [I | POP | RTI

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.

CYCLE 2: INTERRUPT IS PRIORITIZED.

CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING

ADDRESS LOOKUP OCCURS.

CYCLE 4: 10 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUSH RETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES DF2 STAGE, INTERRUPTS ARE RE-ENABLED.

CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE DF2 STAGE, INTERRUPTS ARE DISABLED.

CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

Figure 4-9. Nested Interrupt Handling
Example Prolog Code for Nested Interrupt Service Routine

Listing 4-3. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine.

Push return address in RETI into Supervisor stack, ensuring that
interrupts are back on. Until now, interrupts have been
suspended.*/

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to
stack */

[--SP] = ASTAT ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-53

Interrupt Processing

[--SP] = FP

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note none of the processor resources
(accumulators, DAGs, Toop counters and bounds) have been saved.
[t is assumed this interrupt service routine does not use the
processor resources. */

Example Epilog Code for Nested Interrupt Service Routine

Listing 4-4. Epilog Code for Nested ISR

/* Epilog code for nested interrupt service routine.

Restore ASTAT, Data and Pointer registers. Popping RETI from
Supervisor stack ensures that interrupts are suspended between
load of return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP = [SP++]
ASTAT = [SP++]
RETI = [SP++] ;

/* Execute RTI, which jumps to return address, re-enables inter-
rupts, and switches to User mode if this is the last nested
interrupt in service. */

RTT;

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables interrupts by clearing IPEND[4].

4-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Logging of Nested Interrupt Requests

The System Interrupt Controller (SIC) detects level-sensitive interrupt
requests from the peripherals. The Core Event Controller (CEC) provides
edge-sensitive detection for its general-purpose interrupts (IVG7-1VG15).
Consequently, the SIC generates a synchronous interrupt pulse to the
CEC and then waits for interrupt acknowledgement from the CEC. When
the interrupt has been acknowledged by the core (via assertion of the
appropriate IPEND output), the SIC generates another synchronous inter-
rupt pulse to the CEC if the peripheral interrupt is still asserted. This way,
the system does not lose peripheral interrupt requests that occur during
servicing of another interrupt.

Multiple interrupt sources can map to a single core processor general-pur-
pose interrupt. Because of this, multiple pulse assertions from the SIC can
occur simultaneously, before, or during interrupt processing for an inter-
rupt event that is already detected on this interrupt input. For a shared
interrupt, the IPEND interrupt acknowledge mechanism described above
re-enables all shared interrupts. If any of the shared interrupt sources are
still asserted, at least one pulse is again generated by the SIC. The Inter-
rupt Status registers indicate the current state of the shared interrupt
sources.

Self-Nesting of Core Interrupts

Interrupts that are “self-nested” can be interrupted by events at the same
priority level. When the SNEN bit of the SYSCFG register is set, self-nesting
of core interrupts is supported. Self-nesting is supported for any interrupt
level generated with the RAISE instruction, as well as for core level
interrupts.

As an example, assume that the SNEN bit is set and the processor is servic-
ing an interrupt generated by the RAISE 14; instruction. Once the RETI
register has been saved to the stack within the service routine, a second
RAISE 14; instruction would allow the processor to service the second
interrupt.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-55

Interrupt Processing

Self-nesting is not supported for system level peripheral interrupts such as

the SPORT or SPIL.
The SYSCFG register is discussed in “SYSCFG Register” on page 21-26.

Additional Usability Issues

The following sections describe additional usability issues.

Allocating the System Stack

The software stack model for processing exceptions implies that the
Supervisor stack must never generate an exception while the exception
handler is saving its state. However, if the Supervisor stack grows past a
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events

In some processor architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine may be held off for around 30
instruction clock cycles. When cache line fill operations are taken into
account, the interrupt service routine could be held off for many hundreds
of cycles.

4-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

In order for high priority interrupts to be serviced with the least latency
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an interrupt service routine executes from
L1 memory. See Figure 4-10.

AV aVaAV AV AVAVAWAWA

OTHER PROCESSORS

FETCH [\
INSTRUCTION
DATA /

INTERRUPT SERVICED
OCCURRING HERE
HERE

BLACKFIN PROCESSOR

FETCH / \
INSTRUCTION
DATA /

INTERRUPT SERVICED
OCCURRING HERE
HERE

Figure 4-10. Minimizing Latency in Servicing an ISR

If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is
not held off until the fill has completed. Instead, the processor executes
the interrupt service routine in its new context, and the cache fill opera-
tion completes in the background.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-57

Hardware Errors and Exception Handling

Note the interrupt service routine must reside in L1 cache or SRAM mem-
ory and must not generate a cache miss, an L2 memory access, or a
peripheral access, as the processor is already busy completing the original
cache line fill operation. If a load or store operation is executed in the
interrupt service routine requiring one of these accesses, then the interrupt
service routine is held off while the original external access is completed,
before initiating the new load or store.

If the interrupt service routine finishes execution before the load operation
has completed, then the processor continues to stall, waiting for the fill to
complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Werites to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, see Chapter
6, “Memory.”

Hardware Errors and Exception Handling

The following sections describe hardware errors and exception handling.

4-58 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

SEQSTAT Register

The Sequencer Status register (SEQSTAT) contains information about the
current state of the sequencer as well as diagnostic information from the
last event. SEQSTAT is a read-only register and is accessible only in Supervi-
sor mode.

Sequencer Status Register (SEQSTAT)
RO

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o Reset = 0x0000 0000

HWERRCAUSE[4:2]

See description under
bits[1:0], below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o foJofofofoofofofo]ofofefo]o]o
L

HWERRCAUSE[1:0]
Holds cause of last hard- L EXCAUSE[5:0]
ware error generated by
the core. Hardware errors
trigger interrupt number 5
(IVHW). See Table 4-10.
SFTRESET
0 - Last core reset was not a
reset triggered by software
1 - Last core reset was a reset
triggered by software, rather
than a hardware powerup reset

Holds information about
the last executed excep-
tion. See Table 4-11.

Figure 4-11. Sequencer Status Register

Hardware Error Interrupt

The Hardware Error Interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the Hardware Error Interrupt (interrupt IVHW in the Event Vector
Table (EVT) and ILAT, IMASK, and IPEND registers). The Hardware Error

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-59

Hardware Errors and Exception Handling

Interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the Sequencer Status register
(SEQSTAT) and respond accordingly.

The Hardware Error Interrupt is generated by:
* Bus parity errors

e Internal error conditions within the core, such as Performance
Monitor overflow

e DPeripheral errors
e Bus timeout errors

The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-10. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
Hardware Error Interrupt remains active as long as any of the error condi-
tions remain active.

4-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Table 4-10. Hardware Conditions Causing Hardware Error Interrupts

Hardware HWERRCAUSE | HWERRCAUSE | Notes / Examples

Condition (Binary) (Hexadecimal)

System MMR 0b00010 0x02 An error can occur if an invalid Sys-

Error tem MMR location is accessed, if a
32-bit register is accessed with a
16-bit instruction, or if a 16-bit
register is accessed with a 32-bit
instruction.

External Memory | 0b00011 0x03

Addressing Error

Performance 0b10010 0x12

Monitor

Overflow

RAISE 5 0b11000 0x18 Software issued a RAISE 5 instruc-

instruction tion to invoke the Hardware Error
Interrupt (IVHW).

Reserved All other bit All other values.

combinations.
Exceptions

Exceptions are synchronous to the instruction stream. In other words, a
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is

given when a misaligned access is attempted, or when a cacheability pro-

tection lookaside buffer (CPLB) miss or protection violation occurs.

Exceptions are also given when illegal instructions or illegal combinations
of registers are executed.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

4-61

Hardware Errors and Exception Handling

An excepting instruction may or may not commit before the exception
event is taken, depending on if it is a service type or an error type
exception.

An instruction causing a service type event will commit, and the address
written to the RETX register will be the next instruction after the excepting
one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

Usually the RETX register contains the correct address to return to.
To skip over an excepting instruction, take care in case the next
address is not simply the next linear address. This could happen
when the excepting instruction is a loop end. In that case, the
proper next address would be the loop top.

The EXCAUSEL5:0] field in the Sequencer Status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler
which type of exception occurred. Refer to Table 4-11 for a list of events
that cause exceptions.

If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

4-62 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Table 4-11. Events That Cause Exceptions

protection violation

Exception EXCAUSE | Type: Notes/Examples
[5:0] (E) Error
(S) Service
See note 1.

Force Exception m field S Instruction provides 4 bits of EXCAUSE.

instruction EXCPT

with 4-bit m field

Single step 0x10 S When the processor is in single step mode,
every instruction generates an exception.
Primarily used for debugging.

Exception caused by a | 0x11 S The processor takes this exception when

trace buffer full condi- the trace buffer overflows (only when

tion enabled by the Trace Unit Control regis-
ter).

Undefined instruction | 0x21 E May be used to emulate instructions that
are not defined for a particular processor
implementation.

Illegal instruction 0x22 E See section for multi-issue rules in the

combination ADSP-BF53x Blackfin Processor Instruction
Set Reference.

Data access CPLB 0x23 E Attempted read or write to Supervisor

resource, or illegal data memory access.
Supervisor resources are registers and
instructions that are reserved for Supervi-
sor use: Supervisor only registers, all
MMRs, and Supervisor only instructions.
(A simultaneous, dual access to two
MMRs using the data address generators
generates this type of exception.) In addi-
tion, this entry is used to signal a protec-
tion violation caused by disallowed
memory access, and it is defined by the
Memory Management Unit (MMU)
cacheability protection lookaside buffer
(CPLB).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

4-63

Hardware Errors and Exception Handling

Table 4-11. Events That Cause Exceptions (Cont’d)

CPLB miss

Exception EXCAUSE | Type: Notes/Examples
[5:0] (E) Error
(S) Service
See note 1.

Data access mis- 0x24 E Attempted misaligned data memory or

aligned address viola- data cache access.

tion

Unrecoverable event 0x25 E For example, an exception generated while
processing a previous exception.

Data access CPLB 0x26 E Used by the MMU to signal a CPLB miss

miss on a data access.

Data access multiple | 0x27 E More than one CPLB entry matches data

CPLB hits fetch address.

Exception caused by | 0x28 E There is a watchpoint match, and one of

an emulation watch- the EMUSW bits in the Watchpoint

point match Instruction Address Control register
(WPIACTL) is set.

Instruction fetch mis- | 0x2A E Attempted misaligned instruction cache

aligned address viola- fetch. On a misaligned instruction fetch

tion exception, the return address provided in
RETX is the destination address which is
misaligned, rather than the address of the
offending instruction. For example, if an
indirect branch to a misaligned address
held in PO is attempted, the return address
in RETX is equal to PO, rather than to the
address of the branch instruction. (Note
this exception can never be generated
from PC-relative branches, only from
indirect branches.)

Instruction fetch 0x2B E Illegal instruction fetch access (memory

CPLB protection vio- protection violation).

lation

Instruction fetch 0x2C E CPLB miss on an instruction fetch.

4-64

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

Table 4-11. Events That Cause Exceptions (Cont’d)

SOr resource

Exception EXCAUSE | Type: Notes/Examples
[5:0] (E) Error
(S) Service
See note 1.
Instruction fetch mul- | 0x2D E More than one CPLB entry matches
tiple CPLB hits instruction fetch address.
Illegal use of supervi- | 0x2E E Attempted to use a Supervisor register or

instruction from User mode. Supervisor
resources are registers and instructions
that are reserved for Supervisor use:
Supervisor only registers, all MMRs, and

Supervisor only instructions.

Note 1: For services (S), the return address is the address of the instruction
that follows the exception. For errors (E), the return address is the address

of the excepting instruction.

If an instruction causes multiple exceptions, only the exception with the
highest priority is taken. The following table ranks exceptions by descend-

ing priority.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A
I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

7 Watchpoint Match 0x28

8 Undefined Instruction 0x21

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-65

Hardware Errors and Exception Handling

Table 4-12. Exceptions by Descending Priority (Cont'd)

Priority Exception EXCAUSE
9 Illegal Combination 0x22
10 Illegal Use of Protected Resource 0x2E
11 DAGO Multiple CPLB Hits 0x27
12 DAGO Misaligned Access 0x24
13 DAGO Protection Violation 0x23
14 DAGO CPLB Miss 0x26
15 DAG1 Multiple CPLB Hits 0x27
16 DAG]1 Misaligned Access 0x24
17 DAGI] Protection Violation 0x23
18 DAG1 CPLB Miss 0x26
19 EXCPT Instruction m field
20 Single Step 0x10
21 Trace Buffer 0x11

Exceptions While Executing an Exception Handler

While executing the exception handler, avoid issuing an instruction that
generates another exception. If an exception is caused while executing
code within the exception handler, the NMI handler, the reset vector, or
in emulator mode:

e The excepting instruction is not committed. All writebacks from
the instruction are prevented.

* The generated exception is not taken.

4-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

* The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

e The address of the offending instruction is saved in RETX. Note if
the processor were executing, for example, the NMI handler, the
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.

To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler for the
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most
recent instruction to cause an exception. This mechanism is not intended
for recovery, but rather for detection.

Exceptions and the Pipeline
Interrupts and exceptions treat instructions in the pipeline differently.

* When an interrupt occurs, all instructions in the pipeline are
aborted.

e When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the PUSH

and POP instructions for exceptions, NMIs, and emulation events do not

affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the Least Significant Bit (LSB) currently set in IPEND.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-67

Hardware Errors and Exception Handling

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
Interrupt / Reset instruction (RAISE).

When deferring the processing of an exception to lower priority
interrupt 1VGx, the system must guarantee that 1VGx is entered
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler

The following code is for an exception routine handler with deferred
processing.

Listing 4-5. Exception Routine Handler With Deferred Processing
/* Determine exception cause by examining EXCAUSE field in

SEQSTAT (first save contents of RO, PO, P1 and ASTAT in Supervi-
sor SP) */

[--SP] = RO
[--SP] = PO
[--SP] = Pl
[--SP1 = ASTAT ;
RO = SEQSTAT

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in RO */
RO <<= 26
RO >>= 26

4-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Sequencer

/* Using Jjump table EVTABLE, jump to the event pointed to by RO
*/

PO = RO ;

Pl = _EVTABLE

PO = P1 + (PO KK 1) ;
RO =WTL[PO T ()

P1 = RO

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing
is deferred to low priority interrupt IVG15. Also, parameter
passing would typically be done here. */

_EVENTI:

RAISE 15

JUMP.S _EXIT ;

/* Entry for event at IVGl4 */

_EVENTZ:

RAISE 14 ;

JUMP.S _EXIT

/* Comments for other events */

/* At the end of handler, restore RO, PO, P1 and ASTAT, and
return. */

_EXIT:

ASTAT = [SP++]
P1 = [SP++]

PO = [SP++]

RO = [SP++] ;
RTX

_EVTABLE:

.byte?2 addr_eventl;
.byte?2 addr_event?;

.byte?2 addr_eventN;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-69

Hardware Errors and Exception Handling

/* The jump table EVTABLE holds 16-bit address offsets for each
event. With offsets, this code is position independent and the
table is small.

R +
| addr_eventl | _EVTABLE
R +

| addr_event2 | _EVTABLE + 2
R +

! |
R +

| addr_eventN | _EVTABLE + 2N
R +

*/

Example Code for an Exception Routine

The following code provides an example framework for an interrupt rou-
tine jumped to from an exception handler such as that described above.

Listing 4-6. Interrupt Routine for Handling Exception

[--SP] = RETI ; /* Push return address on stack. */

/* Put body of routine here.*/

RETI = [SP++] ; /* To return, pop return address and jump. */

RTI /* Return from interrupt. */

4-70 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

5 ADDRESS ARITHMETIC UNIT

Like most DSP and RISC platforms, the Blackfin processors have a
load/store architecture. Computation operands and results are always rep-
resented by core registers. Prior to computation, data is loaded from
memory into core registers and results are stored back by explicit move
operations. The Address Arithmetic Unit (AAU) provides all the required
support to keep data transport between memory and core registers effi-
cient and seamless. Having a separate arithmetic unit for address
calculations prevents the data computation block from being burdened by
address operations. Not only can the load and store operations occur in
parallel to data computations, but memory addresses can also be calcu-
lated at the same time.

The AAU uses Data Address Generators (DAGs) to generate addresses for
data moves to and from memory. By generating addresses, the DAGs let
programs refer to addresses indirectly, using a DAG register instead of an

absolute address. Figure 5-1 shows the AAU block diagram.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-1

A
RAB
+32

S ————- ADDRESS ARITHMETICUNIT — — — — — — — — — — — — — —| -~
[\
| | '
| | |y [
Y |
| SP |

13 [3 | B3 M3
' Y Y vy Al FP |
| 12 L2 | B2 M2 aVannVe M, P5 |
| " L1 B1 M1 ; DAG1 ; P4 |
: 0 | Lo | BoO MO \ iD AGOj / P3 I
P2
| ? A | P :
| “ || Po)
\ 32 432

TO L1 DATA MEMORY TO SEQUENCER

Figure 5-1. AAU Block Diagram

The AAU architecture supports several functions that minimize overhead
in data access routines. These functions include:

* Supply address — Provides an address during a data access

* Supply address and post-modify — Provides an address during a
data move and auto-increments/decrements the stored address for
the next move

* Supply address with offset — Provides an address from a base with
an offset without incrementing the original address pointer

* Modify address — Increments or decrements the stored address
without performing a data move

* Bit-reversed carry address — Provides a bit-reversed carry address
during a data move without reversing the stored address

5-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

The AAU comprises two DAGs, nine Pointer registers, four Index regis-
ters and four complete sets of related Modify, Base, and Length registers.
These registers, shown in Figure 5-2 on page 5-4, hold the values that the
DAGs use to generate addresses. The types of registers are:

* Index registers, I[3:0]. Unsigned 32-bit Index registers hold an
address pointer to memory. For example, the instruction R3 = [10]
loads the data value found at the memory location pointed to by
the register 10. Index registers can be used for 16- and 32-bit mem-
ory accesses.

* Modify registers, M[3:0]. Signed 32-bit Modify registers provide
the increment or step size by which an Index register is post-modi-
fied during a register move. For example, the RO = [10 ++ M1]
instruction directs the DAG to:

— Output the address in register 10

— Load the contents of the memory location pointed to by 10 into
RO

— Modify the contents of 10 by the value contained in the M1
register

* Base and Length registers, B[3:0] and L[3:0]. Unsigned 32-bit
Base and Length registers set up the range of addresses and the
starting address of a circular buffer. Each B, L pair is always coupled
with a corresponding I-register, for example, 13, 83, L3. For more
information on circular buffers, see “Addressing Circular Buffers”
on page 5-12.

* Dointer registers, P[5:01, FP, USP, and SP. 32-bit Pointer registers
hold an address pointer to memory. The P[5:0] field, FP (Frame
Pointer) and SP/USP (Stack Pointer/User Stack Pointer) can be
manipulated and used in various instructions. For example, the
instruction R3 = [P0] loads the register R3 with the data value
found at the memory location pointed to by the register P0. The
Pointer registers have no effect on circular buffer addressing. They

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-3

can be used for 8-, 16-, and 32-bit memory accesses. For added
mode protection, SP is accessible only in Supervisor mode, while
USP is accessible in User mode.

@ Do not assume the L-registers are automatically initialized to zero

for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

Note all data address registers must be initialized individually. Ini-
tializing a B-register does not automatically initialize the I-register.

Address Arithmetic Unit Registers

/ Pointer \

Data Address Registers Registers
A
0 | Lo | BO Mo PO
" L1 | B1 M1 P1
12 L2 B2 M2 P2
13 | L3 | B3 M3 P3
P4
P5

| User SP |

Supervisor SP

N Iy

Supervisor only register. Attempted read or
write in User mode causes an exception error.

Figure 5-2. Address Arithmetic Unit

5-4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

Addressing With the AAU

The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the
I-register.

In indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an
8-bit store can be aligned to any byte. Depending on the type of data
used, increments and decrements to the address registers can be by 1, 2, or
4 to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:

RO = [P3++ 1

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in RO. It then post-increments P3 by four, maintaining alignment
with the 32-bit access.

RO.L =W [I3++ 13

This instruction fetches a 16-bit word, pointed to by the value in 13, and
places it in the low half of the destination register, R0. L. It then
post-increments 13 by #zwo, maintaining alignment with the 16-bit access.

RO =B [P3++ 1 (Z) ;

This instruction fetches an 8-bit word, pointed to by the value in P3, and
places it in the destination register, RO. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be zero
extended (as shown) or sign extended into the 32-bit data register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-5

Addressing With the AAU

Instructions using Index registers use an M-register or a small immediate
value (+/— 2 or 4) as the modifier. Instructions using Pointer registers use
a small immediate value or another P-register as the modifier. For details,
see Table 5-3, “AAU Instruction Summary,” on page 5-20.

Pointer Register File

The general-purpose Address Pointer registers, also called P-registers, are
organized as:

* OG-entry, P-register file P[5:0]

* Frame Pointer (FP) used to point to the current procedure’s activa-
tion record

* Stack Pointer (SP) used to point to the last used location on the
runtime stack.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations; for instance, to maintain
counters. However, unlike the Data registers, P-register arithmetic does
not affect the Arithmetic Status (ASTAT) register status flags.

Frame and Stack Pointers

In many respects, the Frame and Stack Pointer registers perform like the
other P-registers, P[5:0]. They can act as general pointers in any of the
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The Stack Pointer registers include:
* a User Stack Pointer (USP in Supervisor mode, SP in User mode)

* a Supervisor Stack Pointer (SP in Supervisor mode)

5-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

The User Stack Pointer register and the Supervisor Stack Pointer register
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as
SP:

* In User mode, any reference to SP (for example, stack pop
RO = [SP++ 1 ;) implicitly uses the USP as the effective address.

* In Supervisor mode, the same reference to SP (for example,
RO = [SP++ 1 ;) implicitly uses the Supervisor Stack Pointer as
the effective address.

To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a
register move from USP (for example, RO = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be
used in Supervisor mode.

Some load/store instructions use FP and SP implicitly:

* rpP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

* Stack push/pop instructions, including those for pushing and pop-
ping multiple registers

e Link/unlink instructions, which control stack frame space and
manage the Frame Pointer register (FP) for that space

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-7

Addressing With the AAU

DAG Register Set

DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The data address register set consists of these
registers:

* I[3:0] contain index addresses
* M[3:0] contain modify values
* B[3:0] contain base addresses
e L[3:0] contain length values
All data address registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of
8-bit bytes in memory. The Index registers contain an effective address.
The M (Modify) registers contain an offset value that is added to one of

the Index registers or subtracted from it.

The B and L (Length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length
in bytes. Each L and B register pair is associated with the corresponding I
register. For example, L0 and B0 are always associated with 10. However,

any M register may be associated with any I register. For example, 10 may

be modified by M3.

Indexed Addressing With Index & Pointer Registers

Indexed addressing uses the value in the Index or Pointer register as an
effective address. This instruction can load or store 16- or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W
designator is used to preface the load or store.

5-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

For example:
RO =112 13

loads a 32-bit value from an address pointed to by 12 and stores it in the
destination register RO.

RO.H=WT[1I21;

loads a 16-bit value from an address pointed to by 12 and stores it in the
16-bit destination register R0.H.

[P1 1] = RO ;

is an example of a 32-bit store operation.

Pointer registers can be used for 8-bit loads and stores.
For example:

B [PI++ 1 = RO ;

stores the 8-bit value from the RO register in the address pointed to by the
P1 register, then increments the P1 register.

Loads With Zero or Sign Extension

When a 32-bit register is loaded by an 8-bit or 16-bit memory read, the
value can be extended to the full register width. A trailing Z character in
parenthesis is used to zero-extend the loaded value. An X character forces
sign extension. The following examples assume that P1 points to a mem-
ory location that contains a value of 0x8080.

RO = WLP1] (Z2) ; /* RO = 0x0000 8080 */
R1 = WLP1] (X) ; /* Rl = OxFFFF 8080 */
R2 = B[P1] (Z) ; /* RZ = 0x0000 0080 */
R3 = B[P1] (X) ; /* R3 = OxFFFF FF80 */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-9

Addressing With the AAU

Indexed Addressing With Immediate Offset

Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The Pointer register is modified by
the immediate field and then used as the effective address. The value of
the Pointer register is not updated.

Alignment exceptions are triggered when a final address is
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to
[0x24], which is aligned for all accesses.

Avuto-increment and Auto-decrement Addressing

Auto-increment addressing updates the Pointer and Index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the Pointer by 4. A 16-bit word
access updates the Pointer by 2, and an access of an 8-bit word updates the
Pointer by 1. Both 8- and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index
registers may be used only for 16- and 32-bit accesses.

For example:
RO =W [Pl++ 1 (2);

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 Pointer register. The Pointer is then incremented by
2 and the word is zero extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.

5-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

For example:
RO =T[I2--1;

loads a 32-bit value into the destination register and decrements the Index

register by 4.

Pre-modify Stack Pointer Addressing

The only pre-modify instruction in the processor uses the Stack Pointer
register, SP. The address in SP is decremented by 4 and then used as an
effective address for the store. The instruction [--SP] = RO ; is used for
stack push operations and can support only a 32-bit word transfer.

Post-modify Addressing

Post-modify addressing uses the value in the Index or Pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other Pointer registers. Index
registers are modified by Modify registers. Post-modify addressing does
not support the Pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:
R = [P1++P2] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.

The value in the P2 register is then added to the value in the P1 register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-11

Addressing With the AAU

For example:
R2 = W [P4++P5 1 (Z) ;

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32 bits. The value of the pointer P4 is incremented by
the value of the pointer P5.

For example:
R2 = [I2++M1 7

loads a 32-bit word into the destination register R2. The value in the Index
register, 12, is updated by the value in the Modify register, M1.

Addressing Circular Buffers

The DAGs support addressing circular buffers. Circular buffers are a range
of addresses containing data that the DAG steps through repeatedly,
wrapping around to repeat stepping through the same range of addresses
in a circular pattern.

The DAGs use four types of data address registers for addressing circular
buffers. For circular buffering, the registers operate this way:

e The Index (I) register contains the value that the DAG outputs on
the address bus.

e The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access.

Any M-register can be used with any I-register. The modify value
can also be an immediate value instead of an M-register. The size of
the modify value must be less than or equal to the length (L-regis-
ter) of the circular buffer.

5-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

e The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register.

L is positive and cannot have a value greater than 232 _1.1fan
L-register’s value is zero, its circular buffer operation is disabled.

e The Base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the Index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

If the Index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the

buffer to the value, wrapping the Index pointer back to a point inside the
buffer.

The starting address that the DAG wraps around is called the buffer’s base
address (B-register). There are no restrictions on the value of the base
address for circular buffers that contains 8-bit data. Circular buffers that
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,
respectively. Exceptions can be made for video operations. For more infor-
mation, see “Memory Address Alignment” on page 5-16. Circular

buffering uses post-modify addressing.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-13

Addressing With the AAU

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

Figure 5-3. Circular Data Buffers

As seen in Figure 5-3, on the first post-modify access to the buffer, the
DAG outputs the I-register value on the address bus, then modifies the

0X0

0X1

—» 0X2

0X3

0X4

0X5

0X6

0X7

0X8

LENGTH = 11
BASE ADDRESS = 0X0
MODIFIER = 4
1 0X0
—» 0X1 4
0X2
0X3
2 0X4
0X5 5
0X6
0X7
3 — 0X8
0X9 6
0XA

0X9

0XA

address by adding the modify value.

If the updated index value is within the buffer length, the DAG

writes the value to the I-register.

If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value

to the [-register.

0X0

0X1

0X2

—» 0X3

0X4

0X5

0X6

0X7

0X8

0X9

—! 0XA

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

5-14

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

In equation form, these post-modify and wraparound operations work as
follows, shown for “I+M” operations.

e If M is positive:

Liew =log + M
if I,jq + M < buffer base + length (end of buffer)

Liew=log + M -L
if I;jq + M 2 buffer base + length (end of buffer)

e If M is negative:

Inew = Iold +M
if I;1g + M 2 buffer base (start of buffer)

Lew=Ilgg+M+L
if I,14 + M < buffer base (start of buffer)

Addressing With Bit-reversed Addresses

To obrtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see “Modify — Increment” on

page 15-37.

Modifying DAG and Pointer Registers

The DAGs support operations that modify an address value in an Index
register without outputting an address. The operation, address-modify, is
useful for maintaining pointers.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-15

Memory Address Alignment

The address-modify operation modifies addresses in any Index and
Pointer register (1[3:01, P[5:01, FP, SP) without accessing memory. If the
Index register’s corresponding B- and L-registers are set up for circular
buffering, the address-modify operation performs the specified buffer
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For Pointer registers,
another P-register is used as the modifier.

Consider the example, 11 += M2 ;

This instruction adds M2 to 11 and updates I1 with the new value.

Memory Address Alignment

The processor requires proper memory alignment to be maintained for the
data size being accessed. Unless exceptions are disabled, violations of
memory alignment cause an alignment exception. Some instructions—for
example, many of the Video ALU instructions—automatically disable
alignment exceptions because the data may not be properly aligned when
stored in memory. Alignment exceptions may be disabled by issuing the
DISALGNEXCPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

* 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

* 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

5-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

Table 5-1 summarizes the types of transfers and transfer sizes supported
by the addressing modes.

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode

Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect

Indexed

To and from Data
Registers

LOADS:

32-bit word

16-bit, zero extended half word
16-bit, sign extended half word
8-bit, zero extended byte

8-bit, sign extended byte
STORES:

32-bit word

16-bit half word

8-bit byte

To and from Pointer
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment

To and from Data
Registers

LOADS:

32-bit word

16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero extended half word

16-bit, sign extended half word

STORES:

32-bit word

16-bit half word from Data Register high half
16-bit half word from Data Register low half

Be careful when using the DISALGNEXCPT instruction, because it dis-
ables automatic detection of memory alignment errors. The
DISALGNEXCPT instruction only affects misaligned loads that use
I-register indirect addressing. Misaligned loads using P-register
addressing will still cause an exception.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-17

Memory Address Alignment

Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-bit

word

16-bit
half-

word

8-bit
byte

Sign/zero
extend

Data
Register

Pointer
register

Data
Register
Half

P Auto-inc

[PO++]

*

P Auto-dec
[PO--]

P Indirect
(PO]

P Indexed
[PO+im]

FP indexed
[FP+im]

P Post-inc
[PO++P1]

I Auto-inc
[10++]

I Auto-dec
(10--]

I Indirect
(10]

I Post-inc
[10++MO]

5-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

AAU Instruction Summary

Table 5-3 lists the AAU instructions. In Table 5-3, note the meaning of
these symbols:

Dreg denotes any Data Register File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File
register.

Preg denotes any Pointer register, FP, or SP register.
Ireg denotes any Index register.

Mreg denotes any Modify register.

W denotes a 16-bit wide value.

B denotes an 8-bit wide value.

immA denotes a signed, A-bits wide, immediate value.

uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

Z denotes the zero-extension qualifier.
X denotes the sign-extension qualifier.

BREYV denotes the bit-reversal qualifier.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-19

AAU Instruction Summary

AAU instructions do not affect the ASTAT Status flags.

Table 5-3. AAU Instruction Summary

Instruction

Preg = [Preg | ;

Preg = [Preg ++] ;

Preg = [Preg --] ;

Preg = [Preg + uimm6m4 | ;

Preg = [Preg + uimm17m4] ;

Preg = [Preg — uimm17m4] ;

Preg = [FP — uimm7m4 | ;

Dreg = [Preg] ;

Dreg = [Preg ++] ;

Dreg = [Preg -- | ;

Dreg = [Preg + uimm6m4] ;

Dreg = [Preg + uimm17m4] ;

Dreg = [Preg — uimm17m4] ;

Dreg = [Preg ++ Preg | ;

Dreg = [FP — uimm7m4 | ;

Dreg = [Ireg] ;

Dreg = [Ireg ++] ;

Dreg = [Ireg --] ;

Dreg = [Ireg ++ Mreg | ;

Dreg =W [Preg] (Z) ;

Dreg =W [Preg ++] (Z) ;

Dreg =W [Preg --] (2) ;

Dreg =W [Preg + uimm5m2] (Z) ;

5-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

Table 5-3. AAU Instruction Summary (Contd)

Instruction

Dreg =W [Preg + uimm16m?2] (Z) ;

Dreg =W [Preg — uimm16m?2] (Z) ;

Dreg =W [Preg ++ Preg] (Z) ;

Dreg = W [Preg] (X) ;

Dreg = W [Preg ++] (X) ;

Dreg = W [Preg --] (X) ;

Dreg =W [Preg + uimm5m2] (X) ;

Dreg =W [Preg + uimm16m2 | (X) ;

Dreg =W [Preg — uimm16m?2 | (X) ;

Dreg =W [Preg ++ Preg] (X) ;

Dreg_hi=W [Ireg];

Dreg hi = W [Ireg ++] ;

Dreg hi =W [Ireg--] ;

Dreg_hi =W [Preg] ;

Dreg_hi = W [Preg ++ Preg] ;

Dreg lo =W [Ireg] ;

Dreg_lo = W [Ireg ++] ;

Dreg_lo =W [Ireg --1;

Dreg lo = W [Preg] ;

Dreg_lo = W [Preg ++ Preg | ;

Dreg = B [Preg] (Z) ;

Dreg = B [Preg ++] (Z) ;

Dreg = B [Preg --] (2) ;

Dreg = B [Preg + uimm15] (Z) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-21

AAU Instruction Summary

Table 5-3. AAU Instruction Summary (Contd)

Instruction

Dreg = B [Preg — uimm15] (Z) ;

Dreg = B [Preg] (X) ;

Dreg = B [Preg ++] (X) ;

Dreg = B [Preg --] (X) ;

Dreg = B [Preg + uimm15] (X) ;

Dreg = B [Preg — uimm15] (X) ;

[Preg] = Preg;

[Preg ++] = Preg ;

[Preg --] = Preg ;

[Preg + uimm6m4 | = Preg ;

[Preg + uimm17m4 | = Preg ;

[Preg — uimm17m4 | = Preg ;

[FP — uimm7m4] = Preg;

[Preg] = Dreg;

[Preg ++] = Dreg ;

[Preg --] = Dreg ;

[Preg + uimm6m4 | = Dreg ;

[Preg + uimm17m4] = Dreg ;

[Preg — uimm17m4] = Dreg ;

[Preg ++ Preg] = Dreg ;

[FP — uimm7m4] = Dreg ;

[Ireg] = Dreg;

[Ireg ++] = Dreg ;

[Ireg --] = Dreg;

5-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Address Arithmetic Unit

Table 5-3. AAU Instruction Summary (Contd)

Instruction

[Ireg ++ Mreg] = Dreg ;

W [Ireg] = Dreg_hi ;

W [Ireg ++] = Dreg_hi ;

W [Ireg --] = Dreg_hi;

W [Preg] = Dreg_hi;

W [Preg ++ Preg] = Dreg_hi ;

W [Ireg] = Dreg_lo;

W [Ireg ++] = Dreg_lo ;

W [Ireg --] = Dreg_lo;

W [Preg] = Dreg_lo;

W [Preg] = Dreg ;

W [Preg ++] = Dreg ;

W [Preg --] = Dreg ;

W [Preg + uimm5m?2] = Dreg ;

W [Preg + uimm16m2] = Dreg ;

W [Preg — uimm16m2] = Dreg ;

W [Preg ++ Preg] = Dreg_lo ;

B [Preg] = Dreg ;

B [Preg ++] = Dreg ;

B [Preg --] = Dreg ;

B [Preg + uimm15] = Dreg ;

B [Preg — uimm15] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-23

AAU Instruction Summary

Table 5-3. AAU Instruction Summary (Contd)

Instruction

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2;

Preg = Preg >> 2

Preg = Preg >> 1;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;

Preg —= Preg ;

Ireg —= Mreg ;

Many of the AAU instructions can be part of multi-issue opera-
tions. Data can be loaded and stored in parallel to arithmetical
operations. For details, see Chapter 20, “Issuing Parallel
Instructions.”

5-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

6 MEMORY

Blackfin processors support a hierarchical memory model with different
performance and size parameters, depending on the memory location
within the hierarchy. Level 1 (L1) memories interconnect closely and effi-
cient with the Blackfin core for best performance. Separate blocks of L1
memory can be accessed simultaneously through multiple bus systems.
Instruction memory is separated from data memory, but unlike classical
Harvard architectures, all L1 memory blocks are accessed by one unified
addressing scheme. Portions of L1 memory can be configured to function
as cache memory. Some Blackfin derivatives also feature on-chip Level 2
(L2) memories. Based on a Von-Neumann architecture, L2 memories
have a unified purpose and can freely store instructions and data.
Although L2 memories still reside inside the CCLK clock domain, they take
multiple CCLK cycles to access. The processors also provide support of an
external memory space that includes asynchronous memory space for
static RAM devices and synchronous memory space for dynamic RAM
such as SDRAM devices.

This chapter discusses the architecture and principles of on-chip memories
as well as memory protection and caching mechanisms. For memory size,
population, and off-chip memory interfaces, refer to the specific Blackfin
Processor Hardware Reference manual for your derivative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-1

Memory Architecture

Memory Architecture

Blackfin processors have a unified 4G byte address range that spans a com-
bination of on-chip and off-chip memory and memory-mapped 1I/O
resources. Of this range, some of the address space is dedicated to internal,
on-chip resources. The processor populates portions of this internal mem-
ory space with:

e L1 Static Random Access Memories (SRAM)
e L2 Static Random Access Memories (SRAM)
* A set of memory-mapped registers (MMRs)

* A boot Read-Only Memory (ROM)

Figure 6-1 on page 6-3 shows a processor memory architecture typical of
most Blackfin processors.

Overview of On-Chip Level 1 (L1) Memory

The L1 memory system performance provides high bandwidth and low
latency. Because SRAMs provide deterministic access time and very high
throughput, DSP systems have traditionally achieved performance
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of L1 memories. Code can be ported to or developed for the
processor quickly without requiring performance optimization for the
memory organization.

Figure 6-1 shows the typical bus architecture of single-core Blackfin
devices that do not feature L2 memories on-chip. The bus widths on the
system side may vary.

6-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

core & 7 L1 MEMORY
PROCESSOR L. /32 INSTRUCTION
N 7
P y 32 LOAD DATA
CORE CLOCK ‘ 732 LOADDATA
(CCLK) DOMAIN Z4Y 4 STORE DATA g ANEAY
SYSTEM CLOCK
(SCLK) DOMAIN DMA 16|
CORE
BUS (DCB) 1l 16
‘ DMA — | EXTERNAL
| : CONTROLLER ACCESS
—— BUS (EAB)
DMA 16]
EXTERNAL
PERIPHERAL BUS (DEB)
ACCESS | AVAY4
BUS (PAB) -] N
[¥ EBIU
ﬂ ﬂ ﬂ Vv ﬂ ﬂ ﬂ
5 16 EXTERNAL
NON-DMA PERIPHERALS DMA PERIPHERALS 8
PORT
16l BUS (EPB)
ﬂ £ 16 ﬂ ﬂ L _____ EXTERNAL

MEMORY
DMA ACCESS BUS DEVICES

(DAB)

Figure 6-1. Processor Memory Architecture
The L1 memory provides:

* A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

* Simultaneous system DMA, cache maintenance, and core accesses

* SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-3

Memory Architecture

* Instruction and data cache options for microcontroller code, excel-
lent High Level Language (HLL) support, and ease of
programming cache control instructions, such as PREFETCH and
FLUSH

* Memory protection

@ The L1 memories operate at the core clock frequency (CCLK).

Overview of Scratchpad Data SRAM

The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the User and Supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt

handling.

The scratchpad data SRAM, like the other L1 blocks, operates at
core clock frequency (CCLK). It can be accessed by the core at full
performance. However, it cannot be accessed by the DMA
controller.

Overview of On-Chip Level 2 (L2) Memory

Some Blackfin derivatives feature a Level 2 (L2) memory on chip. The L2
memory provides low latency, high-bandwidth capacity. This memory sys-
tem is referred to as on-chip L2 because it forms an on-chip memory
hierarchy with L1 memory. On-chip L2 memory provides more capacity
than L1 memory, but the latency is higher. The on-chip L2 memory is
SRAM and can not be configured as cache. It is capable of storing both
instructions and data. The L1 caches can be configured to cache instruc-
tions and data located in the on-chip L2 memory. On-chip L2 memory
operates at CCLK frequency.

6-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

L1 Instruction Memory

L1 Instruction Memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four subbanks of the L1 Instruction
Memory as:

e Asimple SRAM
* A 4-Way, set associative instruction cache
* A cache with as many as four locked Ways

@ L1 Instruction Memory can be used only to store instructions.

IMEM_CONTROL Register

The Instruction Memory Control register (IMEM_CONTROL) contains con-
trol bits for the L1 Instruction Memory. By default after reset, cache and
Cacheability Protection Lookaside Buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 6-10).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB_DATAx Registers” on page 6-55) are cleared. This
simultaneously forces all cached lines to be of equal (low) importance.
Cache replacement policy is based first on line importance indicated by
the cached states of the CPLB_LRUPRIO bits, and then on LRU (least
recently used). See “Instruction Cache Locking by Line” on page 6-16 for
complete details. This bit must be 0 to allow the state of the CPLB_LRUPRIO
bits to be stored when new lines are cached.

The 1L0C[3:0] bits provide a useful feature only after code has been man-
ually loaded into cache. See “Instruction Cache Locking by Way” on page
6-17. These bits specify which Ways to remove from the cache replace-
ment policy. This has the effect of locking code present in

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-5

L1 Instruction Memory

nonparticipating Ways. Code in nonparticipating Ways can still be
removed from the cache using an IFLUSH instruction. If an 1L0C[3:0] bit
is 0, the corresponding Way is not locked and that Way participates in
cache replacement policy. If an 1L0C[3:01] bit is 1, the corresponding Way
is locked and does not participate in cache replacement policy.

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache.

Note reserving memory to serve as cache will not alone enable L2 memory
accesses to be cached. CPLBs must also be enabled using the EN_ICPLB bit
and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx registers) must
specify desired memory pages as cache-enabled.

Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

* Reserved (nonpopulated) L1 instruction memory space

* L1 data memory space
* MMR space

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAX and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 6-67), disabling of
CPLBs should be proceeded by a CSYNC.

When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a SSYNC to ensure proper behavior.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

6-6

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

L1 Instruction Memory Control Register (IMEM_CONTROL)

31 80 20 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1004 |o |o |o |o |o |o |o |o |o |o |o |o |o |0 |o |0| Reset = 0x0000 0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofoft]

I

ENICPLB (Instruction CPLB
LRUPRIORST (LRU Enable) - N
Priority Reset) 0- C:dLBs dlshablsd, mlnllmal
0 - LRU priority functionality is enabled 1- %Plfgzse?qai?e:jng only
1 - All cached LRU priority bits (LRUPRIO) X

IMC (L1 Instruction Memory

are cleared . .

Configuration)
ILOC[3:0] (Cache Way Lock) 0 - Upper 16K byte of LI
0000 - All Ways not locked instruction memory
0001 - WayO0 locked, Way1, Way2, and configured as SRAM,
Way3 not locked also invalidates all cache
lines if previously
1111 - All Ways locked configured as cache

1 - Upper 16K byte of L1
instruction memory
configured as cache

Figure 6-2. L1 Instruction Memory Control Register

L1 Instruction SRAM

The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and
one 32-bit instruction, or one 64-bit instruction).

The pointer registers and index registers, which are described in Chapter
5, cannot access L1 Instruction Memory directly. A direct access to an
address in instruction memory SRAM space generates an exception.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-7

L1 Instruction Memory

Write access to the L1 Instruction SRAM Memory must be made through
the 64-bit wide system DMA port. Because the SRAM is implemented as a
collection of single ported subbanks, the instruction memory is effectively

dual ported.

Figure 6-3 on page 6-9 describes the bank architecture of the L1 Instruc-
tion Memory. As the figure shows, each 16K byte bank is made up of four
4K byte subbanks. In the figure, dotted lines indicate features that exist
only on some Blackfin processors. Please refer to the hardware reference
manual for your particular processor for more details.

While on some processors the EAB and DCB buses shown in Figure 6-3
connect directly to the EBIU and DMA controllers, on derivatives that
feature multiple cores or on-chip L2 memories they must cross additional
arbitration units. Also, these buses are wider than 16 bits on some parts.
For details, refer to the specific Blackfin Processor Hardware Reference man-
ual for your derivative.

6-8

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

CACHE CONTROL & -
MEMORY MANAGEMENT | | ————— — — — — — | =
HIGH PRIORITY | | LOW PRIORITY
CACHE || cAcHE I
| Werle |1 erL !
. e s . 8X32BIT : 8X32BIT | I
4KB 4KB v ¥ __:_'I'__ :
I
0% 64,/ o« — — — — [:
3 ! 64 I |
S< 1 Vol DMA gy |
Zu BUFFER
=53] '
9 i) 4 KB 4 KB |
ol | | L === 1 |
'g b L - L | ONLARGER MEMORY | |
=< CACHE cacHe || DERIVATIVES I |
TAG TAG || ONLY
= | | [
I | I
@ 4KB 4KkB | || 4kB 4KB | |
is I | I
] % - ; | I
Za > : I I
gl T
EX : 1 64) oo DMA | qp I
§ s i 1! BUFFER I
- I | |
2a 4KB 4KB | 4KB 4KB | | I
| I
b e e — —
1 [(. R = 1
~ | ON LARGER MEMORY | I
w i = | DERIVATIVES | |
Wod 4KB 4KB 4KB 4KB ONLY
< |
x 200 I I
Z2=5¢ o I o
dgfe ' o
Sumxx =T 64, DMA I
Ex0%Z I /P g |
Yapa BUFFER I |
Eob2 I I |
o EOF | 4 KB 4 KB 4KB 4KB]
z3&, | I I
il |
| e o i I
. DMA CORE BUS (DCB) 16
TO DMA CONTROLLER > / I
EXTERNAL ACCESS BUS (EAB) 16, I
TO EBIU (AND L2) —t-- 1 —-
INSTRUCTION DATA BUS (IDB) 64 . TO
4 £
REGISTER ACCESS BUS (RAB) 32, PROCESSOR
1 » CORE

Figure 6-3. L1 Instruction Memory Bank Architecture

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-9

L1 Instruction Memory

L1 Instruction Cache

For information about cache terminology, see “Terminology” on page

6-74.

The L1 Instruction Memory may also be configured to contain a, 4-Way
set associative instruction 16K byte cache. To improve the average access
latency for critical code sections, each Way or line of the cache can be
locked independently. When the memory is configured as cache, it cannot
be accessed directly.

When cache is enabled, only memory pages further specified as cacheable
by the CPLBs will be cached. When CPLBs are enabled, any memory
location that is accessed must have an associated page definition available,
or a CPLB exception is generated. CPLBs are described in “Memory Pro-
tection and Properties” on page 6-45.

Figure 6-4 on page 6-12 shows the overall Blackfin processor instruction
cache organization.

Cache Lines

As shown in Figure 6-4, the cache consists of a collection of cache lines.
Each cache line is made up of a zag component and a data component.

e The tag component incorporates a 20-bit address tag, least recently

used (LRU) bits, a Valid bit, and a Line Lock bit.

e The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag and data
memory arrays, respectively.

6-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4K byte memory
subbank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

The Valid bit indicates the state of a cache line. A cache line is always
valid or invalid.

* Invalid cache lines have their Valid bit cleared, indicating the line
will be ignored during an address-tag compare operation.

* Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

The tag and data components of a cache line are illustrated in Figure 6-5.
Each 4K byte subbank provides the same structure.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-11

L1 Instruction Memory

4:1 MUX

64-BIT
IDB DATA

-

32-BIT IAB ADDRESS SUBBANK BYTE
FOR LOOKUP SELECT SELECT
31 14|1312|111o|9 5|4 o|
ADDRESS TAG
¥
WAY 3
2+1 20 4x64 -
P - ————— - -
VALID [LRU] ADDRESS | [wD3 [wp2 [wp1[wbpo] LINEo
VALID [LRU] ADDRESS | [WD3 [wp2 [WD1[wD0] LINE 1
. L| WAY 2
LINE . 1 24 20 4x64 o
SELECT “—r > - £
[VALID [LRU] ADDRESS | [wD3 [wp2 [wp1[wbpo] LINEO
0 [vaw LRU| ADDRESS | [wD3 [wp2 [wpD1]wbo] LINE 1
= WAY 1
4 1 2+ 20 4x64 -
e - P - -
L [vaAub[LRU] ADDRESS | [wD3 [wD2 [wD1[wbDo]| LINE 0
U [vAub]LRU[ADDRESS | [wD3 [wp2[wb1]wbo] LINE 1
L wavo ||
4 1 2+ 20 4x64
- > P - -
U [vaup]LrRu] ADDRESS | [wD3 [wp2 [wD1[wDo] LINEO
L [vAub]Lru] ADDRESS | [wD3 [wp2 [wp1[wDo]| LINE1
VALID [LRU[ADDRESS | [wD3 [wp2 Jwp1]wbo] LINE 2
VALID [LRU[ADDRESS | [wD3 [wp2 [wpD1[wbpo]| LINE 3
VALID [LRU] ADDRESS | [wD3 [wb2 [wD1 [wpo]| LINE 30
VALID [LRU] ADDRESS | [wD3 [wp2 JwD1 [wDo]| LINE 31

Figure 6-4. Instruction Cache Organization Per Subbank

6-12

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

LRUPRIO
TAG LRU v
TAG - 20-BIT ADDRESS TAG
LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE
' - VALID BIT
WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

Figure 6-5. Cache Line — Tag and Data Portions

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tags of valid lines currently stored
in a cache set. The cache set (cache line across ways) is selected, using bits
9 through 5 of the instruction fetch address. If the address-tag compare
operation results in a match in any of the four ways and the respective
cache line is valid, a cache hit occurs. If the address-tag compare operation
does not result in a match in any of the four ways or the respective line is
not valid, a cache miss occurs.

When a cache miss occurs, the instruction memory unit generates a cache
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address
of the target instruction word. When a cache miss occurs, the core halts
until the target instruction word is returned from external memory.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-13

L1 Instruction Memory

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer on its external read-data port. This is a burst of four 64-bit
words of data from the line fill buffer. The line fill buffer translates then
to the bus width of the External Access Bus (EAB).

The address for the read transfer is the address of the target instruction
word. When responding to a line-read request from the instruction mem-
ory unit, the external memory returns the target instruction word first.
After it has returned the target instruction word, the next three words are
fetched in sequential address order. This fetch wraps around if necessary,
as shown in Table 6-1.

Table 6-1. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words
WDO0 WDO0, WD1, WD2, WD3
WD1 WD1, WD2, WD3, WDO0
WD2 WD2, WD3, WD0, WD1
WD3 WD3, WDO0, WD1, WD2

Once the line fill has completed, the four 64-bit words have fixed order in
the cache as shown in Figure 6-4. This avoids the need to save the lower 5
bits (byte select) of the address word along with the cache entry.

6-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

Line Fill Buffer

As the new cache line is retrieved from external memory, each 64-bit word
is buffered in a four-entry line fill buffer before it is written to a 4K byte
memory bank within L1 memory. The line fill buffer allows the core to
access the data from the new cache line as the line is being retrieved from
external memory, rather than having to wait until the line has been writ-
ten into the cache. While the L1 port of the fill buffer is always 64 bits
wide, the width of port to external or L2 memory varies between
derivatives.

Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the Valid and LRU bits for the selected
set are examined by a cache line replacement unit to determine the entry
to use for the new cache line, that is, whether to use Way0, Way1, Way2,
or Way3. See Figure 6-4, “Instruction Cache Organization Per Subbank,”
on page 6-12.

The cache line replacement unit first checks for invalid entries (that is,
entries having its Valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

e WayO first

e Wayl next
* Way2 next
e Way3 last

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-15

L1 Instruction Memory

For example:

» If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for
the new cache line.

e If Ways0 and 1 are invalid and Ways2 and 3 are valid, WayO is
selected for the new cache line.

e If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

Instruction Cache Management

The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRy, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,

and debug.

The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

See “Instruction Cache Invalidation” on page 6-18.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAXx registers (see “Memory Protec-
tion and Properties” on page 6-45) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
Way is victimized when all cache Ways are occupied when a new

6-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

cacheable line is fetched. This bit indicates that a line is of either “low” or
“high” importance. In a modified LRU policy, a high can replace a low,
but a low cannot replace a high. If all Ways are occupied by highs, an oth-
erwise cacheable low will still be fetched for the core, but will not be
cached. Fetched highs seek to replace unoccupied Ways first, then least
recently used lows next, and finally other highs using the LRU policy.
Lows can only replace unoccupied Ways or other lows, and do so using
the LRU policy. If 2/l previously cached highs ever become less important,
they may be simultaneously transformed into lows by writing to the LRU-
PRIRST bit in the IMEM_CONTROL register (see page 6-5).

Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four Ways of the instruction cache. When the cache is
enabled, L1 Instruction Memory has four Ways available. Setting the lock
bit for a specific Way prevents that Way from participating in the LRU
replacement policy. Thus, a cached instruction with its Way locked can
only be removed using an IFLUSH instruction, or a “back door” MMR
assisted manipulation of the tag array.

An example sequence is provided below to demonstrate how to lock down

WayO:

* If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Invalidation” on page 6-18).

* Disable interrupts, if required, to prevent interrupt service routines
(ISRs) from potentially corrupting the locked cache.

* Set the locks for the other Ways of the cache by setting IL0C[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-17

L1 Instruction Memory

* Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

* Upon exit of the critical code, clear 1L0C[3:1] and set ILOCLO0].
The critical code (and the instructions which set IL0C[0]) is now

locked into WayO.
* Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the
cache is prevented.

Instruction Cache Invalidation

The instruction cache can be invalidated by address, cache line, or com-
plete cache. The IFLUSH instruction can explicitly invalidate cache lines
based on their line addresses. The target address of the instruction is gen-
erated from the P-registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated, and not

“flushed.”

In the following example, the P2 register contains the address of a valid
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:

iflush [p2 1 ; /* Invalidate cache line containing address
that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the memory map and its corresponding cache-line, it is most useful when
the buffer being invalidated is less than the cache size. For more informa-
tion about the IFLUSH instruction, see Chapter 17, “Cache Control.” A
second technique can be used to invalidate larger portions of the cache
directly. This second technique directly invalidates Valid bits by setting

6-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

the Invalid bit of each cache line to the invalid state. To implement this
technique, additional MMRs (ITEST_COMMAND and ITEST_DATA[1:0]) are
available to allow arbitrary read/write of all the cache entries directly. This
method is explained in the next section.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 6-2,
“L1 Instruction Memory Control Register,” on page 6-7), all Valid bits in
the instruction cache are set to the invalid state. A second write to the
IMEM_CONTROL register to set the IMC bit configures the instruction memory
as cache again. An SSYNC instruction should be run before invalidating the
cache and a CSYNC instruction should be inserted after each of these
operations.

Instruction Test Registers

The Instruction Test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used,
the L1 cache data or tag arrays are accessed, and data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:0]1). The
ITEST_DATAx registers contain either the 64-bit data that the access is to
write to or the 64-bit data that was read during the access. The lower 32
bits are stored in the ITEST_DATA[0] register, and the upper 32 bits are
stored in the ITEST_DATAL1] register. When the tag arrays are accessed,
ITEST_DATALO0] is used. Graphical representations of the ITEST registers
begin with Figure 6-6 on page 6-21.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-19

Instruction Test Registers

The following figures describe the ITEST registers:
* Figure 6-6, “Instruction Test Command Register,” on page 6-21
* Figure 6-7, “Instruction Test Data 1 Register,” on page 6-22
e Figure 6-8, “Instruction Test Data 0 Register,” on page 6-23

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAX registers.

6-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

ITEST_COMMAND Register

When the Instruction Test Command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:01]).

Instruction Test Command Register (ITEST_COMMAND)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1300 |o |o |o |o |o |o |o|o |o |o |o |o |o |o |o |o| Reset = 0x0000 0000

WAYSEL[1:0] (Access Way) SBNK[1:0] (Subbank
00 - Access Way0 Access)

01 - Access Way1 00 - Access subbank 0
10 - Access Way2 01 - Access subbank 1

11 - Access Way3 10 - Access subbank 2
(Address bits [11:10] in SRAM) 11 - Access subbank 3

(Address bits [13:12] in

SRAM)
15 1413 12 11 2 1 0
[ofo]e]efo IOIO I°I°I0 I0 IOI0 lofofo]
L
SET[4:0] (Set Index) | RW (Read/Write Access)
Selects one of 32 sets 0 - Read access
(Address bits [9:5] in SRAM) 1 - Write access

TAGSELB (Array Access)

0 - Access tag array

1 - Access data array
DWI[1:0] (Double Word
Index)

Selects one of four 64-bit

double words in a 256-bit

line (Address bits [4:3] in

SRAM)

Figure 6-6. Instruction Test Command Register

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-21

Instruction Test Registers

ITEST_DATA1 Register

Instruction Test Data registers (ITEST_DATAL1:0]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The Instruction
Test Data 1 register (ITEST_DATA1) stores the upper 32 bits.

Instruction Test Data 1 Register (ITEST_DATA1)

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 6-10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1404 |x |x |x |x |x |x |x |x |x|x |x |x |x |x |x |x| Reset = Undefined

| |
[Data[63:48]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D Dx P P e P e x e gx x|

| |
[Data[47:32]

When accessing tag arrays, all bits are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
1 e e 8 e N e R R B B

Figure 6-7. Instruction Test Data 1 Register

6-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

ITEST_DATAO Register

The Instruction Test Data 0 register (ITEST_DATAO) stores the lower 32
bits of the 64-bit data to be written to or read from by the access. The
ITEST_DATAO register is also used to access tag arrays. This register also
contains the Valid and Dirty bits, which indicate the state of the cache
line.

Instruction Test Data 0 Register (ITEST_DATAO)

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1400 |x |x |>< |>< |>< |x |x |><|>< |>< |>< |x|>< |>< |>< |x| Reset = Undefined
| |

[Data[31:16]
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

BN ENENES ENEN ENEY ENENENEY BN ENEREN
| |
[Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 6-10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
3 3 2 8 3 N B A B ES A 3 [
| |
[Tag[19:4]
Physical address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EJ ESES KN N ES ENES ESENENEY ENESENEN

|:|_| L1 .
Tag[3:2] L vaiia

0 - Cache line is not valid

Physical address 1 - Cache line contains valid
data

Tag([1:0] LRUPRIO

Physical address 0 - LRUPRIO is cleared for
this entry

1 - LRUPRIO is set for this
entry. See “ICPLB_DATAx
Registers” on page 6-55 and
“IMEM_CONTROL Register”
on page 6-5.

Figure 6-8. Instruction Test Data 0 Register

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-23

L1 Data Memory

L1 Data Memory

The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multi-ported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

* Two 32-bit data loads

* One pipelined 32-bit data store

* One DMA T/O, up to 64 bits

* One 64-bit cache fill/victim access

@ L1 Data Memory can be used only to store data.

DMEM_CONTROL Register

The Data Memory Control register (DMEM_CONTROL) contains control bits
for the L1 Data Memory.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAGO, DAG]I, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

6-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Data Memory Control Register (DMEM_CONTROL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Memory

0xFFEO 0004 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 1001

15 14 13 12 11

0
[]

10 9 8 7 6 5 4 3 2 A
fofofoftfofofofofofofofo]o]o]o
L1
PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches
use port A

1 - DAG1 non-cacheable fetches
use port B

PORT_PREFO0 (DAGO Port

Preference) —mM8M8

0 - DAGO non-cacheable fetches
use port A

1 - DAGO non-cacheable fetches
use port B

DCBS (L1 Data Cache Bank Select)

Valid only when DMC[1:0] = 11. Determines
whether Address bit A[14] or A[23] is used to
select the L1 data cache bank.

0 - Address bit 14 is used to select Bank A or B
for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

See “Example of Mapping Cacheable Address

Space” on page 6-30.

Figure 6-9. L1 Data Memory Control Register

I— ENDCPLB (Data Cacheability

Protection Lookaside Buffer
Enable)

0 - CPLBs disabled. Minimal

address checking only

1 - CPLBs enabled

DMC[1:0] (L1 Data Memory
Configure)

See the Blackfin Processor
Hardware Reference for infor-
mation specific to your part

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-25

L1 Data Memory

The PORT_PREFO bit selects the data port used to process DAGO
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAGO, DAGI, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

For optimal performance with dual DAG reads, DAGO0 and DAG]1
should be configured for different ports. For example, if
PORT_PREFO is configured as 1, then PORT_PREF1 should be pro-
grammed to 0.

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both Data Bank A and Data Bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 Cacheability Protection
Lookaside Buffers (CPLBs) used for data (see “L1 Data Cache” on page
6-29). Data CPLBs are disabled by default after reset. When disabled,
only minimal address checking is performed by the L1 memory interface.
This minimal checking generates an exception when the processor:

* Addresses nonexistent (reserved) L1 memory space
e Attempts to perform a nonaligned memory access

* Attempts to access MMR space either using DAG1 or when in
User mode

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 6-67), disabling
CPLBs should be preceded by a CSYNC instruction.

When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

6-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

By default after reset, all L1 Data Memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable L2 memory
accesses to be cached. To do this, CPLBs must also be enabled (using the
ENDCPLB bit) and CPLB descriptors (registers DCPLB_DATAx and
DCPLB_ADDRx) must specify chosen memory pages as cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Data SRAM

Accesses to SRAM do not collide unless all of the following are true: the
accesses are to the same 32-bit word polarity (address bits 2 match), the
same 4K byte subbank (address bits 13 and 12 match), the same 16K byte
half bank (address bits 16 match), and the same bank (address bits 21 and
20 match). When an address collision is detected, access is nominally
granted first to the DAGs, then to the store buffer, and finally to the
DMA and cache fill/victim traffic. To ensure adequate DMA bandwidth,
DMA is given highest priority if it has been blocked for more than 16
sequential core clock cycles, or if a second DMA I/O is queued before the
first DMA 1/0O is processed.

Figure 6-10 shows the L1 Data Memory architecture. In the figure, dotted
lines indicate features that exist only on some Blackfin processors. Please
refer to the hardware reference manual for your particular processor for
more details. While on some processors the EAB and DCB buses shown in
Figure 6-10 connect directly to EBIU and DMA controllers, on deriva-
tives that feature multiple cores or on-chip L2 memories they have to cross
additional arbitration units. Also, these buses are wider than 16 bits on
some parts. For details, refer to the specific Blackfin Processor Hardware
Reference manual for your derivative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-27

L1 Data Memory

PORT A

CACHE CONTROL &
TORAB < MEMORY MANAGEMENT
/ SRAM SRAMOR CACHE ~ \/ 10 BUFFERS \
5 .
5. o 4KB
0 5 - — — — — — —
"o ——————— - r |
= 0 A ‘ READ |
. | onugseenmeiony | cucre |[orone | |
3 I ONLY 1| TAe TAG HIGH PRIORITY | | LOW PRIORITY | I
¢z = I LINE FILL | LINEFILL |
Sa | BUFFER | BUFFER |
&;E 1| 4xe 4KB I| 4ks 4KB 8X32BIT [=~ 8X32BIT | :
I — .}
E‘ﬁ ‘! | — x2er YV ¥ . ITI |
L -) R
E, z - | SUE:71-1 i G A o I
o 4 32BIT
w® > Ly [1g1328m 0L | F—— DMA VA |
bz | | <» B4BIT 4 oy BUFFER | DWA |
okl = gl e | I I
ol E | —_————— —
i B8l & | | |
z @ S| S| sl 1] 4xs 4KB | || 4kB 4KB VICTIM : HIGH PRIORITY | |
o
25 : I = T I I axwrmr || BUFFER | |
<z I 4X32BIT | |
o | CACHE CACHE
— I I| TAG TAG * ————— ————— R
— | I -~ WRITE| | |
- READ
| I | - - — — — — -+
| I| cAcHE || CAcHE —_—
| 1| TAG TAG HIGH PRIORITY | | LOW PRIORITY I
| =T | T LINEFILL || UNEFLL | |
I | BUFFER I BUFFER | |
| 4KB 4KB | 4KB 4KB 8 X 32BIT | 8X32BIT | |
I — —— —
1 | —2er VY.V _TY_Y I
< | 3287 o I
) I _ 32BIT | DMA I
< 1 I <n 64BIT 4 wp| BUFFER | DVA 1] |
z | 1 v I
o | |
< Fl axe 4k | || 4xs 4KB VICTIM LOW FRIORITY |
< | BUFFER
a | | < — = T 8X 32 BIT BUFFER |
| 2TO 8 X 32BIT |
~ . | cacre || cacHe
YVY 4 TAG TAG Y ¥ write| | !
LD1 32BIT - DCB 16BIT
LD0 32BIT 10 TO DMA CONTROLLER
i "~ PROCESSOR ___ EAB 16BIT
CORE TO EBIU (AND L2) <t
STORE BUFFER SD 32BIT .
6 X 32 BIT
Figure 6-10. L1 Data Memory Architecture
6-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

L1 Data Cache

For definitions of cache terminology, see “Terminology” on page 6-74.

Unlike instruction cache, which is 4-Way set associative, data cache is
2-Way set associative. When two banks are available and enabled as cache,
additional sets rather than Ways are created. When both Data Bank A and
Data Bank B have memory serving as cache, the DCBS bit in the
DMEM_CONTROL register may be used to control which half of all address
space is handled by which bank of cache memory. The DCBS bit selects
either address bit 14 or 23 to steer traffic between the cache banks. This
provides some control over which addresses alias into the same set. It may
therefore be used to affect which addresses tend to remain resident in
cache by avoiding victimization of repetitively used sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank, the same half bank, and to the same bank. Cache has less apparent
multi-ported behavior than SRAM due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available.
* Write-through with cache line allocation only on reads
* Write-through with cache line allocation on both reads and writes
* Write-back which allocates cache lines on both reads and writes

Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 6-45). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory
page independently.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-29

L1 Data Memory

If cache is enabled (controlled by bits DMCL1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs will be cached. The default behavior when data CPLBs are dis-
abled is for nothing to be cached.

Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address Space

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache they operate as two indepen-
dent, 16K byte, 2-Way set associative caches that can be independently
mapped into the Blackfin processor address space.

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates Address bit AL14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by
Data Bank A or the cache implemented by Data Bank B.

e IfDCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use Data Bank B. All addresses in
which A[14] = 1 use Data Bank A.

In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

6-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

e IfDCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use Data Bank B. All addresses where
A[23] = 1 use Data Bank A.

In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

e IfDCBS = 0, A[14] selects Data Bank A instead of Data Bank B.

Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.
Consequently:

Any data in the first 16K byte of memory could be stored
only in Data Bank B.

Any data in the next address range (16K byte through 32K
byte) — 1 could be stored only in Data Bank A.

Any data in the next range (32K byte through 48K byte) — 1
would be stored in Data Bank B.

Alternate mapping would continue.

As a result, the cache operates as if it were a single, contiguous,

2-Way set associative 32K byte cache. Each Way is 16K byte long,
and all data elements with the same first 14 bits of address index to
a unique set in which up to two elements can be stored (one in each

Way).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-31

L1 Data Memory

e IfDCBS = 1, A[23] selects Data Bank A instead of Data Bank B.

With DCBS = 1, the system functions more like two independent
caches, each a 2-Way set associative 16K byte cache. Each Bank
serves an alternating set of 8M byte blocks of memory.

For example, Data Bank B caches all data accesses for the first 8M
byte of memory address range. That is, every 8M byte of range vies
for the two line entries (rather than every 16K byte repeat). Like-
wise, Data Bank A caches data located above 8M byte and below
16M byte.

For example, if the application is working from a data set that is
1M byte long and located entirely in the first 8M byte of memory,
it is effectively served by only half the cache, that is, by Data Bank
B (a 2-Way set associative 16K byte cache). In this instance, the
application never derives any benefit from Data Bank A.

@ For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8M byte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAGO’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

* DAGO gets its data from Data Bank A for all of its accesses and
* DAGI gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

6-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

Figure 6-11 shows an example of how mapping is performed when

DCBS = 1.

The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

WAY0 WAY1

sMB

\

L1

sMB

SMB ™
g

aMB /

WAY0 WAY1

DATA BANK B

DATA BANK B

Figure 6-11. Data Cache Mapping When DCBS = 1

Data Cache Access

The Cache Controller tests the address from the DAGs against the tag
bits. If the logical address is present in L1 cache, a cache hit occurs, and
the data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
via the system interface. The line index and replacement policy for the
Cache Controller determines the cache tag and data space that are allo-
cated for the data coming back from external memory.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-33

L1 Data Memory

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

* If the state of the line is exclusive (clean), the new tag and data
write over the old line.

* If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data.

If the line is dirty, the current contents of the cache are copied back
to external memory before the new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to external memory. The data cache
performs the line fill request to the system as critical (or requested) word
first, and forwards that data to the waiting DAG as it updates the cache
line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a 4-cycle stall. Furthermore, a subsequent
load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
Data Memory cache and generates a high latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “Exceptions” on page 4-47.

6-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

* For each store operation, write-through caches initiate a write to
external memory immediately upon the write to cache.

If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to external memory.

e A write-back cache does not write to external memory until the line
is replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on
each data bank. In addition, a two-entry write buffer in the L1 Data
Memory accepts all stores with cache inhibited or store-through protec-
tion. An SSYNC instruction flushes the write buffer.

IPRIO Register and Write Buffer Depth

The Interrupt Priority register (IPRI0) can be used to control the size of

the write buffer on Port A (see “L1 Data Memory Architecture” on page
6-28).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the write buffer increases from two to eight
32-bit words deep. This allows the interrupt service routine to run and
post writes without an initial stall, in the case where the write buffer was
already filled in the low priority interrupt routine. This is most useful

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-35

L1 Data Memory

when posted writes are to a slow external memory device. When returning
from a high priority interrupt service routine to a low priority interrupt
service routine or user mode, the core stalls until the write buffer has com-
pleted the necessary writes to return to a two-deep state. By default, the
write buffer is a fixed two-deep FIFO.

Interrupt Priority Register (IPRIO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
O0xFFEO 2110 |0 |o |o |o |0 |0 |o |o |o |o |0 |o |o |o |o |o | Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoofofofofofofofofofofofofofo]

IPRIO_MARK]JO0:3] (Priority

Watermark)

0000 - Default, all interrupts
are low priority

0001 - Interrupts 15 through 1
are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority,
interrupts 1 and 0 are
considered high priority

1110 - Interrupts 15 and 14
are low priority,
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low
priority, all others are
considered high priority

Figure 6-12. Interrupt Priority Register

6-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

Data Cache Control Instructions

The processor defines three data cache control instructions that are acces-
sible in User and Supervisor modes. The instructions are PREFETCH, FLUSH,
and FLUSHINV. Examples of each of these instructions can be found in
Chapter 17, “Cache Control.”

PREFETCH (Data Cache Prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions like a
NOP. It can be used to begin a data fetch prior to when the processor
needs the data, to improve performance.

FLUSH (Data Cache Flush) causes the data cache to synchronize the
specified cache line with external memory. If the cached data line is
dirty, the instruction writes the line out and marks the line clean in
the data cache. If the specified data cache line is already clean or
does not exist, FLUSH functions like a NOP.

FLUSHINV (Data Cache Line Flush and Invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to external memory.
The Valid bit in the cache line is then cleared. If the line is not in
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the

FLUSH.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-37

Data Test Registers

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two
additional methods are available to invalidate the data cache when flush-
ing is not required. The first technique directly invalidates Valid bits by
setting the Invalid bit of each cache line to the invalid state. To implement
this technique, additional MMRs (DTEST_COMMAND and DTEST_DATA[1:01)
are available to allow arbitrary reads/writes of all the cache entries directly.
This method is explained in the next section.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 6-9,
“L1 Data Memory Control Register,” on page 6-25), all Valid bits in the
data cache are set to the invalid state. A second write to the DMEM_CONTROL
register to set the DMC[1:0] bits to their previous state then configures the
data memory back to its previous cache/SRAM configuration. An SSYNC
instruction should be run before invalidating the cache and a cSYNC
instruction should be inserted after each of these operations.

Data Test Registers

Like L1 Instruction Memory, L1 Data Memory contains additional
MMRs to allow arbitrary reads/writes of all cache entries directly. The reg-
isters provide a mechanism for data cache test, initialization, and debug.

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
Data Test Data registers (DOTEST_DATA[1:0]). The DTEST_DATAL1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination
for the 64-bit data read. The lower 32 bits are stored in the DTEST_DATAL0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are being accessed, then the DTEST_DATAL0] register is
used.

A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

6-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

These figures describe the DTEST registers.
* Figure 6-13, “Data Test Command Register,” on page 6-40
* Figure 6-14, “Data Test Data 1 Register,” on page 6-41
* Figure 6-15, “Data Test Data 0 Register,” on page 6-42

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.

DTEST_COMMAND Register

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the Data Test Data registers (DTEST DATA[1:0]).

The Data/Instruction Access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-39

Data Test Registers

Data Test Command Register (DTEST_COMMAND)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
oxFFE0 0300 DX T I P P ox e e I P I x IX X [x [x | Reset = undefined

Access Wayl/Instruction
Address Bit 11
0 - Access WayO/Instruction bit 11
1 - Access Way1/Instruction bit 11
Data/Instruction Access
0 - Access Data

1 - Access Instruction
Data Bank Access
See the Blackfin Processor
Hardware Reference for infor-
mation specific to your part

0 Subbank Access[1:0]
1 (SRAM ADDRJ[13:12])
00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
D DD e P x P e fxfx [x x|

|] |
Read/Write Access

Address Bit 14 0- Refad access

0 - Reserved/Instruction bit 14 = 0 1 - Write access

1 - Select Data Cache Bank/Instruction bit 14 = 1 Array Access

Set Index[5:0] 0 - Access tag array

Selects one of 64 sets 1 - Access data array

Double Word Index[1:0]

Selects one of four 64-bit
double words in a 256-bit line

Data Cache Select/

Figure 6-13. Data Test Command Register

6-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

DTEST_DATAT1 Register

Data Test Data registers (OTEST_DATA[1:01]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The Data
Test Data 1 register (DTEST_DATAL) stores the upper 32 bits.

Data Test Data 1 Register (DTEST_DATA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0404 |>< |>< |>< |x |x |>< |>< |>< |>< |x |>< |><|>< |>< |x |><| Reset = Undefined

| I
[Data[63:48]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
D D P e P x P x P x Jx x|
L |
[Data[47:32]

When accessing tag arrays, all bits are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x |x|x|x|x|x|x|x |x|x|x|x|x|x| Reset = Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ENESENES ENENENES ENENENES ENENERES

Figure 6-14. Data Test Data 1 Register

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-41

Data Test Registers

DTEST_DATAO Register

The Data Test Data 0 register (DTEST_DATAO) stores the lower 32 bits of
the 64-bit data to be written, or it contains the lower 32 bits of the desti-
nation for the 64-bit data read. The DTEST_DATAO register is also used to
access the tag arrays and contains the Valid and Dirty bits, which indicate
the state of the cache line.

Data Test Data 0 Register (DTEST_DATAO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0400 Ix |>< |x |>< Ix |>< |>< |x|x |>< |>< |><|x |x |>< |><| Reset = Undefined
| |
| Data[31:16]
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
BN ES N ES ENEN ENES ENEN ENEY BN ENEN BN
| |
I Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 6-10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
P D P P P e PP e e e X [x [X] reset = undefined
| |
| Tag[19:4]
Physical address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b D D P P fx P x x|

Tag[3:2] L Valid

Physical address

0 - Cache line invalid

Tag 1 - Cache line valid
Physical address Dirt
LRU v

0 - Cache line unmodified
since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

0 - WayO is the least
recently used
1 - Way1 is the least
recently used

Figure 6-15. Data Test Data 0 Register

6-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

On-chip Level 2 (L2) Memory

Some Blackfin processors provide additional low-latency and high-band-
width SRAM on chip, called Level 2 (L2) memory. L2 memory runs at
CCLK clock rate, but takes multiple CCLK cycles to access.

Simultaneous access to the multibanked, on-chip L2 memory architecture
from the core(s) and system DMA can occur in parallel, provided that
they access different banks. A fixed-priority arbitration scheme resolves
conflicts. The on-chip system DMA controllers share a dedicated 32-bit
data path into the L2 memory system. This interface operates at the SCLK
frequency. Dedicated L2 access from the processor core is also supported.

Derivatives with on-chip L2 memory provide not only the plain memory
itself. They also provide proper bus and DMA infrastructure. Wide buses
between L1 and L2 memory guarantee high data throughput. A dedicated
DMA controller, called IMDMA, supports data exchange between inter-

nal memories.

The cores and IMDMA share a dedicated, low latency, 64-bit data path
into the L2 SRAM memory. At a core clock frequency of 600 MHz, the
peak data transfer rate across this interface is 4.8 GB/second.

On-chip L2 Bank Access

Two L2 access ports, a processor core port and a system port, are provided
to allow concurrent access to the L2 memory, provided that the two ports
access different memory sub-banks. If simultaneous access to the same
memory sub-bank is attempted, collision detection logic in the L2 pro-
vides arbitration. This is a fixed priority arbiter; the DMA port always has
the highest priority, unless the core is granted access to the sub-bank for a
burst transfer. In this case, the L2 finishes the burst transfer before the sys-
tem bus is granted access.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-43

On-chip Level 2 (L2) Memory

Latency

When cache is enabled, the bus between the core and L2 memory is fully
pipelined for contiguous burst transfers. The cache line fill from on-chip
memory behaves the same for instruction and data fetches. Operations
that miss the cache trigger a cache line replacement. This replacement fills
one 256-bit (32-byte) line with four 64-bit reads. Under this condition,
the L1 cache line fills from the L2 SRAM in 9+2+2+2=15 core cycles. In
other words, after nine core cycles, the first 64-bit (8-byte) fill is available
for the processor. Figure 6-16 on page 6-44 shows an example of L2
latency with cache on.

AlBlc|]D |(—————————| A |B |C|D

INSTRUCTION ALIGNMENT UNIT

T+9 ABCD READY L2 MEMORY
TO EXECUTE T Tk L
E[|F|]a | H[A]B]C]|D m o »

T+11 EFGH READY
TO EXECUTE

[] INSTRUCTION ALIGNMENT UNIT

T+13 IJKL READY
TO EXECUTE

T+10 A EXECUTES
T+15 MNOP READY

T+11 B EXECUTES TO EXECUTE

T+12 C EXECUTES

T+13 D EXECUTES NOTE: AFTER F EXECUTES, GHIJKLMNOP

EXECUTE ON CONSECUTIVE CYCLES.

L84

~ AFTER P IS IN PIPELINE,
T+15 F EXECUTES NEW CACHE LINE FILL IS INITIATED.

T+14 E EXECUTES EACH INSTRUCTION FETCH IS 32 BYTES

EfF Je [H] 1 [[K]L [

INSTRUCTION ALIGNMENT UNIT

64BITS | 64BITS | 64BITS | 64BITS |
CYCLES T+9 T+11 T+13 T+15

Figure 6-16. L2 Latency With Cache On

In this example, at the end of 15 core cycles, 32 bytes of instructions or
data have been brought into cache and are available to the sequencer. If all
the instructions contain 16 bits, sixteen instructions are brought into
cache at the end of 15 core cycles. In addition, the first instruction that is

6-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

part of the cache-line fill executes on the tenth cycle; the second instruc-
tion executes on the eleventh cycle, and the third instruction executes on
the twelfth cycle—all of them in parallel with the cache line fill.

Each cache line fill is aligned on a 32-byte boundary. When the requested
instruction or data is not 32-byte aligned, the requested item is always
loaded in the first read; each read is forwarded to the core as the line is
filled. Sequential memory accesses miss the cache only when they reach
the end of a cache line.

When on-chip L2 memory is configured as non-cacheable, instruction
fetches and data fetches occur in 64-bit fills. In this case, each fill takes
seven core cycles to complete. As shown in Figure 6-17 on page 6-46,
on-chip L2 memory is configured as non-cacheable. To illustrate the con-
cept of L2 latency with cache off, simple instructions are used that do not
require additional external data fetches. In this case, consecutive instruc-
tions are issued on consecutive core cycles if multiple instructions are
brought into the core in a given fetch.

Memory Protection and Properties

This section describes the Memory Management Unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit

The Blackfin processor contains a page based Memory Management Unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at a page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-45

Memory Protection and Properties

B]c [p|{——————[a[B[c]bD

INSTRUCTION ALIGNMENT UNIT E|F|]G]|H
T+9 ABCD READY L2 MEMORY
TO EXECUTE | T
EJFJea JH]A]BJc D [J [K]

[INSTRUCTION ALIGNMENT UNIT

T+10 A EXECUTES
T+11 B EXECUTES
T+12 C EXECUTES

T+13 D EXECUTES

‘V’
T+18 E EXECUTES EACH INSTRUCTION FETCH IS 64 BITS
E[FJea JH][1T Ju Jk]JL |

INSTRUCTION ALIGNMENT UNIT

64 BITS

CYCLES T T+9

Figure 6-17. L2 Latency With Cache Off

The MMU is implemented as two 16-entry Content Addressable Memory
(CAM) blocks. Each entry is referred to as a Cacheability Protection
Lookaside Buffer (CPLB) descriptor. When enabled, every valid entry in
the MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because the L1 memories are separated into instruction and data memo-
ries, the CPLB entries are also divided between instruction and data
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these
are called /CPLBs. Another sixteen CPLB entries are used for data transac-

tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 Instruction Memory Control

6-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

(IMEM_CONTROL) and L1 Data Memory Control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 6-2 on page 6-7 and
Figure 6-9 on page 6-25, respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

* ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

* ICPLB_DATALn] defines the properties of the page described by the
CPLB descriptor.

For data operations:

e DCPLB_ADDRLm] defines the start address of the page described by
the CPLB descriptor.

* DCPLB_DATALm] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

If valid CPLBs are set up for this space, the default CPLBs are
ignored.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-47

Memory Protection and Properties

Memory Pages

The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

e 1K byte
* 4K byte
* 1M byte
* 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/0O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATALn]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

* DPage size

1K byte, 4K byte, IM byte, 4M byte

e (Cacheable/non-cacheable

Accesses to this page use the L1 cache or bypass the cache.

6-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

* If cacheable: write-through/write-back

Data writes propagate directly to memory or are deferred until the
cache line is reallocated. If write-through, allocate on read only, or
read and write.

* Dirty/modified

The data in this page in memory has changed since the CPLB was
last loaded. This must be managed by software and does not
change status automatically.

* Supervisor write access permission

— Enables or disables writes to this page when in Supervisor mode.
— Data pages only.

* User write access permission

— Enables or disables writes to this page when in User mode.
— Data pages only.

e User read access permission

Enables or disables reads from this page when in User mode.

e Valid

Check this bit to determine whether this is valid CPLB data.
e Lock

Keep this entry in MMR; do not participate in CPLB replacement
policy.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-49

Memory Protection and Properties

Page Descriptor Table

For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a Page Descriptor Table, is used; in it can be stored
all the potentially required CPLB descriptors. The specific format for the
Page Descriptor Table is not defined as part of the Blackfin processor
architecture. Different operating systems, which have different memory
management models, can implement Page Descriptor Table structures
that are consistent with the OS requirements. This allows adjustments to
be made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management

When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection lookaside buffer) descriptor exists in
an MMR pair, an exception occurs. This exception places the processor
into Supervisor mode and vectors to the MMU exception handler (see

6-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

“Exceptions” on page 4-47 for more information). The handler is typically
part of the operating system (OS) kernel that implements the CPLB
replacement policy.

Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the Page Descriptor Table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the Page Descriptor
Table structure to find the correct CPLB descriptor data to load into one
of the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must
be disabled using;:

e The Enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

e The Enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors

The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is
dictated by the characteristics of the operating system, usually implements
a modified LRU (Least Recently Used) policy, a round robin scheduling

method, or pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. this operation should now
find a valid CPLB descriptor for the requested address, and it should pro-

ceed normally.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-51

Memory Protection and Properties

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

* Instruction page miss
* A page miss on DAGO
* A page miss on DAGI

MMU Application

Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the Memory Man-
agement Unit (MMU) is not used.

The MMU does not support automatic address translation in
hardware.

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between User and
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in User mode
while the operating system and its services run in Supervisor mode. It is
desirable to protect code and data structures used by the operating system

6-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

from inadvertent modification by a running User mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in Supervisor mode. If a
write to a protected memory region is attempted while in User mode, an
exception is generated before the memory is modified. Optionally, the
User mode application may be granted read access for data structures that
are useful to the application. Even Supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in Supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a resulg, if the L1 Instruction Memory is
enabled as cache, then any memory region that contains instructions must
have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based Page
Descriptor Table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.

Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-53

Memory Protection and Properties

Examples of Protected Memory Regions

In Figure 6-18, a starting point is provided for basic CPLB allocation for
Instruction and Data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

INSTRUCTION CPLB SETUP

L1 INSTRUCTION: SRAM SDRAM: CACHEABLE
NON-CACHEABLE 1MB PAGE EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

ASYNC: CACHEABLE
TWO 1MB PAGES

DATA CPLB SETUP

SDRAM: CACHEABLE
EIGHT 4MB PAGES

L1 DATA: SRAM ASYNC: NON-CACHEABLE
NON-CACHEABLE ONE 4MB PAGE ONE 1MB PAGE

ASYNC: CACHEABLE
ONE 1MB PAGE

Figure 6-18. Examples of Protected Memory Regions

6-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

ICPLB_DATAX Registers

Figure 6-19 describes the ICPLB Data registers (ICPLB_DATAX).

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

ICPLB Data Registers (ICPLB_DATAX)

E(;rpl\’;lsgnory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
addresses, see |0 Jo Jo Jo Jo [o fo [oJofo [ofoJo]o]o]o] Reset=oxo0000000
Table 6-2.

L1

L PAGE_SIZE[1:0]

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[o[ofofofoJofofofofofofofofofofo]
CPLB_L1_CHBL Q L
CPLB_VALID

Clear this bit whenever L1 memory

is configured as SRAM 0 - Invalid (disabled) CPLB

0 - Non-cacheable in L1 entry

1 - Cacheable in L1 1 - Valid (enabled) CPLB

CPLB_LRUPRIO entry

See “Instruction Cache Locking by Line” on page 6-16 CPLB_LOCK

0 - Low importance Can be used by software in

1 - High importance CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced

1 - Locked, CPLB entry
should not be replaced

CPLB_USER_RD

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

Figure 6-19. ICPLB Data Registers

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-55

Memory Protection and Properties

Table 6-2. ICPLB Data Register Memory-mapped Addresses

Register Name Memory-mapped Address
ICPLB_DATAO0 0xFFEO 1200
ICPLB_DATA1 0xFFEO 1204
ICPLB_DATA2 0xFFEO 1208
ICPLB_DATAS3 0xFFEO 120C
ICPLB_DATA4 O0xFFEO 1210
ICPLB_DATAS5 0xFFEO 1214
ICPLB_DATAG O0xFFEO 1218
ICPLB_DATA7 0xFFEO 121C
ICPLB_DATAS O0xFFEO 1220
ICPLB_DATA9 0xFFEO 1224
ICPLB_DATA10 O0xFFEO 1228
ICPLB_DATA11 0xFFEO 122C
ICPLB_DATA12 0xFFEO 1230
ICPLB_DATA13 0xFFEO 1234
ICPLB_DATA14 O0xFFEO 1238
ICPLB_DATAL15 0xFFEO 123C

6-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

DCPLB_DATAX Registers

Figure 6-20 shows the DCPLB Data registers (DCPLB_DATAX).

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is

written.

DCPLB Data Registers (DCPLB_DATAX)

For Memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
A=A N C3IE3 O N EN CN N N CHEN O EN N EN N
addresses, see

Table 6-3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofo]ofo]ofofofofofo]ofo]e]

CPLB_L1_AOW

Valid only if write

through cacheable

(CPLB_VALID =1,

CPLB_WT =1)

0 - Allocate cache lines
on reads only

1 - Allocate cache lines
on reads and writes

CPLB_WT
Operates only in cache mode
0 - Write back

1 - Write through

CPLB_L1_CHBL

Clear this bit when L1 memory is
configured as SRAM

0 - Non-cacheable in L1

1 - Cacheable in L1

CPLB_DIRTY

Valid only if write back cacheable (CPLB_VALID =1,
CPLB_WT =0, and CPLB_L1_CHBL = 1)

0 - Clean

1 - Dirty

A protection violation exception is generated on store
accesses to this page when this bit is 0. The state of
this bit is modified only by writes to this register. The
exception service routine must set this bit.

Figure 6-20. DCPLB Data Registers

Reset = 0x0000 0000

I_|_—I PAGE_SIZE[1:0]

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

CPLB_VALID

0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry
CPLB_LOCK

Can be used by software in

CPLB replacement algorithms

0 - Unlocked, CPLB entry can
be replaced

1 - Locked, CPLB entry should
not be replaced

CPLB_USER_RD

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_WR

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR

0 - Supervisor mode write
access generates protection
violation exception

1 - Supervisor mode write
access permitted

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

6-57

Memory Protection and Properties

Table 6-3. DCPLB Data Register Memory-mapped Addresses

Register Name

Memory-mapped Address

DCPLB_DATAO0

0xFFEO 0200

DCPLB_DATA1

0xFFEO 0204

DCPLB_DATA2

0xFFEO 0208

DCPLB_DATA3

0xFFE0 020C

DCPLB_DATA4

0xFFE0 0210

DCPLB_DATA5

0xFFEO0 0214

DCPLB_DATAG6

0xFFEO 0218

DCPLB_DATA7

0xFFE0 021C

DCPLB_DATAS8

0xFFEO 0220

DCPLB_DATA9

0xFFEO 0224

DCPLB_DATA10

0xFFEO 0228

DCPLB_DATA11

0xFFE0 022C

DCPLB_DATA12

0xFFE0 0230

DCPLB_DATA13

0xFFEO0 0234

DCPLB_DATA14

0xFFE0 0238

DCPLB_DATA15

0xFFE0 023C

6-58

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

DCPLB_ADDRX Registers

Figure 6-21 shows the DCPLB Address registers (DCPLB_ADDRX).

DCPLB Address Registers (DCPLB_ADDRX)

For Memory-
mapped

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[odofofofo]ofofo]x]

_T_gc;[gses_i?,see !0 |0 |0 |0 IO |0 |0

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0
[ofofofofofofofo]o]

[o]ofofofo]o]e
| |

Figure 6-21. DCPLB Address Registers

Memory

Reset = 0x0000 0000

Upper Bits of Address for
Match[21:6]

Upper Bits of Address for
Match[5:0]

Table 6-4. DCPLB Address Register Memory-mapped Addresses

Register Name

Memory-mapped Address

DCPLB_ADDRO

0xFFE0 0100

DCPLB_ADDRI1

0xFFEO 0104

DCPLB_ADDR2

0xFFEO 0108

DCPLB_ADDR3

0xFFEO0 010C

DCPLB_ADDR4

0xFFE0 0110

DCPLB_ADDRS5

0xFFEO 0114

DCPLB_ADDRG6

0xFFEO0 0118

DCPLB_ADDR7

0xFFEO0 011C

DCPLB_ADDRS

0xFFE0 0120

DCPLB_ADDRY9

0xFFEO 0124

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-59

Memory Protection and Properties

Table 6-4. DCPLB Address Register Memory-mapped Addresses (Contd)

Register Name Memory-mapped Address
DCPLB_ADDRI10 0xFFEO 0128
DCPLB_ADDRI11 O0xFFE0 012C
DCPLB_ADDRI12 0xFFEO0 0130
DCPLB_ADDRI3 0xFFEO 0134
DCPLB_ADDRI14 0xFFEO0 0138
DCPLB_ADDRI5 0xFFE0 013C

ICPLB_ADDRX Registers

Figure 6-22 shows the ICPLB Address registers (ICPLB_ADDRX).

ICPLB Address Registers (ICPLB_ADDRX)

For Memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

mapped |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0000
addr see

Table 6-5. | I

Upper Bits of Address for
Match[21:6]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofodofofofofofofofofofofofe]
| |

| Upper Bits of Address for
Match[5:0]

Figure 6-22. ICPLB Address Registers

6-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 6-5. ICPLB Address Register Memory-mapped Addresses

Register Name

Memory-mapped Address

ICPLB_ADDRO

O0xFFEO 1100

ICPLB_ADDRI1

0xFFEO 1104

ICPLB_ADDR2

OxFFEO 1108

ICPLB_ADDR3

0xFFEO 110C

ICPLB_ADDR4

OxFFEO 1110

ICPLB_ADDR5

0xFFEO 1114

ICPLB_ADDRG6

OxFFEO 1118

ICPLB_ADDR?

O0xFFEO0 111C

ICPLB_ADDRS

OxFFEO 1120

ICPLB_ADDR9

0xFFEO 1124

ICPLB_ADDR10

OxFFEO 1128

ICPLB_ADDRI1

O0xFFEO 112C

ICPLB_ADDRI12

0xFFEO 1130

ICPLB_ADDR13

0xFFEO 1134

ICPLB_ADDRI14

0xFFEO 1138

ICPLB_ADDR15

0xFFEO 113C

Memory

DCPLB_STATUS and ICPLB_STATUS Registers

Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-
ister (ICPLB_STATUS) identify the CPLB entry that has triggered
CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-61

Memory Protection and Properties

Bits FAULT_DAG, FAULT_USERSUPV and FAULT_RW in the DCPLB Status regis-
ter (DCPLB_STATUS) are used to identify the CPLB entry that has triggered
the CPLB-related exception (see Figure 6-23).

DCPLB Status Register (DCPLB_STATUS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OxFFEO 0008 DD e D D P D x [x Jo [x [x[x] Reset = undefined

FAULT_ILLADDR | |
0 - No fault FAULT_RW
1 - Attempted access to nonexistent memory 0 - Access was read

FAULT_DAG 1 - Access was write

0 - Access was made by DAGO FAULT_USERSUPV

1 - Access was made by DAG1 0- g%cdiss was made in User

1 - Access was made in
Supervisor mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofoofofofofofo]
|

FAULT[15:0]

Each bit indicates the hit/miss
status of the associated CPLB
entry

Figure 6-23. DCPLB Status Register

Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used
to identify the CPLB entry that has triggered the CPLB-related exception
(see Figure 6-24).

6-62 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

ICPLB Status Register (ICPLB_STATUS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OxFFEO 1008 XX DX I I DX P x Ix Ix o [x [x [x] Reset = undefined

FAULT_ILLADDR | | FAULT_USERSUPV

0 - No fault 0 - Access was made in User
mode

1 - Attempted access to nonexistent memory 1-A dei
- Access was made in

Supervisor mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofo]o]
| |

FAULT[15:0]

Each bit indicates hit/miss
status of associated CPLB
entry

Figure 6-24. ICPLB Status Register

DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
Registers

The DCPLB Address register (DCPLB_FAULT_ADDR) and ICPLB Fault
Address register (ICPLB_FAULT_ADDR) hold the address that has caused a
fault in the L1 Data Memory or L1 Instruction Memory, respectively. See
Figure 6-25 and Figure 6-26.

The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-63

Memory Protection and Properties

DCPLB Address Register (DCPLB_FAULT_ADDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFEO 000C

><|><|><|x|><|><|><|><|x|><|><|><|><|x|><|><

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| K ESI £ E3 K3 EN ES ESEN KN K3 BN R ENER

Figure 6-25. DCPLB Address Register

ICPLB Fault Addr

ess Register (ICPLB_FAULT_ADDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

O0xFFEO 100C

><|><|><|><|x|><|><|><|><|x|><|><|><|><|x|><

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENESENES ENENENES ENENENES ENENERER

Figure 6-26. 1

CPLB Fault Address Register

Reset = Undefined

FAULT_ADDR[31:16]

Data address that has caused
a fault in L1 Data Memory

FAULT_ADDR[15:0]

Data address that has caused
a fault in the L1 Data Memory

Reset = Undefined

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
Instruction Memory

FAULT_ADDRJ[15:0]
Instruction address that has
caused a fault in the L1
Instruction Memory

6-64

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

Memory Transaction Model

Both internal and external memory locations are accessed in little endian
byte order. Figure 6-27 shows a data word stored in register RO and in
memory at address location addr. BO refers to the least significant byte of
the 32-bit word.

DATA IN REGISTER DATA IN MEMORY

RO B3 B2 B1 BO B3 B2 B1 BO

| | |
addr+3 | addr+2 | addr+1| addr
Figure 6-27. Data Stored in Little Endian Order

Figure 6-28 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte BO in
addr).

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS
INST 0 INST 0
B1 BO B3 B2 B1 BO
16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY
B1 | BO | B1 | BO B1 | BO | B3 | B2
addr+3 | addr+2 | addr+1 | addr addr+3 | addr+2 | addr+1 | addr

Figure 6-28. Instructions Stored in Little Endian Order

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and BO0) is stored in the high addresses
(addr+3 and addr+2).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-65

Load/Store Operation

Load/Store Operation

The Blackfin processor architecture supports the RISC concept of a
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Interlocked Pipeline

In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the
previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for

6-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores

The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

* Load operations will complete before the returned data is used by a
subsequent instruction.

* Load operations using data previously written will use the updated
values.

* Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation
waiting on its completion, whereas the processor considers the write oper-
ation complete, and the write does not stall the pipeline if it takes more
cycles to propagate the value out to memory. This behavior could cause a
read that occurs in the program source code after a write in the program
flow to actually return its value before the write has been completed.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-67

Load/Store Operation

This ordering provides significant performance advantages in the opera-
tion of most memory instructions. However, it can cause side effects that
the programmer must be aware of to avoid improper system operation.

When writing to or reading from nonmemory locations such as off-chip
I/O device registers, the order of how read and write operations complete
is often significant. For example, a read of a status register may depend on
a write to a control register. If the address is the same, the read would
return a value from the store buffer rather than from the actual I/O device
register, and the order of the read and write at the register may be
reversed. Both these effects could cause undesirable side effects in the
intended operation of the program and peripheral. To ensure that these
effects do not occur in code that requires precise (strong) ordering of load
and store operations, synchronization instructions (CSYNC or SSYNC)

should be used.

Synchronizing Instructions

When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the store buffer (between the processor core and the L1 memories) has
been flushed before proceeding to the next instruction. Pending core oper-
ations may include any pending interrupts, speculative states (such as
branch predictions), or exceptions.

Consider the following example code sequence:

IF CC JUMP away_from_here;
CSYNC;
RO = [POI;

away_from_here:

6-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

In the preceding example code, the CSYNC instruction ensures:

e The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been

flushed.

* All pending interrupts or exceptions have been processed before
CSYNC completes.

* The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers
between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution

Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here
RO = [P2];

away_from_here:

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-69

Load/Store Operation

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the
correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, in the case of an off-chip I/O device, this could cause an unde-
sirable side effect for a peripheral that returns sequential data from a FIFO
or from a register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

On-chip peripherals are guarded against destruction due to speculative
reads. There, a separate strobe triggers the read side-effect when the
instruction actually executes.

Conditional Load Behavior

The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this
would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory
address have no side effects. However, for some off-chip memory-mapped

6-70 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

devices, such as peripheral data FIFOs, reads are destructive. Each time
the device is read, the FIFO advances, and the data cannot be recovered
and re-read.

When accessing off-chip memory-mapped devices that have state
dependencies on the number of read or write operations on a given
address location, disable interrupts before performing the load or
store operation.

On-chip peripherals are protected against this issue.

Working With Memory

This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment

Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a Misaligned Access exception event (see
“Exceptions” on page 4-47). However, because some datastreams (such as
8-bit video data) can properly be nonaligned in memory, alignment excep-
tions may be disabled by using the DISALGNEXCPT instruction. Moreover,
some instructions in the quad 8-bit group automatically disable alignment
exceptions.

Cache Coherency

For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 6-37), and/or explicit line invalidation
through the core MMRs (see “Data Test Registers” on page 6-38).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-71

Working With Memory

Atomic Operations

The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide noninterruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the cC
bit. The sequence of this memory transaction is atomic—hardware bus
locking insures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4G byte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable
regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

Memory-mapped Registers

The MMR reserved space is located at the top of the memory space
(0xFFCO0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000-0xFFEO 0000) and core
MMRs (0xFFE0 0000—0xFFFF FFFF).

Like non-memory mapped registers, the core MMRs connect to the 32-bit
wide Register Access Bus (RAB). They operate at CCLK frequency.

6-72 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

System MMRs connect to the Peripheral Access Bus (PAB), which is
implemented as either a 16-bit or a 32-bit wide bus on specific derivatives.
The PAB bus operates at SCLK rate. Writes to system MMRs do not go
through write buffers nor through store buffers. Rather, there is a simple
bridge between the RAB and the PAB bus that translates between clock
domains (and bus width) only.

On ADSP-BF535 products only, the system MMRs do reside
behind store and write buffers. There, system MMRs behave like
off-chip I/O devices as described in “Load/Store Operation” on
page 6-66. Consequently, SSYNC instructions are required after
store instructions to guarantee strong ordering of MMR accesses.

All MMRs are accessible only in Supervisor mode. Access to MMRs in
User mode generates a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMREs.

Hardware raises an exception when a multi-issue instruction
attempts to simultaneously perform two accesses to MMR space.

Appendix B provides a summary of all Core MMRGs.

Core MMR Programming Code Example

Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 6-1 shows the
instructions required to manipulate a generic core MMR.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-73

Terminology

Listing 6-1. Core MMR Programming

CLI RO; /* stop interrupts and save IMASK */

PO = MMR_BASE; /* 32-bit instruction to load base of MMRs */
R1 [PO + TIMER_CONTROL_REGT; /* get value of control reg */
BITSET RI1, #N; /* set bit N */

[PO + TIMER_CONTROL_REG] = R1; /* restore control reg */
CSYNC; /* assures that the control reg is written */

STI RO; /* enable interrupts */

The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptible.

Terminology

The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the
cache.

cache line. Same as cache block. In this chapter, cache line is used for

cache block.

cache miss. A memory access that does not match any valid entry in the
cache.

direct-mapped. Cache architecture in which each line has only one place
in which it can appear in the cache. Also described as 1-Way associative.

6-74 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory

dirty or modified. A state bit, stored along with the tag, indicating
whether the data in the data cache line has been changed since it was cop-
ied from the source memory and, therefore, needs to be updated in that
source memory.

exclusive, clean. The state of a data cache line, indicating that the line is
valid and that the data contained in the line matches that in the source
memory. The data in a clean cache line does not need to be written to
source memory before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.

index. Address portion that is used to select an array element (for example,
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

Level 1 (L1) memory. Memory that is directly accessed by the core with
no intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is

employed.

set. A group of N-line storage locations in the Ways of an N-Way cache,
selected by the INDEX field of the address (see Figure 6-4 on page 6-12).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-75

Terminology

set associative. Cache architecture that limits line placement to a number
of sets (or Ways).

tag. Upper address bits, stored along with the cached data line, to identify

the specific address source in memory that the cached line represents.

valid. A state bit, stored with the tag, indicating that the corresponding
tag and data are current and correct and can be used to satisfy memory
access requests.

victim. A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Way. An array of line storage elements in an N-Way cache (see Figure 6-4
on page 6-12).

write back. A cache write policy, also known as copyback. The write data is
written only to the cache line. The modified cache line is written to source
memory only when it is replaced. Cache lines are allocated on both reads
and writes.

write through. A cache write policy (also known as store through). The
write data is written to both the cache line and to the source memory. The
modified cache line is 7oz written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).

6-76 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

/7 PROGRAM FLOW CONTROL

Instruction Summary

“Jump” on page 7-2

“IF CC JUMP” on page 7-5

“Call” on page 7-8

“RTS, RTI, RTX, RTN, RTE (Return)” on page 7-10
“LSETUP, LOOP” on page 7-13

Instruction Overview

This chapter discusses the instructions that control program flow. Users
can take advantage of these instructions to force new values into the Pro-
gram Counter and change program flow, branch conditionally, set up
loops, and call and return from subroutines.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-1

Instruction Overview

Jump

General Form

JUMP (destination_indirect)
JUMP (PC + offset)

JUMP offset

JUMP.S offset

JUMP.L offset

Syntax
JUMP (Preg) /* indirect to an absolute (not PC-relative)
address (a) */
JUMP (PC + Preg) ; /* PC-relative, indexed (a) */
JUMP pcrelzbme ; /* PC-relative, immediate (a) or (b) */

see “Functional Description” on page 7-3!

JUMP.S pcrell3m? ; /* PC-relative, immediate, short (a) */
JUMP.L pcrel2bm? ; /* PC-relative, immediate, long (b) */
JUMP user_Tlabel ; /* user-defined absolute address label,

resolved by the assembler/linker to the appropriate PC-relative
instruction (a) or (b) */

Syntax Terminology
Preg:. P5-0, SP, FP

pcrelm2: undetermined 25-bit or smaller signed, even relative offset, with
a range of —16,777,216 through 16,777,214 bytes (0xFF00 0000 to
0x00FF FEFE)

pcrell3m2: 13-bit signed, even relative offset, with a range of
—4096 through 4094 bytes (0xF000 to 0xOFFE)

! This instruction can be used in assembly-level programs when the final distance to the target is
unknown at coding time. The assembler substitutes the opcode for JUMPS or JUMPL depending on
the final target. Disassembled code shows the mnemonic JUMPS or JUMPL.

7-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

pcrel2sm2: 25-bit signed, even relative offset, with a range of
-16,777,216 through 16,777,214 bytes (0xFF00 0000 to 0xO0FF FFFE)

user_label: valid assembler address label, resolved by the assembler/linker
to a valid PC-relative offset

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Jump instruction forces a new value into the Program Counter (PC) to
change program flow.

In the Indirect and Indexed versions of the instruction, the value in Preg
must be an even number (bit0=0) to maintain 16-bit address alignment.
Otherwise, an odd offset in Preg causes the processor to invoke an align-
ment exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Jump instruction cannot be issued in parallel with other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-3

Instruction Overview

Example
jump get_new_sample ; /* assembler resolved target, abstract
offsets */
jump (p5) ; /* P5 contains the absolute address of the target
*/
jump (pc + p2) ; /* P2 relative absolute address of the target
and then a presentation of the absolute values for target */
Jjump 0x224 ; /* offset is positive in 13 bits, so target
address is PC + 0x224, a forward jump */
Jjump.s 0x224 ; /* same as above with jump “short” syntax */
jump.1l OxFFFACE86 ; /* offset is negative in 25 bits, so target

address is PC + Ox1FA CE86, a backwards jump */

Also See

Call, IF CC JUMP

Special Applications

None

7-4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

IF CC JUMP

General Form

IF CC JUMP destination
IF I'CC JUMP destination

Syntax
IF CC JUMP pcrelllmZ ; /* branch if CC=1, branch predicted as
not taken (a) */1
IF CC JUMP pcrelllm? (bp) ; /* branch if CC=1, branch predicted
as taken (a) */
IF ICC JUMP pcrelllm? ; /* branch if CC=0, branch predicted as
not taken (a) x /2
IF !CC JUMP pcrelllmz (bp) ; /* branch if CC=0, branch pre-
dicted as taken (a) */
IF CC JUMP user_Tlabel ; /* user-defined absolute address Tabel,

resolved by the assembler/Tinker to the appropriate PC-relative
instruction (a) */

IF CC JUMP user_Tlabel (bp) ; /* user-defined absolute address
label, resolved by the assembler/linker to the appropriate
PC-relative instruction (a) */

IF ICC JUMP user_Tlabel ; /* user-defined absolute address
label, resolved by the assembler/linker to the appropriate
PC-relative instruction (a) */

IF 1CC JUMP user_Tlabel (bp) ; /* user-defined absolute address
label, resolved by the assembler/linker to the appropriate
PC-relative instruction (a) */

1 CC bit = 1 causes a branch to an address, computed by adding the signed, even offset to the current
PC value.

2 CC bit = 0 causes a branch to an address, computed by adding the signed, even relative offset to the
current PC value.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-5

Instruction Overview

Syntax Terminology

pcrelllm2: 11-bit signed even relative offset, with a range of —1024
through 1022 bytes (0xFCO00 to 0x03FE). This value can optionally be
replaced with an address label that is evaluated and replaced during
linking.

user_label: valid assembler address label, resolved by the assembler/linker
to a valid PC-relative offset

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Conditional JUMP instruction forces a new value into the Program
Counter (PC) to change the program flow, based on the value of the CC bit.

The range of valid offset values is —1024 through 1022.

Option

The Branch Prediction appendix (bp) helps the processor improve branch
instruction performance. The default is branch predicted-not-taken. By
appending (bp) to the instruction, the branch becomes predicted-taken.

Typically, code analysis shows that a good default condition is to predict
branch-taken for branches to a prior address (backwards branches), and to
predict branch-not-taken for branches to subsequent addresses (forward
branches).

Flags Affected

None

7-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
if cc jump OxFFFFFEO8 (bp) ; /* offset is negative in 11 bits,
so target address is a backwards branch, branch predicted */
if cc jump O0x0B4 ; /* offset is positive, so target offset
address is a forwards branch, branch not predicted */
if lcc jump OXFFFFFC22 (bp) ; /* negative offset in 11 bits, so
target address is a backwards branch, branch predicted */
if lcc jump 0x120 ; /* positive offset, so target address is a
forwards branch, branch not predicted */
if cc jump dest_label ; /* assembler resolved target, abstract
offsets */

Also See
Jump, Call

Special Applications
None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-7

Instruction Overview

Call

General Form

CALL (destination_indirect
CALL (PC + offset)
CALL offset

Syntax
CALL ¢ Preg) ; /* indirect to an absolute (not PC-relative)
address (a) */
CALL (PC + Preg) ; /* PC-relative, indexed (a) */
CALL pcrel2bm? ; /* PC-relative, immediate (b) */
CALL user_Tlabel ; /* user-defined absolute address label,

resolved by the assembler/Tinker to the appropriate PC-relative
instruction (a) or (b) */

Syntax Terminology

Preg: P5-0 (SP and FP are not allowed as the source register for this
instruction.)

pcrel25m: 25-bit signed, even, PC-relative offset; can be specified as a
symbolic address label, with a range of —16,777,216 through 16,777,214
(0xFF00 0000 to 0xO0FF FFFE) bytes.

user_label: valid assembler address label, resolved by the assembler/linker
to a valid PC-relative offset

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

7-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

Functional Description

The CALL instruction calls a subroutine from an address that a P-register
points to or by using a PC-relative offset. After the CALL instruction exe-
cutes, the RETS register contains the address of the next instruction.

The value in the Preg must be an even value to maintain 16-bit alignment.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

call (pb5)

call (pc + p2)
call 0x123456 ;

call get_next_sample ;

Also See
RTS, RTI, RTX, RTN, RTE (Return), Jump, IF CC JUMP

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-9

Instruction Overview

RTS, RTI, RTX, RTN, RTE (Return)

General Form

RTS, RTI, RTX, RTN, RTE

Syntax
RTS // Return from Subroutine (a)
RTI ; // Return from Interrupt (a)
RTX // Return from Exception (a)
RTN // Return from NMI (a)
RTE ; // Return from Emulation (a)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Return instruction forces a return from a subroutine, maskable or
NMI interrupt routine, exception routine, or emulation routine (see

Table 7-1).

Flags Affected

None

Required Mode

Table 7-2 identifies the modes required by the Return instruction.

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

7-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

Table 7-1. Types of Return Instruction

Mnemonic

Description

RTS

Forces a return from a subroutine by loading the value of the RETS
Register into the Program Counter (PC), causing the processor to fetch
the next instruction from the address contained in RETS. For nested
subroutines, you must save the value of the RETS Register. Otherwise,
the next subroutine CALL instruction overwrites it.

RTI

Forces a return from an interrupt routine by loading the value of the
RETTI Register into the PC. When an interrupt is generated, the proces-
sor enters a non-interruptible state. Saving RETT to the stack re-enables
interrupt detection so that subsequent, higher priority interrupts can be
serviced (or “nested”) during the current interrupt service routine. If
RETT is not saved to the stack, higher priority interrupts are recognized
but not serviced until the current interrupt service routine concludes.
Restoring RETT back off the stack at the conclusion of the interrupt
service routine masks subsequent interrupts until the RTT instruction
executes. In any case, RETI is protected against inadvertent corruption
by higher priority interrupts.

RTX

Forces a return from an exception routine by loading the value of the
RETX Register into the PC.

RTN

Forces a return from a non-maskable interrupt (NMI) routine by load-
ing the value of the RETN Register into the PC.

RTE

Forces a return from an emulation routine and emulation mode by
loading the value of the RETE Register into the PC. Because only one
emulation routine can run at a time, nesting is not an issue, and saving
the value of the RETE Register is unnecessary.

Table 7-2. Required Mode for the Return Instruction

Mnemonic

Required Mode

RTS

User & Supervisor

RTI, RTX, and RTN

Supervisor only. Any attempt to execute in User mode produces a
protection violation exception.

RTE

Emulation only. Any attempt to execute in User mode or Supervi-
sor mode produces an exception.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-11

Instruction Overview

Example

rts ;
rti ;
rtx ;
rtn
rte ;

Also See
Call, --SP (Push), SP++ (Pop)

Special Applications

None

7-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

LSETUP, LOOP

General Form
There are two forms of this instruction. The first is:

LOOP Toop_name Toop_counter
LOOP_BEGIN Toop_name
LOOP_END Toop_name

The second form is:

LSETUP (Begin_Loop, End_Loop)Loop_Counter

Syntax
For Loop0
LOOP Toop_name LCO ; /* (b) */
LOOP Toop_name LCO = Preg ; /* autoinitialize LCO (b) */
LOOP Toop_name LCO = Preg >> 1 ; /* autoinit LCO(b) */
LOOP_BEGIN Toop_name ; /* define the 1st instruction of loop(b)
*/
LOOP_END Toop_name ; /* define the last instruction of the Toop
(b) */

/* use any one of the LOOP syntax versions with a LOOP_BEGIN and
a LOOP_END instruction. The name of the Toop (“loop_name” in the
syntax) relates the three instructions together. */

LSETUP (pcrelbm? , lIppcrelllm?) LCO ; /* (b) */

LSETUP (pcrelbm? , Ippcrelllm?) LCO = Preg ; /* autoinitial-
ize LCO (b) */

LSETUP (pcrelbm2 , lIppcrelllm?) LCO = Preg >> 1 ; /* autoini-

tialize LCO (b) */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-13

Instruction Overview

For Loopl

LOOP Toop_name LC1 ; /* (b)) */

LOOP Toop_name LC1 = Preg ; /* autoinitialize LC1 (b) */

LOOP Toop_name LCl = Preg >> 1 ; /* autoinitialize LC1 (b) */
LOOP_BEGIN Toop_name ; /* define the first instruction of the
Toop (b) */

LOOP_END Toop_name ; /* define the Tast instruction of the loop
(b) */

/* Use any one of the LOOP syntax versions with a LOOP_BEGIN and
a LOOP_END instruction. The name of the Toop (“loop_name” in the
syntax) relates the three instructions together. */

LSETUP (pcrelbm? , Ippcrelllm?) LC1l ; /* (b) */

LSETUP (pcrelbm? , lIppcrelllmZ) LC1 = Preg ; /* autoinitial-
ize LC1 (b) */

LSETUP (pcrelbmz , Ippcrelllm?) LC1 = Preg >> 1 ; /* autoini-

tialize LC1 (b) */

Syntax Terminology

Preg: P5-0 (SP and FP are not allowed as the source register for this
instruction.)

pcrelsm2: 5-bit unsigned, even, PC-relative offset; can be replaced by a
symbolic label. The range is 4 to 30, or 252,

Ippcrelllm2: 11-bit unsigned, even, PC-relative offset for a loop; can be
replaced by a symbolic label. The range is 4 to 2046 (0x0004 to 0x07FE),

or 2112,

loop_name: a symbolic identifier

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

7-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

Functional Description

The Zero-Overhead Loop Setup instruction provides a flexible,
counter-based, hardware loop mechanism that provides efficient,
zero-overhead software loops. In this context, zero-overhead means that
the software in the loops does not incur a performance or code size penalty
by decrementing a counter, evaluating a loop condition, then calculating
and branching to a new target address.

When the Begin_Loop address is the next sequential address after
the LSETUP instruction, the loop has zero overhead. If the
Begin_Loop address is not the next sequential address after the
LSETUP instruction, there is some overhead that is incurred on loop
entry only.

The architecture includes two sets of three registers each to support two
independent, nestable loops. The registers are Loop_Top (LTn),
Loop_Bottom (LBn) and Loop_Count (LCn). Consequently, LT0, LBO, and
LCO describe Loop0, and LT1, LB1, and LC1 describe Loopl.

The L00P and LSETUP instructions are a convenient way to initialize all
three registers in a single instruction. The size of the L00P and LSETUP
instructions only supports a finite number of bits, so the loop range is lim-
ited. However, LT0 and LT1, LBO and LBl and LCO and LC1 can be
initialized manually using Move instructions if loop length and repetition
count need to be beyond the limits supported by the L00P and LSETUP syn-
tax. Thus, a single loop can span the entire 4 GB of memory space.

@ When initializing L 70 and LT1, (80 and 181, and LC0 and LC1 man-

ually, make sure that Loop_Top (LTn) and Loop_Bottom (LBn) are
configured before setting Loop_Count (LCn) to the desired loop
count value.

The instruction syntax supports an optional initialization value from a
P-register or P-register divided by 2.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-15

Instruction Overview

The L0OOP, LOOP_BEGIN, LOOP_END syntax is generally more readable and
user friendly. The LSETUP syntax contains the same information, but in a
more compact form.

If LCn is nonzero when the fetch address equals LBn, the processor decre-
ments LCn and places the address in LTn into the PC. The loop always
executes once through because Loop_Count is evaluated at the end of the

loop.

There are two special cases for small loop count values. A value of 0 in
Loop_Count causes the hardware loop mechanism to neither decrement or
loopback, causing the instructions enclosed by the loop pointers to be exe-
cuted as straight-line code. A value of 1 in Loop_Count causes the hardware
loop mechanism to decrement only (not loopback), also causing the
instructions enclosed by the loop pointers to be executed as straight-line
code.

In the instruction syntax, the designation of the loop counter—LC0 or LC1—
determines which loop level is initialized. Consequently, to initialize
Loop0, code LCO; to initialize Loopl, code LCI.

In the case of nested loops that end on the same instruction, the processor
requires Loop0 to describe the outer loop and Loopl to describe the inner
loop. The user is responsible for meeting this requirement.

For example, if LB0=LB1, then the processor assumes loop 1 is the inner
loop and loop 0 the outer loop.

Just like entries in any other register, loop register entries can be saved and
restored. If nesting beyond two loop levels is required, the user can explic-
itly save the outermost loop register values, re-use the registers for an inner
loop, and then restore the outermost loop values before terminating the
inner loop. In such a case, remember that loop 0 must always be outside of
loop 1. Alternately, the user can implement the outermost loop in soft-
ware with the Conditional Jump structure.

7-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

Begin_Loop, the value loaded into LTn, is a 5-bit, PC-relative, even offset
from the current instruction to the first instruction in the loop. The user
is required to preserve half-word alignment by maintaining even values in
this register. The offset is interpreted as a one’s complement, unsigned
number, eliminating backwards loops.

End_Loop, the value loaded into LBn, is an 11-bit, unsigned, even, PC-rela-
tive offset from the current instruction to the last instruction of the loop.

When using the LSETUP instruction, Begin_Loop and End_Loop are typi-
cally address labels. The linker replaces the labels with offset values.

A loop counter register (LCO or LC1) counts the trips through the loop.
The register contains a 32-bit unsigned value, supporting as many as
4,294,967,294 trips through the loop. The loop is disabled (subsequent
executions of the loop code pass through without reiterating) when the
loop counter equals 0.

The last instruction of the loop must 7oz be any of the following
instructions.

e Jump

* (Conditional Branch

e Call
e CSYNC
® SSYNC

e Return (RTS, RTN, etc.)

As long as the hardware loop is active (Loop_Count is nonzero), any of
these forbidden instructions at the End_Loop address produces undefined
execution, and no exception is generated. Forbidden End_Loop

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-17

Instruction Overview

instructions that appear anywhere else in the defined loop execute nor-
mally. Branch instructions that are located anywhere else in the defined
loop execute normally.

Also, the last instruction in the loop must not modify the registers that
define the currently active loop (LCn, LTn, or LBn). User modifications to
those registers while the hardware accesses them produces undefined exe-
cution. Software can legally modify the loop counter at any other location
in the loop.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
Isetup (4, 4) 1cO
Isetup (poll_bit, end_poll_bit) 1cO
ITsetup (4, 6) 1cl ;
Isetup (FIR_filter, bottom_of_FIR_filter) Tcl
Isetup (4, 8) 1c0 = pl
Isetup (4, 8) 1c0 = pl>>1 ;
loop DoltSome LCO ; /* define Toop ‘DoltSome’ with Loop Counter
0 */
loop_begin DoltSome ; /* place before the first instruction in
the loop */
7-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Program Flow Control

loop_end DoltSome ; /* place after the Tast instruction in the

loop */

lToop MyLoop LCIL ; /* define loop ‘MyLoop’ with Loop Counter 1

x/

loop_begin MyLoop ; /* place before the first instruction in

the loop */

loop_end MylLoop ; /* place after the Tast instruction in the

loop */

Also See
[F CC JUMP, Jump

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

7-19

Instruction Overview

7-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

8 LOAD / STORE

Instruction Summary

“Load Immediate” on page 8-3

“Load Pointer Register” on page 8-7

“Load Data Register” on page 8-10

“Load Half-Word — Zero-Extended” on page 8-15
“Load Half-Word — Sign-Extended” on page 8-19
“Load High Data Register Half” on page 8-23
“Load Low Data Register Half” on page 8-27
“Load Byte — Zero-Extended” on page 8-31
“Load Byte — Sign-Extended” on page 8-34
“Store Pointer Register” on page 8-37

“Store Data Register” on page 8-40

“Store High Data Register Half” on page 8-45
“Store Low Data Register Half” on page 8-49
“Store Byte” on page 8-54

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

8-1

Instruction Overview

Instruction Overview

This chapter discusses the load/store instructions. Users can take advan-
tage of these instructions to load and store immediate values, pointer

registers, data registers or data register halves, and half words (zero or sign
extended).

8-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load Immediate

General Form

register = constant
Al = A0 =0

Syntax

Half-Word Load

reg_lo = uimmlé ; /* 16-bit value into lTow-half data or
address register (b) */
reg_hi = uimmlé ; /* 16-bit value into high-half data or

address register (b) */

Zero Extended

reg = uimmlé (7) ; /* 16-bit value, zero-extended, into data or
address register (b) */

A0 = 0 ; /* Clear AO register (b) */

Al =0 ; /* Clear Al register (b) */

Al = A0 = 0 ; /* Clear both Al and AO registers (b) */

Sign Extended

Dreg = imm7 (X) ; /* 7-bit value, sign extended, into Dreg (a)
*/

Preg = imm/ (X) /* 7-bit value, sign extended, into Preg
(a) */

reg = immlé6 (X) /* 16-bit value, sign extended, into data or

address register (b) */
Syntax Terminology
Dreg: R7-0

Preg: P5-0, SP, FP

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-3

Instruction Overview

reg_lo: R7-0.L, P5-0.L, SP.L, FP.L, I3-0.L, M3-0.L, B3-0.L, L3-0.L
reg_hi: R7-0.H, P5-0.H, SP.H, FP.H, I3-0.H, M3-0.H, B3-0.H, L3-0.H
reg: R7-0, P5-0, SP, FP, I3-0, M3-0, B3-0, L3-0

imm7: 7-bit signed field, with a range of —64 through 63

imm16: 16-bit signed field, with a range of —32,768 through 32,767
(0x800 through 0x7FFF)

uimml6: 16-bit unsigned field, with a range of 0 through 65,535 (0x0000
through 0xFFFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Immediate instruction loads immediate values, or explicit con-
stants, 1nto registers.

The instruction loads a 7-bit or 16-bit quantity, depending on the size of
the immediate data. The range of constants that can be loaded is 0x8000
through 0x7FFF, equivalent to —32768 through +32767.

The only values that can be immediately loaded into 40-bit Accumulator
registers are zeros.

Sixteen-bit half-words can be loaded into either the high half or low half
of a register. The load operation leaves the unspecified half of the register
intact.

8-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Loading a 32-bit value into a register using Load Immediate requires two
separate instructions—one for the high and one for the low half. For
example, to load the address “foo” into register P3, write:

p3.h = foo ;
p3.1 = foo ;

The assembler automatically selects the correct half-word portion of the
32-bit literal for inclusion in the instruction word.

The zero-extended versions fill the upper bits of the destination register
with zeros. The sign-extended versions fill the upper bits with the sign of
the constant value.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The accumulator version of the Load Immediate instruction can be issued
in parallel with other instructions.

Example
r7 =63 (z)
p3 =12 (z)
ro = -344 (x) ;
r7 = 436 (z)

m2 = 0x89ab (z)
pl = 0x1234 (z)
m3 = 0x3456 (x)
13.h = 0xbcde

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-5

Instruction Overview

a0 = 0 ;
al = 0 ;
al = a0 =0 ;
Also See

Load Pointer Register

Special Applications

Use the Load Immediate instruction to initialize registers.

8-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load Pointer Register

General Form

P-register = [indirect_address 1]

Syntax
Preg = [Preg 1 ; /* indirect (a) */
Preg = [Preg ++ 1 ; /* indirect, post-increment (a) */
Preg = [Preg -- 1 ; /* indirect, post-decrement (a) */
Preg = [Preg + uimmém4 1 ; /* indexed with small offset (a) */
Preg = [Preg + uimml7m4 1 ; /* indexed with large offset
(b) */
Preg = [Preg - uimml7m4 1 ; /* indexed with large offset
(b) */
Preg = [FP - uimm/m4 1 ; /* indexed FP-relative (a) */

Syntax Terminology
Preg: P5-0, SP, FP

uimmém4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimml7m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x0000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-7

Instruction Overview

Functional Description

The Load Pointer Register instruction loads a 32-bit P-register with a
32-bit word from an address specified by a P-register.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

Options
The Load Pointer Register instruction supports the following options.
* DPost-increment the source pointer by 4 bytes.
* DPost-decrement the source pointer by 4 bytes.

* Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

* Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

e Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (useful to access
arguments from a called function) can be accomplished using one of the
other versions of this instruction. Preg includes the Frame Pointer and
Stack Pointer.

Auto-increment or auto-decrement pointer registers cannot also be the
destination of a Load instruction. For example, sp=[sp++] is not a valid
instruction because it prescribes two competing values for the Stack
Pointer—the data returned from memory, and post-incremented SP++.
Similarly, P0=[P0++] and P1=[P1++], etc. are invalid. Such an instruction
causes an undefined instruction exception.

8-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

p3 = [p2 1 ;

p5 = [p0 ++ 1 ;

p2 = [sp -- 1 ;

p3 = [p2 +8 1 ;

p0 = [p2 + 0x4008 1 ;

pl = [fp - 16 1 ;
Also See

Load Immediate, SP++ (Pop), SP++ (Pop Multiple)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-9

Instruction Overview

Load Data Register

General Form

D-register = [indirect_address]

Syntax
Dreg = [Preg 1 ; /* indirect (a) */
Dreg = [Preg ++ 1 ; /* indirect, post-increment (a) */
Dreg = [Preg -- 1 ; /* indirect, post-decrement (a) */
Dreg = [Preg + uimmém4 1 ; /* indexed with small offset (a) */
Dreg = [Preg + uimml7m4 1 ; /* indexed with large offset
(b) */
Dreg = [Preg - uimml7m4 71 ; /* indexed with Targe offset
(b) */
Dreg = [Preg ++ Preg 1 ; /* indirect, post-increment index
(a) */!
Dreg = [FP - uimm/m4 1 ; /* indexed FP-relative (a) */
Dreg = [Ireg 1 ; /* indirect (a) */
Dreg = [Ireg ++ 1 ; /* indirect, post-increment (a) */
Dreg = [Ireg -- 1 ; /* indirect, post-decrement (a) */
Dreg =1[Ireg ++ Mreg 1 ; /* indirect, post-increment index
(a) */

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP
Ireg: 13-0

Mreg: M3-0

1 See “Indirect and Post-Increment Index Addressing” on page 8-12.

8-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

uimmém4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimml7m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x0000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Data Register instruction loads a 32-bit word into a 32-bit
D-register from a memory location. The Source Pointer register can be a
P-register, I-register, or the Frame Pointer.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-11

Instruction Overview

Options
The Load Data Register instruction supports the following options.

* DPost-increment the source pointer by 4 bytes to maintain word
alignment.

* DPost-decrement the source pointer by 4 bytes to maintain word
alignment.

* Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

* Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

* Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (useful to access
arguments from a called function) can be accomplished using one of the
other versions of this instruction. Preg includes the Frame Pointer and
Stack Pointer.

Indirect and Post-Increment Index Addressing
The syntax of the form:
Dest = [Src_1 ++ Src_2 1]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dest = [Src_11 ; /* Toad the 32-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1l by a quantity indexed
by Src_2 */

8-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

where:

Load / Store

Dest is the destination register. (Dreg in the syntax example).

Src_1 is the first source register on the right-hand side of the
equation.

Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indi-

rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3 =
r7 =
re =
re =
ro =

[T e T s B s B |

p0]

pl ++]
sp -]
p2 + 12 1 ;

p4 + 0x800C 1]

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-13

Instruction Overview

rl = [p0 ++ pl]
r6 = [fp -12]
re = [i2 1]
ro0 =1[i0 ++]
ro =[10 -- 1 ;
/* Before indirect post-increment indexed addressing*/
r7 =20
i3 = 0x4000 ; /* Memory location contains 15, for example.*/
mo = 4 ;
r7 = [i3 ++ m0]
/* Afterwards . . .*/
/* r7 =15 from memory location 0x4000%*/
/* i3 = i3 + m0 = 0x4004*/
/* m0 still equals 4%/
Also See

Load Immediate

Special Applications

None

8-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load Half-Word - Zero-Extended

General Form

D-register = W [indirect_address 1 (Z)

Syntax
Dreg = W [Preg 1 (Z) ; /* indirect (a)*/
Dreg = W [Preg ++ 1 (1) ; /* indirect, post-increment (a)*/
Dreg = W [Preg -- 1 (1) ; /* indirect, post-decrement (a)*/
Dreg = W [Preg + uimmbmz 1 (1) ; /* indexed with small offset
(a) */
Dreg = W [Preg + uimmlémz 1 (71) ; /* indexed with large offset
(b) */
Dreg =W [Preg - uimmlém? 1 (Z) ; /* indexed with large offset
(b) */
Dreg = W [Preg ++ Preg 1 (71) ; /* indirect, post-increment

index (a) */1

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP

uimmsm2: 5-bit unsigned field that must be a multiple of 2, with a range of
0 through 30 bytes

uimmlém2: 16-bit unsigned field that must be a multiple of 2, with a range
of 0 through 65,534 bytes (0x0000 through 0xFFFC)

1 See “Indirect and Post-Increment Index Addressing” on page 8-17.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-15

Instruction Overview

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Half-Word — Zero-Extended instruction loads 16 bits from a
memory location into the lower half of a 32-bit data register. The instruc-
tion zero-extends the upper half of the register. The Pointer register is a
P-register.

The indirect address and offset must yield an even numbered address to
maintain 2-byte half-word address alignment. Failure to maintain proper
alignment causes a misaligned memory access exception.

Options

The Load Half-Word — Zero-Extended instruction supports the following
options.

* DPost-increment the source pointer by 2 bytes.
* DPost-decrement the source pointer by 2 bytes.

* Offset the source pointer with a small (5-bit), half-word-aligned
(even), unsigned constant.

* Offset the source pointer with a large (17-bit), half-word-aligned
(even), signed constant.

8-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Indirect and Post-Increment Index Addressing
The syntax of the form:
Dest = W [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dest = [Src_1] ; /* load the 32-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed
by Src_2 */

where:

* Dest is the destination register. (Dreg in the syntax example).

e Src_1 is the first source register on the right-hand side of the
equation.

e Src_?2is the second source register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the instruction functions as a simple, non-incrementing
load. For example, r0 = W[p2++p2](z) functions as r0 = W[p21(z).

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-17

Instruction Overview

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3
r7
re
ré
ro
rl

Also See

= = = = = =

[T s T s T s T s B e}

p0 1 (z) ;
pl ++ 1 (z) ;
sp -- 1 (z) ;

p2 + 12 1 (z) ;
p4 + 0x8004 1 (z) ;
p0 ++ pl 1 (z) ;

Load Half-Word — Sign-Extended, Load Low Data Register Half, Load
High Data Register Half, Load Data Register

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

8-18

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load Half-Word - Sign-Extended

General Form

D-register = W [indirect_address 1 (X)

Syntax
Dreg = W [Preg] (X) ; // indirect (a)
Dreg = W [Preg ++ 1 (X) ; // indirect, post-increment (a)
Dreg = W [Preg -- 1 (X) ; // indirect, post-decrement (a)
Dreg = W [Preg + uimmbmz 1 (X) ; /* indexed with small offset
(a) */
Dreg = W [Preg + uimmlémz 1 (X) ; /* indexed with large offset
(b) */
Dreg =W [Preg - uimmlém? 1 (X) ; /* indexed with large offset
(b) */
Dreg = W [Preg ++ Preg] (X) ; /* indirect, post-increment

index (a) */1

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP

uimmsm2: 5-bit unsigned field that must be a multiple of 2, with a range of
0 through 30 bytes

uimmlém2: 16-bit unsigned field that must be a multiple of 2, with a range
of -0 through 65,534 bytes (0x0000 through OxFFFE)

1 See “Indirect and Post-Increment Index Addressing” on page 8-21.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-19

Instruction Overview

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Half-Word — Sign-Extended instruction loads 16 bits
sign-extended from a memory location into a 32-bit data register. The
Pointer register is a P-register. The MSB of the number loaded is repli-
cated in the whole upper-half word of the destination D-register.

The indirect address and offset must yield an even numbered address to
maintain 2-byte half-word address alignment. Failure to maintain proper
alignment causes a misaligned memory access exception.

Options

The Load Half-Word — Sign-Extended instruction supports the following
options.

* DPost-increment the source pointer by 2 bytes.
* DPost-decrement the source pointer by 2 bytes.

* Offset the source pointer with a small (5-bit), half-word-aligned
(even), unsigned constant.

* Offset the source pointer with a large (17-bit), half-word-aligned
(even), signed constant.

8-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Indirect and Post-Increment Index Addressing
The syntax of the form:
Dest = W [Src_1 ++ Src_2 1 (X)

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dest = [Src_1] ; /* load the 32-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed
by Src_2 */

where:

* Dest is the destination register. (Dreg in the syntax example).

e Src_1 is the first source register on the right-hand side of the
equation.

e Src_?2is the second source register.

@ Indirect and post-increment index addressing supports customized

indirect address cadence. The indirect, post-increment index ver-
sion must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the instruction functions as a
simple, non-incrementing load. For example, r0 = W[p2++p2]
functions as r0 = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-21

Instruction Overview

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3
r7
re
ré
ro
rl

Also See

= = = = = =

[T s T s T s T s B e}

p0 1 (x) ;
pl ++ 1 (x) ;
sp -- 1 (x) ;

p2 + 12 1 (x) ;
p4 + 0x800E 1 (x) ;
p0 ++ pl 1 (x) ;

Load Half-Word — Zero-Extended, Load Low Data Register Half, Load
High Data Register Half

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

8-22

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load High Data Register Half

General Form

Dreg_hi = W [indirect_address 1]

Syntax
Dreg_hi =W [Ireg 1 ; /* indirect data addressing (a)*/
Dreg_hi = W [Ireg ++ 1 ; /* indirect, post-increment data

addressing (a) */

Dreg_hi =W [Ireg -- 1] /* indirect, post-decrement data
addressing (a) */

Dreg_hi =W [Preg 1 ; /* indirect (a)*/

Dreg_hi = W [Preg ++ Preg] ; /* indirect, post-increment

index (a) */1

Syntax Terminology
Dreg_hi: R7-0.H
Preg: P5-0, SP, FP

Ireg: 13-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Load High Data Register Half instruction loads 16 bits from a mem-
ory location indicated by an I-register or a P-register into the most
significant half of a 32-bit data register. The operation does not affect the
least significant half.

1 See “Indirect and Post-Increment Index Addressing” on page 8-25.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-23

Instruction Overview

The indirect address must be even to maintain 2-byte half-word address
alignment. Failure to maintain proper alignment causes a misaligned
memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options
The Load High Data Register Half instruction supports the following

options.

e DPost-increment the source pointer I-register by 2 bytes to maintain
half-word alignment.

* DPost-decrement the source pointer I-register by 2 bytes to maintain
half-word alignment.

8-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Indirect and Post-Increment Index Addressing
Dst_hi = [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dst_hi = [Src_17 ; /* load the half-word into the upper half of
the destination register, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1l by a quantity indexed
by Src_2 */

where:

* Dst_hi is the most significant half of the destination register.
(Dreg_hi in the syntax example).

* Src_1is the memory source pointer register on the right-hand side
of the syntax.

* Src_2is the increment pointer register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the instruction functions as a simple, non-incrementing
load. For example, r0.h = W[p2++p2] functions as r0.h = W[p2].

Flags Affected
None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-25

Instruction Overview

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For more information, see “Issuing Parallel Instructions” on page 20-1.

Example

r3.
r7.
rl.
re.
r5.

Also See

jum i R R -

il]

i3 ++ 1
i0 -- 1 ;
p4 1 ;

p2 ++ p0 1 ;

[T e T s B e B |

= £ £ = =

Load Low Data Register Half, Load Half-Word — Zero-Extended, Load
Half-Word — Sign-Extended

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

8-26

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load Low Data Register Half

General Form

Dreg_lo = W [indirect_address 1]

Syntax
Dreg_lo =W [Ireg] ; /* indirect data addressing (a)*/
Dreg_lo =W [Ireg ++ 1 ; /* dindirect, post-increment data
addressing (a) */
Dreg_lo =W [Ireg -- 1 ; /* indirect, post-decrement data
addressing (a) */
Dreg_lo =W [Preg 1 ; /* indirect (a)*/
Dreg_lo =W [Preg ++ Preg] ; /* indirect, post-increment

index (a) */1

Syntax Terminology
Dreg_Tlo: R7-0.L
Preg: P5-0, SP, FP

Ireg: 13-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Load Low Data Register Half instruction loads 16 bits from a mem-
ory location indicated by an I-register or a P-register into the least
significant half of a 32-bit data register. The operation does not affect the
most significant half of the data register.

1 See “Indirect and Post-Increment Index Addressing” on page 8-29.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-27

Instruction Overview

The indirect address must be even to maintain 2-byte half-word address
alignment. Failure to maintain proper alignment causes an misaligned
memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

The Load Low Data Register Half instruction supports the following
options.

* DPost-increment the source pointer I-register by 2 bytes.

* Post-decrement the source pointer I-register by 2 bytes.

8-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Indirect and Post-Increment Index Addressing
The syntax of the form:
Dst_lo = [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dst_lo = [Src_1] ; /* load the half-word into the lower half of
the destination register, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1l by a quantity indexed
by Src_2 */

where:

* Dst_Jlois the least significant half of the destination register.
(Dreg_To in the syntax example).

e Src_1is the memory source pointer register on the right side of the
syntax.

* Src_2is the increment index register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the instruction functions as a simple, non-incrementing
load. For example, r0.1 = W[p2++p2] functions as r0.1 = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-29

Instruction Overview

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For more information, see “Issuing Parallel Instructions” on page 20-1.

Example

r3
r7
ri
re
rb

Also See

N
N
N
N
N

wl
wl
w
wl
wl

il 1 ;

i3 ++ 1
i0 -- 1
p4d 1 ;

p2 ++ p0 1 ;

Load High Data Register Half, Load Half-Word — Zero-Extended, Load
Half-Word — Sign-Extended

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
of the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

8-30

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Load Byte - Zero-Extended

General Form

D-register = B [indirect_address 1 (Z)

Syntax
Dreg = B [Preg 1 (Z) ; /* indirect (a)*/
Dreg = B [Preg ++ 1 (1) ; /* indirect, post-increment (a)*/
Dreg = B [Preg -- 1 (1) ; /* indirect, post-decrement (a)*/
Dreg = B [Preg + uimml5 1 (Z) ; /* indexed with offset (b)*/
Dreg = B [Preg - uimml5 1 (1) ; /* indexed with offset (b)*/

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP

uimml5: 15-bit unsigned field, with a range of 0 through 32,767 bytes
(0x0000 through 0x7FFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Byte — Zero-Extended instruction loads an 8-bit byte,
zero-extended to 32 bits indicated by an I-register or a P-register, from a
memory location into a 32-bit data register. Fill the D-register bits 31-8
with zeros.

The indirect address and offset have no restrictions for memory address
alignment.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-31

Instruction Overview

Options

The Load Byte — Zero-Extended instruction supports the following
options.

* DPost-increment the source pointer by 1 byte.
* DPost-decrement the source pointer by 1 byte.

* Offset the source pointer with a 16-bit signed constant.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

8-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Example
r3=>b L[p0 1 (z2) ;
r7=b [pl ++ 1 (z) ;
re=>b o[sp--11(z);
rO = b [p4 + OxFFFF800F 1 (z)
Also See

Load Byte — Sign-Extended

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-33

Instruction Overview

Load Byte - Sign-Extended

General Form

D-register = B [indirect_address 1 (X)

Syntax
Dreg = B [Preg 1 (X) ; /* indirect (a)*/
Dreg = B [Preg ++ 1 (X) ; /* indirect, post-increment (a)*/
Dreg = B [Preg -- 1 (X) ; /* indirect, post-decrement (a)*/
Dreg = B [Preg + uimml5 1 (X) ; /* indexed with offset (b)*/
Dreg = B [Preg - uimml5 1 (X) ; /* indexed with offset (b)*/

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP

uimml5: 15-bit unsigned field, with a range of 0 through 32,767 bytes
(0x0000 through 0x7FFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Byte — Sign-Extended instruction loads an 8-bit byte,
sign-extended to 32 bits, from a memory location indicated by a P-register
into a 32-bit data register. The Pointer register is a P-register. Fill the
D-register bits 31-8 with the most significant bit of the loaded byte.

The indirect address and offset have no restrictions for memory address
alignment.

8-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Options

The Load Byte — Sign-Extended instruction supports the following
options.

* DPost-increment the source pointer by 1 byte.
* DPost-decrement the source pointer by 1 byte.

* Offset the source pointer with a 16-bit signed constant.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-35

Instruction Overview

Example

r3=>b [p0 1 (x) ;

r7=b [pl ++ 1(x) ;

re =>b o[sp--1(x);

rO = b [p4 + OxFFFF800F J1(x) ;
Also See

Load Byte — Zero-Extended

Special Applications

None

8-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Store Pointer Register

General Form

[indirect_address] = P-register

Syntax

[Preg 1 = Preg ; /* indirect (a)*/

[Preg ++ 1 = Preg ; /* indirect, post-increment (a)*/

[Preg -- 1 = Preg ; /* indirect, post-decrement (a)*/

[Preg + uimmém4 1 = Preg ; /* indexed with small offset (a)*/
[Preg + uimml/m4 1 = Preg ; /* indexed with large offset (b)*/
[Preg - uimml/m4 1 = Preg ; /* indexed with large offset (b)*/
[FP - uimm7m4 1 = Preg ; /* indexed FP-relative (a)*/

Syntax Terminology

Preg. P5-0, SP, FP

uimmém4: 6-bit unsigned field that must be a multiple of 4, with a range of

0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of

4 through 128 bytes

uimml7m4: 17-bit unsigned field that must be a multiple of 4, with a range

of 0 through 131,068 bytes (0x000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment

(b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

8-37

Instruction Overview

Functional Description

The Store Pointer Register instruction stores the contents of a 32-bit
P-register to a 32-bit memory location. The Pointer register is a P-register.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

Options

The Store Pointer Register instruction supports the following options.

Post-increment the destination pointer by 4 bytes.
Post-decrement the destination pointer by 4 bytes.

Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (useful to access
arguments from a called function) can be accomplished using one of the
other versions of this instruction. Preg includes the Frame Pointer and
Stack Pointer.

Flags Affected
None
8-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
[p2 1 =p3;
[sp++ 1 =p5;
[pO0 -- 1 =p2;
[p2 +8 1 =p3 ;
[p2 + 0x4444 1 = p0 ;
[fp -12 1 = pl ;

Also See
--SP (Push), --SP (Push Multiple)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-39

Instruction Overview

Store Data Register

General Form

[indirect_address] = D-register

Syntax

Using Pointer Registers

[Preg 1 = Dreg ; /* indirect (a)*/

[Preg ++] = Dreg ; /* indirect, post-increment (a)*/

[Preg -- 1 = Dreg ; /* indirect, post-decrement (a)*/

[Preg + uimmém4 1 = Dreg ; /* indexed with small offset (a)*/
[Preg + uimml/m4 1 = Dreg ; /* indexed with Targe offset (b)*/
[Preg - uimml/m4 1 = Dreg ; /* indexed with large offset (b)*/
[Preg ++ Preg 1 = Dreg ; /* indirect, post-increment index (a)

x /1

[FP - uimm/m4 1 = Dreg ; /* indexed FP-relative (a)*/

Using Data Address Generator (DAG) Registers

L Ireg 1 = Dreg ; /* indirect (a)*/

[Ireg ++ 1 = Dreg ; /* indirect, post-increment (a)*/

[Ireg -- 1 = Dreg ; /* indirect, post-decrement (a)*/

[Ireg ++ Mreg 1 = Dreg ; /* indirect, post-increment index (a)
*/

Syntax Terminology
Dreg: R7-0
Preg:. P5-0, SP, FP

Ireg: 13-0

1 See “Indirect and Post-Increment Index Addressing” on page 8-43.

8-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Mreg: M3-0

uimmém4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimml7m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x0000 through 0xFFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Store Data Register instruction stores the contents of a 32-bit D-reg-
ister to a 32-bit memory location. The destination Pointer register can be
a P-register, I-register, or the Frame Pointer.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-41

Instruction Overview

Options

Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

The Store Data Register instruction supports the following options.

Post-increment the destination pointer by 4 bytes.
Post-decrement the destination pointer by 4 bytes.

Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (such as is useful to
access arguments from a called function) can be accomplished using one
of the other versions of this instruction. Preg includes the Frame Pointer
and Stack Pointer.

8-42

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Indirect and Post-Increment Index Addressing
The syntax of the form:
[Dst_1 ++ Dst_2] = Src

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

[Dst_11 = Src ; /* load the 32-bit source, indirect*/

Dst_1 += Dst_2 ; /* post-increment Dst_1 by a quantity indexed
by Dst_2 */

where:

* Srcis the source register. (Dreg in the syntax example).

* Dst_1 is the memory destination register on the left side of the
equation.

* Dst_2is the increment index register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-43

Instruction Overview

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
[pO 1 =1r3 ;
[pl ++ 1 =17 ;
[sp --1=r2;
[p2 + 12 1 =r6 ;
[p4 - 0x1004 1 = r0 ;
[pO ++ pl 1 =1r1 ;
[fp - 28 1 =r5;
[i2]1=r2;
[i0 ++ 1 =r0 ;
[10 -- 1=r0;
[i3++m0] =r7;

Also See

Load Immediate

Special Applications

None

8-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Store High Data Register Half

General Form

W [indirect_address] = Dreg_hi

Syntax
W L[Ireg 1] = Dreg_hi ; /* indirect data addressing (a)*/
W[Ireg ++ 1 = Dreg_hi ; /* indirect, post-increment data
addressing (a) */
W[Ireg -- 1 = Dreg_hi ; /* indirect, post-decrement data
addressing (a) */
W [Preg 1 = Dreg_hi ; /* indirect (a)*/
W [Preg ++ Preg 1 = Dreg_hi ; /* indirect, post-increment

index (a) */1

Syntax Terminology
Dreg_hi: P7-0.H
Preg: P5-0, SP, FP

Ireg: 13-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Store High Data Register Half instruction stores the most significant
16 bits of a 32-bit data register to a 16-bit memory location. The Pointer
register is either an I-register or a P-register.

1 See “Indirect and Post-Increment Index Addressing” on page 8-47.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-45

Instruction Overview

The indirect address and offset must yield an even number to maintain
2-byte half-word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options
The Store High Data Register Half instruction supports the following

options.
* DPost-increment the destination pointer I-register by 2 bytes.

* DPost-decrement the destination pointer I-register by 2 bytes.

8-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Indirect and Post-Increment Index Addressing
The syntax of the form:
[Dst_1 ++ Dst_2] = Src_hi

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

[Dst_11 = Src_hi ; /* store the upper half of the source regis-
ter, indirect*/

Dst_1 += Dst_2 ; /* post-increment Dst_1 by a quantity indexed
by Dst_2 */

where:

* Src_hi is the most significant half of the source register. (0reg_ni
in the syntax example).

* Dst_1is the memory destination pointer register on the left side of
the syntax.

* Dst_2is the increment index register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-47

Instruction Overview

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For more information, see “Issuing Parallel Instructions” on page 20-1.

Example
wl il] = r3.h ;
wl i3 ++ 1 =r7.h ;
wl i0 -- 1 =rl.h ;
wl p4] =r2.h;
wl p2 ++ p0 1 = r5.h ;

Also See

Store Low Data Register Half

Special Applications

To write consecutive, aligned 16-bit values for high-performance DSP
operations, use the Store Data Register instructions instead of these
Half-Word instructions. The Half-Word Store instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

8-48

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Store Low Data Register Half

General Form

W [indirect_address] = Dreg_lo
W [indirect_address 1]

D-register

Syntax
W L[Ireg 1= Dreg_lo ; /* indirect data addressing (a)*/
W[Ireg ++ 1 = Dreg_Jlo ; /* indirect, post-increment data
addressing (a) */
W L[Ireg -- 1= Dreg_Jlo ; /* indirect, post-decrement data
addressing (a) */
W [Preg 1 = Dreg_Jlo ; /* indirect (a)*/
W [Preg 1 = Dreg ; /* indirect (a)*/
W [Preg ++ 1 = Dreg ; /* indirect, post-increment (a)*/
W[Preg -- 1 = Dreg ; /* indirect, post-decrement (a)*/
W [Preg + uimmbmZ] = Dreg ; /* indexed with small offset (a)
*/
W [Preg + uimmlém?] = Dreg ; /* indexed with Targe offset (b)
*/
W [Preg - uimmlém?] = Dreg ; /* indexed with Targe offset (b)
*/
W [Preg ++ Preg 1 = Dreg_1lo ; /* indirect, post-increment

index (a) */1

Syntax Terminology
Dreg_Tlo: R7-0.L
Preg:. P5-0, SP, FP

Ireg: 13-0

1 See “Indirect and Post-Increment Index Addressing” on page 8-51.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-49

Instruction Overview

Dreg: R7-0

uimm5m2: 5-bit unsigned field that must be a multiple of 2, with a range of
0 through 30 bytes

uimmlém2: 16-bit unsigned field that must be a multiple of 2, with a range
of 0 through 65,534 bytes (0x0000 through 0xFFFE)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Store Low Data Register Half instruction stores the least significant
16 bits of a 32-bit data register to a 16-bit memory location. The Pointer
register is either an I-register or a P-register.

The indirect address and offset must yield an even number to maintain
2-byte half-word address alignment. Failure to maintain proper alignment
causes an misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

8-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Options

The Store Low Data Register Half instruction supports the following
options.

* Post-increment the destination pointer by 2 bytes.
* DPost-decrement the destination pointer by 2 bytes.

* Offset the source pointer with a small (5-bit), half-word-aligned
(even), unsigned constant.

* Offset the source pointer with a large (17-bit), half-word-aligned
(even), signed constant.

Indirect and Post-Increment Index Addressing
The syntax of the form:
[Dst_1 ++ Dst_2] = Src

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

[Dst_11 = Src_lo ; /* store the Tower half of the source regis-
ter, indirect*/

Dst_1 += Dst_2 ; /* post-increment Dst_1 by a quantity indexed
by Dst_2 */

where:

e Srcis the least significant half of the source register. (0reg or
Dreg_To in the syntax example).

* Dst_1is the memory destination pointer register on the left side of
the syntax.

* Dst_2is the increment index register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-51

Instruction Overview

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
w [il] =r3.1
w [p0oJ=r3;
wl i3+ 1=r7.1;
w [i0 -- 1 =rl1.1
wilpdl=r2.1;
wlpl ++1=r7;
wilsp--1=r2;
w [p2+12 1 =r6;
w [p4 - 0x200C 1 = r0 ;
w [p2 ++ p0 1 =r5.1

8-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Also See

Store High Data Register Half, Store Data Register

Special Applications

To write consecutive, aligned 16-bit values for high-performance DSP
operations, use the Store Data Register instructions instead of these
Half-Word instructions. The Half-Word Store instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-53

Instruction Overview

Store Byte

General Form

B [indirect_address] = D-register

Syntax
B [Preg 1 = Dreg ; /* dindirect (a)*/
B [Preg ++ 1 = Dreg ; /* indirect, post-increment (a)*/
B [Preg -- 1 = Dreg ; /* indirect, post-decrement (a)*/
B [Preg + uimmlb5 1 = Dreg ; /* indexed with offset (b)*/
B [Preg - uimml5 1 = Dreg ; /* indexed with offset (b)*/

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP

uimml5: 15-bit unsigned field, with a range of 0 through 32,767 bytes
(0x0000 through 0x7FFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Store Byte instruction stores the least significant 8-bit byte of a data
register to an 8-bit memory location. The Pointer register is a P-register.

The indirect address and offset have no restrictions for memory address
alignment.

8-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store

Options
The Store Byte instruction supports the following options.

* DPost-increment the destination pointer by 1 byte to maintain byte
alignment.

* DPost-decrement the destination pointer by 1 byte to maintain byte
alignment.

* Offset the destination pointer with a 16-bit signed constant.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
b [p0O J1=r3;
b [pl ++1=r7;
b[sp--1=r2;
b [p4 + 0x100F 1 = r0 ;
b [p4 - 0x63F 1 =r0 ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-55

Instruction Overview

Also See

None

Special Applications

To write consecutive, 8-bit values for high-performance DSP operations,
use the Store Data Register instructions instead of these byte instructions.
The byte store instructions use only one fourth the available 32-bit data

bus bandwidth, possibly imposing a bottleneck constriction in the data
flow rate.

8-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

9 MOVE

Instruction Summary
* “Move Register” on page 9-2
e “Move Conditional” on page 9-8
e “Move Half to Full Word — Zero-Extended” on page 9-10
* “Move Half to Full Word — Sign-Extended” on page 9-13
* “Move Register Half” on page 9-15
* “Move Byte — Zero-Extended” on page 9-23
* “Move Byte — Sign-Extended” on page 9-25

Instruction Overview

This chapter discusses the move instructions. Users can take advantage of
these instructions to move registers (or register halves), move half words
(zero or sign extended), move bytes, and perform conditional moves.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-1

Instruction Overview

Move Register

General Form

dest_reg = src_reg

Syntax
genreg = genreg ; /* (a) */
genreg = dagreg ; /* (a) */
dagreg = genreg ; /* (a) */
dagreg = dagreg ; /* (a) */
genreg = USP ; /* (a)*/
USP = genreg ; /* (a)*/
Dreg = sysreg ; /* sysreg to 32-bit D-register (a) */
Preg = sysreg ; /* sysreg to P-register (c) */
sysreg = Dreg ; /* 32-bit D-register to sysreg (a) */
sysreg = Preg ; /* 32-bit P-register to sysreg (a) */
sysreg = USP ; /* (a) */
AQ0 = Al ; /* move 40-bit Accumulator value (b) */
Al = AO ; /* move 40-bit Accumulator value (b) */
A0 = Dreg ; /* 32-bit D-register to 40-bit A0, sign extended
(b)*/
Al = Dreg ; /* 32-bit D-register to 40-bit Al, sign extended
(b)*/

Accumulator to D-register Move:

Dreg_even = A0 (opt_mode) ; /* move 32-bit AO.W to even Dreg
(b) */

Dreg_odd = Al (opt_mode) ; /* move 32-bit Al.W to odd Dreg (b)
*/

Dreg_even = AO, Dreg_odd = Al (opt_mode) ; /* move both Accumu-

lators to a register pair (b) */
Dreg_odd = Al, Dreg_even = A0 (opt_mode) ; /* move both Accumu-
lators to a register pair (b) */

9-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Syntax Terminology
genreg: R7-0, P5-0, SP, FP, AO.X, AO.W, A1.X, A1l.W
dagreg: 13-0, M3-0, B3-0, L3-0

sysreg: ASTAT, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, RETS, LCO and
LC1, LTO and LT1, LBO and LB1, CYCLES, CYCLES?2, and EMUDAT

USP: The User Stack Pointer Register
Dreg: R7-0

Preg. P5-0, SP, FP

Dreg_even: RO, R2, R4, R6

Dreg_odd: R1, R3, R5, R7

When combining two moves in the same instruction, the
Dreg_even and Dreg_odd operands must be members of the same
register pair, for example from the set R1:0, R3:2, R5:4, R7:6.

opt_mode: Optionally (FU), (S2RND), or (1552) (See Table 9-1 on
page 9-4).

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length. Comment (c) indicates an instruc-
tion that is not valid on the ADSP-BF535 processor.

Functional Description

The Move Register instruction copies the contents of the source register
into the destination register. The operation does not affect the source reg-
ister contents.

All moves from smaller to larger registers are sign extended.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-3

Instruction Overview

All moves from 40-bit Accumulators to 32-bit D-registers support
saturation.

Options

The Accumulator to Data Register Move instruction supports the options
listed in the table below.

Table 9-1. Accumulator to Data Register Move

Option

Accumulator Copy Formatting

Default

Signed fraction. Copy Accumulator 9.31 format to register 1.31 format. Saturate
results between minimum -1 and maximum 1-231,

Signed integer. Copy Accumulator 40.0 format to register 32.0 format. Saturate
results between minimum -23! and maximum 231-1.

In either case, the resulting hexadecimal range is minimum 0x8000 0000 through
maximum Ox7FFF FFFE

The Accumulator is unaffected by extraction.

Unsigned fraction. Copy Accumulator 8.32 format to register 0.32 format. Saturate
results between minimum 0 and maximum 1-22,

Unsigned integer. Copy Accumulator 40.0 format to register 32.0 format. Saturate
results between minimum 0 and maximum 232-1.

In either case, the resulting hexadecimal range is minimum 0x0000 0000 through
maximum OxFFFF FFFE

The Accumulator is unaffected by extraction.

9-4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Table 9-1. Accumulator to Data Register Move (Contd)

Option Accumulator Copy Formatting

(S2RND) | Signed fraction with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 1.31 format. Copy to destination register. Results
range between minimum -1 and maximum 1-21,

Signed integer with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 32.0 format. Copy to destination register. Results
range between minimum -1 and maximum 231,

In either case, the resulting hexadecimal range is minimum 0x8000 0000 through
maximum Ox7FFF FFFE

The Accumulator is unaffected by extraction.

(ISS2) Signed fraction with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 1.31 format. Copy to destination register. Results
range between minimum -1 and maximum 1-2731,

Signed integer with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 32.0 format. Copy to destination register. Results
range between minimum -1 and maximum 231,

In either case, the resulting hexadecimal range is minimum 0x8000 0000 through
maximum 0x7FFF FFFE

The Accumulator is unaffected by extraction.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

The ASTAT register that contains the flags can be explicitly modified by
this instruction.

The Accumulator to D-register Move versions of this instruction affect the

following flags.

e Vis set if the result written to the D-register file saturates 32 bits;
cleared if no saturation. In the case of two simultaneous operations,
V represents the logical “OR” of the two.

e VS is set if V is set; unaffected otherwise.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-5

Instruction Overview

e A7 is set if result is zero; cleared if nonzero. In the case of two
simultaneous operations, AZ represents the logical “OR” of the two.

e AN is set if result is negative; cleared if non-negative. In the case of
two simultaneous operations, AN represents the logical “OR” of the
two.

* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor for most cases.

Explicit accesses to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN and RETE
require Supervisor mode. If any of these registers are explicitly accessed
from User mode, an Illegal Use of Protected Resource exception occurs.

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
r3 =r0 ;
r7 = p?
re = a0
a0 = al ;

9-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

al =
a0 =
al =
retn
re =
r7 =
ro =

Move

a0

r7 /* move R7 to 32-bit AO.W */

r3 /* move R3 to 32-bit Al.W */

= p0 /* must be in Supervisor mode */

a0 ; /* 32-bit move with saturation */

al /* 32-bit move with saturation */

a0 (iss2) ; /* 32-bit move with scaling, truncation and

saturation */

Also See

Load Immediate to initialize registers.

Move Register Half to move values explicitly into the A0.X and A1.X
registers.

LSETUP, LOOP to implicitly access registers LCO, LT0, LBO, LC1, LT1 and

LBI.

Call, RAISE (Force Interrupt / Reset) and RTS, RTI, RTX, RTN, RTE
(Return) to implicitly access registers RETI, RETN, and RETS.

Force Exception and Force Emulation to implicitly access registers RETX

and R

ETE.

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-7

Instruction Overview

Move Conditional

General Form

IF CC dest_reg = src_reg
IF ! CC dest_reg = src_reg

Syntax
IF CC DPreg = DPreg ; /* move if CC =1 (a) */
IF ! CC DPreg = DPreg ; /* move if CC =0 (a) */

Syntax Terminology

DPreg: R7-0, P5-0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Conditional instruction moves source register contents into a
destination register, depending on the value of CC.

IF CC DPreg = DPreg, the move occurs only if CC = 1.
IF ! CC DPreg = DPreg, the move occurs only if CC = 0.

The source and destination registers are any D-register or P-register.
Flags Affected

None

Required Mode

User & Supervisor

9-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

Move

The Move Conditional instruction cannot be issued in parallel with other

instructions.

Example

if cc
if cc
if cc
if cc
if !
if !
if !
if !

Also See

r3 =
re =
p0 =
p2 =
cc r3
cc re
cc p0
cc pe

ro ;

/* move if CC=1 */

/* move if CC=0 */

Compare Accumulator, Move CC, Negate CC, IF CC JUMP

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

9-9

Instruction Overview

Move Half to Full Word - Zero-Extended

General Form

dest_reg = src_reg (Z)

Syntax

Dreg = Dreg_Tlo (71) ; /* (a) */

Syntax Terminology
Dreg: R7-0

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Half to Full Word — Zero-Extended instruction converts an
unsigned half word (16 bits) to an unsigned word (32 bits).

The instruction copies the least significant 16 bits from a source register
into the lower half of a 32-bit register and zero-extends the upper half of
the destination register. The operation supports only D-registers. Zero
extension is appropriate for unsigned values. If used with signed values, a
small negative 16-bit value will become a large positive value.

9-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Flags Affected

The following flags are affected by the Move Half to Full
Word — Zero-Extended instruction.

e A7 is set if result is zero; cleared if nonzero.
* AN is cleared.

* ACO is cleared.

* Vis cleared.

* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
/* If r0.1 = OxFFFF */
rd =r0.1 (z) ; /* Equivalent to r4.1 = r0.1 and rd.h = 0 */
/* . . . then r4 = 0x0000FFFF */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-11

Instruction Overview

Also See
Move Half to Full Word — Sign-Extended, Move Register Half

Special Applications

None

9-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Move Half to Full Word - Sign-Extended

General Form

dest_reg = src_reg (X)

Syntax

Dreg = Dreg_Tlo (X) ; /* (a)*/

Syntax Terminology
Dreg: R7-0

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Half to Full Word — Sign-Extended instruction converts a
signed half word (16 bits) to a signed word (32 bits). The instruction cop-
ies the least significant 16 bits from a source register into the lower half of
a 32-bit register and sign-extends the upper half of the destination regis-
ter. The operation supports only D-registers.

Flags Affected

The following flags are affected by the Move Half to Full
Word — Sign-Extended instruction.

e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.

® ACO is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-13

Instruction Overview

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r4 = r0.1(x) ;
r4 = r0.1

Also See
Move Half to Full Word — Zero-Extended, Move Register Half

Special Applications

None

9-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Move Register Half

General Form

dest_reg_half = src_reg_half
dest_reg_half = accumulator (opt_mode)

Syntax
AO0.X = Dreg_1lo ; /* least significant 8 bits of Dreg into A0.X
(b) */1
Al.X = Dreg_1Jlo ; /* least significant 8 bits of Dreg into Al.X
(b) */
Dreg_lo = AO.X ; /* 8-bit A0.X, sign-extended, into least sig-
nificant 16 bits of Dreg (b) */
Dreg_lo = Al.X ; /* 8-bit Al.X, sign-extended, into least sig-
nificant 16 bits of Dreg (b) */
AO.L = Dreg_Tlo ; /* least significant 16 bits of Dreg into
least significant 16 bits of AO.W (b) */
Al.L = Dreg_Jlo ; /* least significant 16 bits of Dreg into
least significant 16 bits of AL.W (b) */
AO.H = Dreg_hi ; /* most significant 16 bits of Dreg into most
significant 16 bits of AO.W (b) */
Al.H = Dreg_hi ; /* most significant 16 bits of Dreg into most

significant 16 bits of AL.W (b) */

! The Accumulator Extension registers A0.X and A1.X are defined only for the 8 low-order bits 7
through 0 of A0.X and A1.X. This instruction truncates the upper byte of Dreg_lo before moving the
value into the Accumulator Extension register (A0.X or A1.X).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-15

Instruction Overview

Accumulator to Half D-register Moves

Dreg_lo = AQ0 (opt_mode) ; /* move AO to Tower half of Dreg (b) */
Dreg_hi = Al (opt_mode) ; /* move Al to upper half of Dreg (b)
*/

Dreg_lo = AO, Dreg_hi = Al (opt_mode) ; /* move both values at
once; must go to the Tower and upper halves of the same Dreg (b)
*/
Dreg_hi = Al, Dreg_lo = A0 (opt_mode) ; /* move both values at
once; must go to the upper and lower halves of the same Dreg (b)
*/

Syntax Terminology
Dreg_Tlo: R7-0.L
Dreg_hi: R7-0.H
AO.L: the least significant 16 bits of Accumulator A0.W
Al.L: the least significant 16 bits of Accumulator A1.W
A0.H: the most significant 16 bits of Accumulator A0. W
Al.H: the most significant 16 bits of Accumulator A1.W
opt_mode: Optionally (FU), (IS), (IU), (T), (S2RND), (1SS2), or (IH) (See
Table 9-2 on page 9-19).

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

9-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Functional Description

The Move Register Half instruction copies 16 bits from a source register
into half of a 32-bit register. The instruction does not affect the unspeci-
fied half of the destination register. It supports only D-registers and the
Accumulator.

One version of the instruction simply copies the 16 bits (saturated at 16
bits) of the Accumulator into a data half-register. This syntax supports
truncation and rounding beyond a simple Move Register Half instruction.

The fraction version of this instruction (the default option) transfers the
Accumulator result to the destination register according to the diagrams in
Figure 9-1. Accumulator A0.H contents transfer to the lower half of the
destination D-register. A1.H contents transfer to the upper half of the des-
tination D-register.

A0.X AO.H AO.L

A0 0000 0000 | XXXXXXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

N

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

A0.X AO.H AO.L

A1 0000 0000 | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

¢

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

Figure 9-1. Result to Destination Register (Default Option)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-17

Instruction Overview

The integer version of this instruction (the (1S) option) transfers the
Accumulator result to the destination register according to the diagrams,
shown in Figure 9-2. Accumulator A0. L contents transfer to the lower half
of the destination D-register. A1.L contents transfer to the upper half of
the destination D-register.

A0.X AO.H AO.L

A0 0000 0000 | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

¢

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

A0.X AO.H AO.L

A1 0000 0000 | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

'/\J

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

Figure 9-2. Result to Destination Register ((IS) Option)

Some versions of this instruction are affected by the RND_MO0D bit in the
ASTAT register when they copy the results into the destination register.
RND_MOD determines whether biased or unbiased rounding is used. RND_MOD
controls rounding for all versions of this instruction except the (IS),
(ISS2), (IU), and (T) options.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

9-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Options

The Accumulator to Half D-Register Move instructions support the copy
options in Table 9-2.

Table 9-2. Accumulator to Half D-Register Move Options

Option Accumulator Copy Formatting

Default Signed fraction format. Round Accumulator 9.31 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the
result to 1.15 precision and copy it to the destination register half. Result is
between minimum -1 and maximum 1-271° (or, expressed in hex, between mini-
mum 0x8000 and maximum O0x7FFF).

The Accumulator is unaffected by extraction.

(FU) Unsigned fraction format. Round Accumulator 8.32 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the
result to 0.16 precision and copy it to the destination register half. Result is
between minimum 0 and maximum 1-2-1¢ (or, expressed in hex, between mini-
mum 0x0000 and maximum OxFFFF).

The Accumulator is unaffected by extraction.

(I1S) Signed integer format. Extract the lower 16 bits of the Accumulator. Saturate for
16.0 precision and copy to the destination register half. Result is between mini-

mum -2'> and maximum 21°-1 (or, expressed in hex, between minimum 0x8000
and maximum 0x7FFF).

The Accumulator is unaffected by extraction.

C10)] Unsigned integer format. Extract the lower 16 bits of the Accumulator. Saturate
for 16.0 precision and copy to the destination register half. Result is between
minimum 0 and maximum 21°-1 (or, expressed in hex, between minimum
0x0000 and maximum OxFFFF).

The Accumulator is unaffected by extraction.

(T) Signed fraction with truncation. Truncate Accumulator 9.31 format value at bit
16. (Perform no rounding.) Saturate the result to 1.15 precision and copy it to the
destination register half. Result is between minimum -1 and maximum 1-2°15 (or,
expressed in hex, between minimum 0x8000 and maximum Ox7FFF).

The Accumulator is unaffected by extraction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-19

Instruction Overview

Table 9-2. Accumulator to Half D-Register Move Options (Cont’d)

Option

Accumulator Copy Formatting

(S2RND)

Signed fraction with scaling and rounding. Shift the Accumulator contents one
place to the left (multiply x 2). Round Accumulator 9.31 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the
result to 1.15 precision and copy it to the destination register half. Result is
between minimum -1 and maximum 1-271° (or, expressed in hex, between mini-
mum 0x8000 and maximum 0x7FFF).

The Accumulator is unaffected by extraction.

(ISS2)

Signed integer with scaling. Extract the lower 16 bits of the Accumulator. Shift
them one place to the left (multiply x 2). Saturate the result for 16.0 format and
copy to the destination register half. Result is between minimum -2'> and maxi-
mum 21°-1 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).

The Accumulator is unaffected by extraction.

(IH)

Signed integer, high word extract. Round Accumulator 40.0 format value at bit
16. (RND_MOD bit in the ASTAT register controls the rounding.) Saturate to
32.0 result. Copy the upper 16 bits of that value to the destination register half.
Result is between minimum -2!> and maximum 21°-1 (or, expressed in hex,
between minimum 0x8000 and maximum 0x7FFF).

The Accumulator is unaffected by extraction.

To truncate the result, the operation eliminates the least significant bits
that do not fit into the destination register.

When necessary, saturation is performed after the rounding.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

The Accumulator to Half D-register Move versions of this instruction

affect the following flags.

e Vis set if the result written to the half D-register file saturates 16
bits; cleared if no saturation.

e VS is set if V is set; unaffected otherwise.

9-20

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

AZ is set if result is zero; cleared if nonzero.

AN is set if result is negative; cleared if non-negative.

* All other flags are unaffected.

Flags are not affected by other versions of this instruction.

®

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For more information, see “Issuing Parallel Instructions” on

page 20-1.
Example
a0.x = rl.
al.x = r4d.
r7.1 = a0.
ro.1 = al.
a0.1 = r2.
al.l =rl.
a0.1 = rb.
al.l = r3.
a0.h = r7.
al.h = r0.
r7.1 = a0
re.h = al

JRT R —

> o> — = = = X X

/* copy AO.H into R7.L with saturation. */
/* copy AO.H into R2.H with saturation. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-21

Instruction Overview

r3.1 = a0, r3.h = al ; /* copy both half words; must go to the
lTower and upper halves of the same Dreg. */

rl.h =al, r1.1 = a0 ; /* copy both half words; must go to the
upper and Tower halves of the same Dreg.

ro.h =al (is) ; /* copy Al.L into RO.H with saturation. */
r5.1 = a0 (t) ; /* copy AO.H into R5.L; truncate AO.L; no satu-
ration. */

rl.1 = a0 (s2rnd) ; /* copy AO.H into R1.L with scaling, round-
ing & saturation. */

re.h =al (iss2) ; /* copy Al.L into R2.H with scaling and sat-
uration. */

ré.1 = a0 (ih) ; /* copy AO.H into R6.L with saturation, then

rounding. */

Also See

Move Half to Full Word — Zero-Extended, Move Half to Full Word —
Sign-Extended

Special Applications

None

9-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Move Byte - Zero-Extended

General Form

dest_reg = src_reg_byte (Z)

Syntax

Dreg = Dreg_byte (1) ; /* (a)*/

Syntax Terminology

Dreg_byte: R7-0.B, the low-order 8 bits of each Data Register

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Byte — Zero-Extended instruction converts an unsigned byte to
an unsigned word (32 bits). The instruction copies the least significant 8
bits from a source register into the least significant 8 bits of a 32-bit regis-
ter. The instruction zero-extends the upper bits of the destination register.
This instruction supports only D-registers.

Flags Affected

The following flags are affected by the Move Byte — Zero-Extended
instruction.

e AZ is set if result is zero; cleared if nonzero.
e AN is cleared.

* ACO is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-23

Instruction Overview

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For

more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r7 =r2.b (z) ;

Also See

Move Register Half to explicitly access the Accumulator Extension regis-
ters AO. X and AL.X.

Move Byte — Sign-Extended

Special Applications

None

9-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move

Move Byte - Sign-Extended

General Form

dest_reg = src_reg_byte (X)

Syntax

Dreg = Dreg_byte (X) ; /* (a) */

Syntax Terminology

Dreg_byte: R7-0.B, the low-order 8 bits of each Data Register

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Byte — Sign-Extended instruction converts a signed byte to a
signed word (32 bits). It copies the least significant 8 bits from a source
register into the least significant 8 bits of a 32-bit register. The instruction
sign-extends the upper bits of the destination register. This instruction
supports only D-registers.

Flags Affected

The following flags are affected by the Move Byte — Sign-Extended

instruction.
e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.

* ACO is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-25

Instruction Overview

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r7 =r2.b ;
r7 = r2.b(x) ;

Also See
Move Byte — Zero-Extended

Special Applications

None

9-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

10 STACK CONTROL

Instruction Summary

“--SP (Push)” on page 10-2

“--SP (Push Multiple)” on page 10-5
“SP++ (Pop)” on page 10-8

“SP++ (Pop Multiple)” on page 10-12
“LINK, UNLINK” on page 10-17

Instruction Overview

This chapter discusses the instructions that control the stack. Users can
take advantage of these instructions to save the contents of single or multi-
ple registers to the stack or to control the stack frame space on the stack

and the Frame Pointer (FP) for that space.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Overview

--SP (Push)

General Form

[-- SP] = src_reg

Syntax

[-- SP 1 =allreg ; /* predecrement SP (a) */

Syntax Terminology

allreg: R7-0, P5-0, FP, 13-0, M3-0, B3-0, L3-0, A0.X, AO.W, A1.X, AL.W,
ASTAT, RETS, RETI, RETX, RETN, RETE, LCO, LC1, LTO, LTI, LBO, LB1, CYCLES,
CYCLES2, EMUDAT, USP, SEQSTAT, and SYSCFG

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Push instruction stores the contents of a specified register in the
stack. The instruction pre-decrements the Stack Pointer to the next avail-
able location in the stack first. Push and Push Multiple are the only
instructions that perform pre-modify functions.

The stack grows down from high memory to low memory. Consequently,
the decrement operation is used for pushing, and the increment operation
is used for popping values. The Stack Pointer always points to the last
used location. Therefore, the effective address of the push is SP-4.

The following illustration shows what the stack would look like when a
series of pushes occur.

10-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

higher memory

PS5 [--sp]=p5 ;
P1 [--spl=p1;

R3 <omenemen [--spl=r3;

lower memory

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts.

Push/pop on RETS has no effect on the interrupt system.
Push/pop on RETI does affect the interrupt system.

Pushing RETI enables the interrupt system, whereas popping RETI disables
the interrupt system.

Pushing the Stack Pointer is meaningless since it cannot be retrieved from
the stack. Using the Stack Pointer as the destination of a pop instruction
(as in the fictional instruction SP=[SP++]) causes an undefined instruction
exception. (Refer to “Register Names” on page 1-13 for more
information.)

Flags Affected

None

Required Mode

User & Supervisor for most cases.

Explicit accesses to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN, and RETE
requires Supervisor mode. A protection violation exception results if any
of these registers are explicitly accessed from User mode.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-3

Instruction Overview

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
[--sp1=r0;
[--sp1=rl;
[-- sp 1 =p0;
[--sp 1 =10 ;
Also See

--SP (Push Multiple), SP++ (Pop)

Special Applications

None

10-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

--SP (Push Multiple)

General Form

[-- SP] = (src_reg_range)

Syntax
[-- SP 1= (R7 : Dreglim , P5 : Preglim) ; /* Dregs and
indexed Pregs (a) */
[-- SP 1= (R7 : Dreglim) ; /* Dregs, only (a) */
[-- SP 1= C(P5 : Preglim) ; /* indexed Pregs, only (a) */

Syntax Terminology
Dreglim: any number in the range 7 through 0

Preglim: any number in the range 5 through 0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Push Multiple instruction saves the contents of multiple data and/or
Pointer registers to the stack. The range of registers to be saved always
includes the highest index register (R7 and/or P5) plus any contiguous
lower index registers specified by the user down to and including RO
and/or PO. Push and Push Multiple are the only instructions that perform
pre-modify functions.

The instructions start by saving the register having the lowest index then
advance to the register with the highest index. The index of the first regis-
ter saved in the stack is specified by the user in the instruction syntax.
Data registers are pushed before Pointer registers if both are specified in
one instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-5

Instruction Overview

The instruction pre-decrements the Stack Pointer to the next available
location in the stack first.

The stack grows down from high memory to low memory, therefore the
decrement operation is the same used for pushing, and the increment
operation is used for popping values. The Stack Pointer always points to
the last used location. Therefore, the effective address of the push is SP-4.

The following illustration shows what the stack would look like when a
push multiple occurs.

higher memory

P3 [--sp]=(p5:3) ;
P4

N

lower memory

Because the lowest-indexed registers are saved first, it is advisable that a
runtime system be defined to have its compiler scratch registers as the low-
est-indexed registers. For instance, data registers RO, PO would be the
return value registers for a simple calling convention.

Although this instruction takes a variable amount of time to complete
depending on the number of registers to be saved, it reduces compiled
code size.

This instruction is not interruptible. Interrupts asserted after the first
issued stack write operation are appended until all the writes complete.
However, exceptions that occur while this instruction is executing cause it
to abort gracefully. For example, a load/store operation might cause a pro-
tection violation while Push Multiple is executing. The SP is reset to its
value before the execution of this instruction. This measure ensures that

10-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

the instruction can be restarted after the exception. Note that when a Push
Multiple operation is aborted due to an exception, the memory state is
changed by the stores that have already completed before the exception.

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts, as described above.

Only pointer registers P5-0 can be operands for this instruction; SP and FP
cannot. All data registers R7-0 can be operands for this instruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

[-- sp 1= 1(r7:5, p5:0) ; /* D-registers R4:0 excluded */
[--sp] =(r7:2) ; /* R1:0 excluded */
[-- sp 1= (p5:4) /* P3:0 excluded */

Also See

--SP (Push), SP++ (Pop), SP++ (Pop Multiple)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-7

Instruction Overview

SP++ (Pop)

General Form

dest_reg = [SP ++]

Syntax
mostreg = [SP ++ 1 ; /* post-increment SP; does not apply to
Data Registers and Pointer Registers (a) */
Dreg = [SP ++] ; /* Load Data Register instruction (repeated
here for user convenience) (a) */
Preg = [SP ++ 1 ; /* Load Pointer Register instruction

(repeated here for user convenience) (a) */

Syntax Terminology

mostreg: 13-0, M3-0, B3-0, L3-0, AO.X, AO.W, A1.X, AL.W, ASTAT, RETS,
RETI, RETX, RETN, RETE, LCO, LC1, LTO, LT1, LBO, LB1, USP, SEQSTAT, and
SYSCFG

Dreg: R7-0

Preg: P5-0, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Pop instruction loads the contents of the stack indexed by the current
Stack Pointer into a specified register. The instruction post-increments
the Stack Pointer to the next occupied location in the stack before
concluding.

10-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

The stack grows down from high memory to low memory, therefore the
decrement operation is used for pushing, and the increment operation is
used for popping values. The Stack Pointer always points to the last used
location. When a pop operation is issued, the value pointed to by the
Stack Pointer is transferred and the SP is replaced by SP+4.

The illustration below shows what the stack would look like when a pop
suchas R3 = [SP ++] occurs.

higher memory

Word0
Word1 BEGINNING STATE

Word2 | <---mmmv

lower memory
higher memory

Word0O
Word1 LOAD REGISTER R3 FROM STACK

Word2 | <o z====—==> R3 = Word2

lower memory

higher memory

Word0 POST-INCREMENT STACK POINTER
Word1 <---ee-
Word2

lower memory

The value just popped remains on the stack until another push instruction
overwrites it.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-9

Instruction Overview

Of course, the usual intent for Pop and these specific Load Register
instructions is to recover register values that were previously pushed onto
the stack. The user must exercise programming discipline to restore the
stack values back to their intended registers from the first-in, last-out
structure of the stack. Pop or load exactly the same registers that were
pushed onto the stack, but pop them in the opposite order.

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts.

A value cannot be popped off the stack directly into the Stack Pointer.
SP = [SP ++] is an invalid instruction. Refer to “Register Names” on
page 1-13 for more information.

Flags Affected

The ASTAT = [SP++] version of this instruction explicitly affects arith-
metic flags.

Flags are not affected by other versions of this instruction.

Required Mode

User & Supervisor for most cases

Explicit access to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN, and RETE
requires Supervisor mode. A protection violation exception results if any
of these registers are explicitly accessed from User mode.

Parallel Issue

The 16-bit versions of the Load Data Register and Load Pointer Register
instructions can be issued in parallel with specific other instructions. For
details, see “Issuing Parallel Instructions” on page 20-1.

The Pop instruction cannot be issued in parallel with other instructions.

10-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

Example

ro = [sp++] ; /* Load Data Register instruction */

p4 = [sp++] ; /* Load Pointer Register instruction */

il = [sp++] /* Pop instruction */

reti = [spt+] ; /* Pop instruction; supervisor mode required */
Also See

Load Pointer Register, Load Data Register, --SP (Push), --SP (Push Multi-
ple), SP++ (Pop Multiple)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-11

Instruction Overview

SP++ (Pop Multiple)

General Form

(dest_reg_range) = [SP ++]

Syntax
(R7 : Dreglim, P5 : Preglim) = [SP ++ 1 ; /* Dregs and
indexed Pregs (a) */
(R7 : Dreglim) = [SP ++ 1 ; /* Dregs, only (a) */
(P5 : Preglim) = [SP ++ 1 ; /* indexed Pregs, only (a) */

Syntax Terminology
Dreglim: any number in the range 7 through 0

Preglim: any number in the range 5 through 0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Pop Multiple instruction restores the contents of multiple data
and/or Pointer registers from the stack. The range of registers to be
restored always includes the highest index register (R7 and/or P5) plus any
contiguous lower index registers specified by the user down to and includ-
ing R0 and/or PO.

The instructions start by restoring the register having the highest index
then descend to the register with the lowest index. The index of the last
register restored from the stack is specified by the user in the instruction
syntax. Pointer registers are popped before Data registers, if both are spec-
ified in the same instruction.

10-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

The instruction post-increments the Stack Pointer to the next occupied
location in the stack before concluding.

The stack grows down from high memory to low memory, therefore the
decrement operation is used for pushing, and the increment operation is
used for popping values. The Stack Pointer always points to the last used
location. When a pop operation is issued, the value pointed to by the
Stack Pointer is transferred and the SP is replaced by SP+4.

The following graphic shows what the stack would look like when a Pop

Multiple such as (R7:5)

higher memory

Word0O
Word1
Word2

Word3 | <---- !iill

lower memory
higher memory

R3
R4
R6

v |

lower memory

= [SP ++] occurs.

BEGINNING STATE

LOAD REGISTER R7 FROM STACK
R7 = Word3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

10-13

Instruction Overview

higher memory

R4

R5 LOAD REGISTER R6 FROM STACK
R6 P— ——=—=—==> R6 = Word2

R7

lower memory

higher memory.

R5 LOAD REGISTER R5 FROM STACK
R6 L ========> R5 = Word1
R7

lower memory

higher memory

POST-INCREMENT STACK POINTER

;l.\./ordo <m-mee-

Word1
Word2

lower memory

The value(s) just popped remain on the stack until another push instruc-
tion overwrites it.

Of course, the usual intent for Pop Multiple is to recover register values
that were previously pushed onto the stack. The user must exercise pro-
gramming discipline to restore the stack values back to their intended

10-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

registers from the first-in, last-out structure of the stack. Pop exactly the
same registers that were pushed onto the stack, but pop them in the oppo-
site order.

Although this instruction takes a variable amount of time to complete
depending on the number of registers to be saved, it reduces compiled
code size.

This instruction is not interruptible. Interrupts asserted after the first
issued stack read operation are appended until all the reads complete.
However, exceptions that occur while this instruction is executing cause it
to abort gracefully. For example, a load/store operation might cause a pro-
tection violation while Pop Multiple is executing. In that case, SP is reset
to its original value prior to the execution of this instruction. This mea-
sure ensures that the instruction can be restarted after the exception.

Note that when a Pop Multiple operation aborts due to an exception,
some of the destination registers are changed as a result of loads that have
already completed before the exception.

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts, as described above.

Only Pointer registers P5-0 can be operands for this instruction; SP and FP
cannot. All data registers R7-0 can be operands for this instruction.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-15

Instruction Overview

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
(p5:4) = [sp ++ 1 /* P3 through PO excluded */
(r7:2) = [sp ++ 1 ; /* R1 through RO excluded */
(r7:5, p5:0) = [sp ++ 1 ; /* D-registers R4 through RO

optionally excluded */

Also See
--SP (Push), --SP (Push Multiple), SP++ (Pop)

Special Applications

None

10-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

LINK, UNLINK

General Form

LINK, UNLINK

Syntax
LINK uimml8m4 ; /* allocate a stack frame of specified size
(b) */
UNLINK ; /* de-allocate the stack frame (b)*/

Syntax Terminology

uimml8m4: 18-bit unsigned field that must be a multiple of 4, with a range
of 8 through 262,152 bytes (0x00008 through 0x3FFFC)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Linkage instruction controls the stack frame space on the stack and
the Frame Pointer (FP) for that space. LINK allocates the space and UNLINK
de-allocates the space.

LINK saves the current RETS and FP registers to the stack, loads the FP regis-
ter with the new frame address, then decrements the SP by the
user-supplied frame size value.

Typical applications follow the LINK instruction with a Push Multiple
instruction to save pointer and data registers to the stack.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-17

Instruction Overview

The user-supplied argument for LINK determines the size of the allocated
stack frame. LINK always saves RETS and FP on the stack, so the minimum
frame size is 2 words when the argument is zero. The maximum stack
frame size is 2! + 8 = 262152 bytes in 4-byte increments.

UNLINK performs the reciprocal of LINK, de-allocating the frame space by
moving the current value of FP into SP and restoring previous values into
FP and RETS from the stack.

The UNLINK instruction typically follows a Pop Multiple instruction that
restores pointer and data registers previously saved to the stack.

The frame values remain on the stack until a subsequent Push, Push Mul-
tiple or LINK operation overwrites them.

Of course, FP must not be modified by user code between LINK and
UNLINK to preserve stack integrity.

Neither LINK nor UNLINK can be interrupted. However, exceptions that
occur while either of these instructions is executing cause the instruction
to abort. For example, a load/store operation might cause a protection vio-
lation while LINK is executing. In that case, SP and FP are reset to their
original values prior to the execution of this instruction. This measure
ensures that the instruction can be restarted after the exception.

Note that when a LINK operation aborts due to an exception, the stack
memory may already be changed due to stores that have already completed
before the exception. Likewise, an aborted UNLINK operation may leave the
FP and RETS registers changed because of a load that has already completed
before the interruption.

The illustrations below show the stack contents after executing a LINK
instruction followed by a Push Multiple instruction.

10-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Stack Control

higher memory

AFTER LINK EXECUTES

Saved RETS
Prior FP <-FP

Allocated
words for local
subroutine
variables

<-SP = FP +- frame_size

lower memory

higher memory

AFTER A PUSH
MULTIPLE EXECUTES

Prior FP <-FP

Saved RETS

Allocated
words for local
subroutine
variables

RO
R1

R7
PO

P5 <-SP

lower memory

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts, as described above.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-19

Instruction Overview

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
link 8 ; /* establish frame with 8 words allocated for local
variables */
[-- sp] =(r7:0, p5:0) ; /* save D- and P-registers */
(r7:0, p5:0) = [sp ++ 1 ; /* restore D- and P-registers */
unlink ; /* close the frame* /

Also See

--SP (Push Multiple) SP++ (Pop Multiple)

Special Applications

The Linkage instruction is used to set up and tear down stack frames for a

high-level language like C.

10-20

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

11 CONTROL CODE BIT
MANAGEMENT

Instruction Summary
e “Compare Data Register” on page 11-2
* “Compare Pointer” on page 11-6
e “Compare Accumulator” on page 11-9
* “Move CC” on page 11-12
* “Negate CC” on page 11-15

Instruction Overview

This chapter discusses the instructions that affect the Control Code (cC)
bit in the ASTAT register. Users can take advantage of these instructions to
set the CC bit based on a comparison of values from two registers, pointers,
or accumulators. In addition, these instructions can move the status of the
CC bit to and from a data register or arithmetic status bit, or they can
negate the status of the CC bit.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-1

Instruction Overview

Compare Data Register

General Form

cC
cC
CC = operand_1 <= operand_2

operand_1 == operand_2
operand_1 < operand_2

CC = operand_1 < operand_2 (IU)
CC = operand_1 <= operand_2 (IU)
Syntax
CC = Dreg == Dreg ; /* equal, register, signed (a) */
CC = Dreg == imm3 ; /* equal, immediate, signed (a) */
CC = Dreg < Dreg ; /* less than, register, signed (a) */
CC = Dreg < imm3 ; /* less than, immediate, signed (a) */
CC = Dreg <= Dreg ; /* less than or equal, register, signed
(a) */
CC = Dreg <= imm3 ; /* less than or equal, immediate, signed
(a) */
CC = Dreg < Dreg (IU) ; /* less than, register, unsigned
(a) */
CC = Dreg < uimm3 (IU) ; /* less than, immediate, unsigned (a)
*/
CC = Dreg <= Dreg (IU) ; /* less than or equal, register,
unsigned (a) */
CC = Dreg <= uimm3 (IU) ; /* less than or equal, immediate

unsigned (a) */

Syntax Terminology
Dreg: R7-0
imm3: 3-bit signed field, with a range of —4 through 3

uimm3: 3-bit unsigned field, with a range of 0 through 7

11-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Compare Data Register instruction sets the Control Code (CC) bit
based on a comparison of two values. The input operands are D-registers.

The compare operations are nondestructive on the input operands and
affect only the cC bit and the flags. The value of the CC bit determines all
subsequent conditional branching.

The various forms of the Compare Data Register instruction perform
32-bit signed compare operations on the input operands or an unsigned
compare operation, if the (IU) optional mode is appended. The compare
operations perform a subtraction and discard the result of the subtraction
without affecting user registers. The compare operation that you specify
determines the value of the CC bit.

Flags Affected

The Compare Data Register instruction uses the values shown in
Table 11-1 in signed and unsigned compare operations.

Table 11-1. Compare Data Register Values

Comparison Signed Unsigned
Equal AZ-1 n/a

Less than AN=1 AC0=0

Less than or equal AN or AZ-=1 AC0=0 or AZ=1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

11-3

Instruction Overview

The following flags are affected by the Compare Data Register instruction.
e (C is set if the test condition is true; cleared if false.
e A7 is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
e ACO is set if result generated a carry; cleared if no carry.
* All other flags are unaffected.
@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
cc =r3 =7r2 ;
cc =r/] ==
/* If r0 = Ox8FFF FFFF and r3 = 0x0000 0001, then the signed
operation . . . */
cc =r0 < r3
/* . . . produces cc =1, because r0 is treated as a negative
value */

cc =r2 < -4
cc =r6 <=rl
cc =r4 <=3 ;

11-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

/* If rO = Ox8FFF FFFF and r3 = 0x0000 0001,then the unsigned

operation . . . */
cc =r0 < r3 (iu)
/* . . . produces CC = 0, because r0 is treated as a large

unsigned value */

cc =rl < 0x7 (iu)
cc =r2 <=r0 (iu)
cc =r3<=2 (iu) ;

Also See
Compare Pointer, Compare Accumulator, IF CC JUMP, BITTST

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-5

Instruction Overview

Compare Pointer

General Form

cC operand_1 == operand_2
cC operand_1 < operand_2
CC = operand_1 <= operand_2

CC = operand_1 < operand_2 (IU)
CC = operand_1 <= operand_2 (IU)

Syntax
CC = Preg == Preg ; /* equal, register, signed (a) */
CC = Preg == imm3 ; /* equal, immediate, signed (a) */
CC = Preg < Preg ; /* less than, register, signed (a) */
CC = Preg < imm3 ; /* less than, immediate, signed
CC = Preg <= Preg ; /* less than or equal, register,
(a) */
CC = Preg <= imm3 ; /* less than or equal, immediate,
(a) */

CC = Preg < Preg (IU) ; /* less than, register, unsigned (a) */

CC = Preg < uimm3 (IU) ; /* less than, immediate, unsigned (a) */
CC = Preg <= Preg (IU) ; /* less than or equal,

unsigned (a) */

CC = Preg <= uimm3 (I1U) ; /* less than or equal,

unsigned (a) */

Syntax Terminology
Preg: P5-0, SP, FP
imm3: 3-bit signed field, with a range of —4 through 3
uimm3: 3-bit unsigned field, with a range of 0 through 7

immediate

11-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Compare Pointer instruction sets the Control Code (CC) bit based on
a comparison of two values. The input operands are P-registers.

The compare operations are nondestructive on the input operands and
affect only the cC bit and the flags. The value of the cC bit determines all
subsequent conditional branching.

The various forms of the Compare Pointer instruction perform 32-bit
signed compare operations on the input operands or an unsigned compare
operation, if the (1U) optional mode is appended. The compare opera-
tions perform a subtraction and discard the result of the subtraction
without affecting user registers. The compare operation that you specify
determines the value of the CC bit.

Flags Affected

e (C is set if the test condition is true; cleared if false.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-7

Instruction Overview

Example

cc =
cc =
cc =
cc =
cc =
cc =
cc =
cc =
cc =
cc =

Also See

p3
p0
p0
p2
pl
p4
p5
pl
p2
p3

== p2

< p3

< -4

<= p0 ;
<=3 ;

< p3 (iuw)
< 0x7 (iu)
<=1p0 (iu)
<=2 (iu)

Compare Data Register, Compare Accumulator, IF CC JUMP

Special Applications
None
11-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

Compare Accumulator

General Form

CC = A0 == Al
CC = A0 < Al
cC A0 <= Al
Syntax
CC = A0 == Al ; /* equal, signed (a) */
CC = A0 < Al ; /* less than, Accumulator, signed (a) */
CC = A0 <= Al ; /* less than or equal, Accumulator, signed (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Compare Accumulator instruction sets the Control Code (CC) bit
based on a comparison of two values. The input operands are
Accumulators.

These instructions perform 40-bit signed compare operations on the
Accumulators. The compare operations perform a subtraction and discard
the result of the subtraction without affecting user registers. The compare
operation that you specify determines the value of the CC bit.

No unsigned compare operations or immediate compare operations are
performed for the Accumulators.

The compare operations are nondestructive on the input operands, and
affect only the CC bit and the flags. All subsequent conditional branching
is based on the value of the CC bit.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-9

Instruction Overview

Flags Affected

The Compare Accumulator instruction uses the values shown in
Table 11-2 in compare operations.

Table 11-2. Compare Accumulator Instruction Values

Comparison Signed
Equal AZ=1

Less than AN=1

Less than or equal AN or AZ=1

The following arithmetic status bits reside in the ASTAT register.
e (C is set if the test condition is true; cleared if false.
e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
e ACO is set if result generated a carry; cleared if no carry.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

11-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

Example
cc = a0 == al ;
cc = a0 < al ;
cc = a0 <= al ;
Also See

Compare Pointer, Compare Data Register, IF CC JUMP

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-11

Instruction Overview

Move CC

General Form

dest = CC
dest |= CC
dest &= CC
dest *= CC

CC = source
CC |= source
CC &= source
CC ~= source

Syntax
Dreg = CC ; /* CC into 32-bit data register, zero-extended (a)
*/
statbit = CC ; /* status bit equals CC (a) */
statbit |= CC ; /* status bit equals status bit OR CC (a) */
statbit &= CC ; /* status bit equals status bit AND CC (a) */
statbit ~= CC ; /* status bit equals status bit XOR CC (a) */
CC = Dreg ; /* CC set if the register is non-zero (a) */
CC = statbit ; /* CC equals status bit (a) */
CC |= statbit ; /* CC equals CC OR status bit (a) */
CC &= statbit ; /* CC equals CC AND status bit (a) */
CC "= statbit ; /* CC equals CC XOR status bit (a) */

Syntax Terminology
Dreg: R7-0

statbit: AZ, AN, ACO, AC1, V, VS, AVO, AVOS, AVI, AV1S, AQ

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

11-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

Functional Description

The Move CC instruction moves the status of the Control Code (CC) bit to
and from a data register or arithmetic status bit.

When copying the CC bit into a 32-bit register, the operation moves the CC
bit into the least significant bit of the register, zero-extended to 32 bits.
The two cases are as follows.

e Ifcc =0, Dreg becomes 0x00000000.
e Ifcc =1, Dreg becomes 0x00000001.

When copying a data register to the CC bit, the operation sets the CC bit to
1 if any bit in the source data register is set; that is, if the register is non-
zero. Otherwise, the operation clears the CC bit.

Some versions of this instruction logically set or clear an arithmetic status
bit based on the status of the Control Code.

The use of the CC bit as source and destination in the same instruction is
disallowed. See the Negate CC instruction to change CC based solely on its
own value.

Flags Affected

e The Move CC instruction affects flags CC, AZ, AN, ACO, ACL, V, VS,
AVO, AVOS, AV1, AV1S, AQ, according to the status bit and syntax
used, as described in “Syntax” on page 11-12.

e All other flags not explicitly specified by the syntax are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-13

Instruction Overview

Required Mode

User & Supervisor

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
r0 = cc ;
az = cc ;
an |= cc ;
acO &= cc ;
av0 *= cc ;
cc =r4 ;
cc = avl ;
cc |= aq ;
cc &= an ;
cc "= acl ;

Also See
Negate CC

Special Applications
None

11-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Control Code Bit Management

Negate CC

General Form

cC =1 CC
Syntax
cC =1 CC ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Negate CC instruction inverts the logical state of CC.

Flags Affected
e CC is toggled from its previous value by the Negate CC instruction.
* All other flags are unaffected.
@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-15

Instruction Overview

Example
cc =! cc ;
Also See
Move CC

Special Applications

None

11-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

12 LOGICAL OPERATIONS

Instruction Summary
* “& (AND)” on page 12-2
e “~ (NOT One’s Complement)” on page 12-4
* “| (OR)” on page 12-6
e “N (Exclusive-OR)” on page 12-8
e “BXORSHIFT, BXOR” on page 12-10

Instruction Overview

This chapter discusses the instructions that specify logical operations.
Users can take advantage of these instructions to perform logical AND,
NOT, OR, exclusive-OR, and bit-wise exclusive-OR (BXORSHIFT)

operations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-1

Instruction Overview

& (AND)

General Form

dest_reg = src_reg_0 & src_reg_1

Syntax

Dreg = Dreg & Dreg ; /* (a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The AND instruction performs a 32-bit, bit-wise logical AND operation
on the two source registers and stores the results into the dest_reg.

The instruction does not implicitly modify the source registers. The
dest_reg and one src_reg can be the same D-register. This would explic-
itly modifies the src_reg.

Flags Affected
The AND instruction affects flags as follows.
e A7 is set if the final result is zero, cleared if nonzero.

* AN is set if the result is negative, cleared if non-negative.

12-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

* ACO and V are cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r4d = r4 & r3 ;

Also See
| (OR)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-3

Instruction Overview

~ (NOT One’s Complement)

General Form

dest_reg = ~ src_reg
Syntax
Dreg = ~ Dreg ; /* (a)*/

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The NOT One’s Complement instruction toggles every bit in the 32-bit
register.

The instruction does not implicitly modify the src_reg. The dest_reg
and src_reg can be the same D-register. Using the same D-register as the
dest_reg and src_reg would explicitly modify the src_reg.

Flags Affected
The NOT One’s Complement instruction affects flags as follows.
e A7 is set if the final result is zero, cleared if nonzero.

* AN is set if the result is negative, cleared if non-negative.

12-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

* ACO and V are cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
r3a =~r4 ;
Also See

Negate (Two’s Complement)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-5

Instruction Overview

| (OR)

General Form

dest_reg = src_reg_0 | src_reg_l1

Syntax

Dreg = Dreg | Dreg ; /* (a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The OR instruction performs a 32-bit, bit-wise logical OR operation on
the two source registers and stores the results into the dest_reg.

The instruction does not implicitly modify the source registers. The
dest_reg and one src_reg can be the same D-register. This would explic-
itly modifies the src_reg.

Flags Affected
The OR instruction affects flags as follows.
e A7 is set if the final result is zero, cleared if nonzero.

* AN is set if the result is negative, cleared if non-negative.

12-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

* ACO and V are cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

rd =rd | r3 ;

Also See
A (Exclusive-OR), BXORSHIFT, BXOR

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-7

Instruction Overview

A (Exclusive-OR)

General Form

dest_reg = src_reg_0 »~ src_reg_1

Syntax

Dreg = Dreg "~ Dreg ; /* (a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Exclusive-OR (XOR) instruction performs a 32-bit, bit-wise logical
exclusive OR operation on the two source registers and loads the results
into the dest_reg.

The XOR instruction does not implicitly modify source registers. The
dest_reg and one src_reg can be the same D-register. This would explic-
itly modifies the src_reg.

Flags Affected
The XOR instruction affects flags as follows.
e A7 is set if the final result is zero, cleared if nonzero.

* AN is set if the result is negative, cleared if non-negative.

12-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

* ACO and V are cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r4d = r4 ~ r3 ;

Also See
| (OR), BXORSHIFT, BXOR

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-9

Instruction Overview

BXORSHIFT, BXOR

General Form

dest_reg = CC BXORSHIFT (AO, src_reg)
dest_reg cC BXOR (AO, src_reg)
dest_reg = CC = BXOR (A0, Al, CC)

A0 = BXORSHIFT (A0, Al, CC)

Syntax

LFSR Type I (Without Feedback)

Dreg_lo = CC
Dreg_1lo cC

BXORSHIFT (AO, Dreg) ; /* (b) */
BXOR (A0, Dreg) ; /* (b) */

LFSR Type I (With Feedback)

Dreg_To = CC = BXOR (A0, Al, CC) ; /* (b) */
A0 = BXORSHIFT (AO, Al, CC) ; /* (b) */

Syntax Terminology
Dreg: R7-0

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

Four Bit-Wise Exclusive-OR (BX0R) instructions support two different
types of linear feedback shift register (LFSR) implementations.

12-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

The Type I LFSRs (no feedback) applies a 32-bit registered mask to a
40-bit state residing in Accumulator A0, followed by a bit-wise XOR
reduction operation. The result is placed in CC and a destination register

half.

The Type I LFSRs (with feedback) applies a 40-bit mask in Accumulator Al
to a 40-bit state residing in A0. The result is shifted into A0.

In the following circuits describing the BXOR instruction group, a
bit-wise XOR reduction is defined as:

Out = (B y®B,))®B,)®B;)®...)®B,_ ;)

where B through By_; represent the N bits that result from masking the
contents of Accumulator A0 with the polynomial stored in either Al or a
32-bit register. The instruction descriptions are shown in Figure 12-1.

><X> » (D)

DIO] D[1]

A0[0] AO[1]

Figure 12-1. Bit-Wise Exclusive-OR Reduction

In the figure above, the bits A0 bit 0 and A0 bit 1 are logically AND’ed
with bits D[0] and D[1]. The result from this operation is XOR reduced
according to the following formula.

s(D) = (A0[0]1&D[0]) ® (A0[1]1&D[0])

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-11

Instruction Overview

Modified Type I LFSR (without feedback)

Two instructions support the LSFR with no feedback.

Dreg_lo = CC
cc

BXORSHIFT(AO, dreg)
BXOR(AQ, dreg)

Dreg_1lo

In the first instruction the Accumulator A0 is left-shifted by 1 prior to the
XOR reduction. This instruction provides a bit-wise XOR of A0 logically
AND’ed with a dreg. The result of the operation is placed into both the cC
flag and the least significant bit of the destination register. The operation
is shown in Figure 12-2.

The upper 15 bits of dreg_1o are overwritten with zero, and dr[0] = IN
after the operation.

Before XOR Reduction

| AO[39] |—| A0[38] |—| A0[37] | e o o 0

A0[39:0] Left Shift by 1

XOR Reduction

0—>®—>) —»@—»@—»@T\TCC dreg_lo
m e oo |D[2]||D[1]||D[0]|
AO[38]| ® o @ PP Aop1] 1L aofoy 0
B |

After Operation

| arf15] | arf14] [arf131 | e o @ |I|

dreg_lo[15:0]

Figure 12-2. A0 Left-Shifted by 1 Followed by XOR Reduction

12-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

The second instruction in this class performs a bit-wise XOR of A0 logi-
cally AND'ed with the dreg. The output is placed into the least significant
bit of the destination register and into the cC bit. The Accumulator A0 is
not modified by this operation. This operation is illustrated in

Figure 12-3.

The upper 15 bits of dreg_To are overwritten with zero, and dr[0] = IN
after the operation.

XOR Reduction

0—>(1)—> oo —»@—»@—»% CC dreg_lo

e oo [op]| o] [ppo|

e o o m e o o LAO[Z] AO0[1] A0[0]|

After Operation

[ari1s) | arptag [armiap | @ 0 @ |I|

dreg_lo[15:0]

Figure 12-3. XOR of A0, Logical AND with the D-Register

Modified Type I LESR (with feedback)
Two instructions support the LESR with feedback.

AO = BXORSHIFT(AO, Al, CC)
Dreg_lo = CC = BXOR(AO, Al, CC)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-13

Instruction Overview

The first instruction provides a bit-wise XOR of A0 logically AND'ed with
Al. The resulting intermediate bit is XOR'ed with the CC flag. The result
of the operation is left-shifted into the least significant bit of A0 following
the operation. This operation is illustrated in Figure 12-4. The CC bit is
not modified by this operation.

cc_>®_>) —»@—

Left Shift by 1
Following XOR
Reduction

[a11391| [a1138]| [A1137]|

[]
[
[]
2

AO0[39](H- A0[38]{-44A0[37] |

After Operation

| A0[38] |—| AQ[37] |—| A0[36]| oo o |I|

A0[39:0]

Figure 12-4. XOR of A0 AND A1, Left-Shifted into LSB of A0

The second instruction in this class performs a bit-wise XOR of A0 logi-
cally AND'ed with Al. The resulting intermediate bit is XOR'ed with the
cC flag. The result of the operation is placed into both the cC flag and the
least significant bit of the destination register.

This operation is illustrated in Figure 12-5.

The Accumulator A0 is not modified by this operation. The upper 15 bits
of dreg_1o are overwritten with zero, and dr[0] = IN.

12-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Operations

cc—()— oo — CC dreg_lo[0]
IN

[at11391| [a1138)] [A11371]

A0[39])LA0[38])LA0[37]| ¢ o0 m

After Operation

| ar1s) |- ar1a) | ari13) | @ o @ III

dreg_lo[15:0]

Figure 12-5. XOR of A0 AND A1, to CC Flag and LSB of Dest Register

Flags Affected
The following flags are affected by the Four Bit-Wise Exclusive-OR

instructions.

* CCis set or cleared according to the Functional Description for the
BXOR and the nonfeedback version of the BXORSHIFT instruction.
The feedback version of the BXORSHIFT instruction affects no flags.

* All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-15

Instruction Overview

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r0.1 = cc bxorshift (a0, rl) ;
r0.1 = cc = bxor (a0, rl) ;
r0.1 = cc = bxor (a0, al, cc)

a0 = bxorshift (a0, al, cc) ;

Also See

None

Special Applications

Linear feedback shift registers (LFSRs) can multiply and divide polynomi-
als and are often used to implement cyclical encoders and decoders.

LFSRs use the set of Bit-Wise XOR instructions to compute bit XOR
reduction from a state masked by a polynomial.

12-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

13 BIT OPERATIONS

Instruction Summary
* “BITCLR” on page 13-2
e “BITSET” on page 13-4
* “BITTGL” on page 13-6
e “BITTST” on page 13-8
e “DEPOSIT” on page 13-10
 “EXTRACT” on page 13-16
e “BITMUX” on page 13-21
* “ONES (One’s Population Count)” on page 13-26

Instruction Overview

This chapter discusses the instructions that specify bit operations. Users
can take advantage of these instructions to set, clear, toggle, and test bits.
They can also merge bit fields and save the result, extract specific bits from
a register, merge bit streams, and count the number of ones in a register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-1

Instruction Overview

BITCLR

General Form

BITCLR (register, bit_position)

Syntax

BITCLR (Dreg , uimmb5) ; /* (a) */

Syntax Terminology
Dreg: R7-0

uimms: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Clear instruction clears the bit designated by bit_position in the
specified D-register. It does not affect other bits in that register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

Flags Affected
The Bit Clear instruction affects flags as follows.
e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.

® ACO is cleared.

13-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

bitclr (r2, 3) ; /* clear bit 3 (the fourth bit from LSB) in
R2 */

For example, if R2 contains OxFFFFFFFF before this instruction, it con-
tains OxFFFFFFF7 after the instruction.

Also See
BITSET, BITTST, BITTGL

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-3

Instruction Overview

BITSET

General Form

BITSET (register, bit_position)

Syntax

BITSET (Dreg , uimmb5) ; /* (a) */

Syntax Terminology
Dreg: R7-0

uimms: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Set instruction sets the bit designated by bit_position in the
specified D-register. It does not affect other bits in the D-register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

Flags Affected
The Bit Set instruction affects flags as follows.
* A7 is cleared.
* AN is set if result is negative; cleared if non-negative.

® ACO is cleared.

13-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

bitset (r2, 7) ; /* set bit 7 (the eighth bit from LSB) in
R2 */

For example, if R2 contains 0x00000000 before this instruction, it con-
tains 0x00000080 after the instruction.

Also See
BITCLR, BITTST, BITTGL

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-5

Instruction Overview

BITTGL

General Form

BITTGL (register, bit_position)

Syntax

BITTGL (Dreg , uimmb5) ; /* (a) */

Syntax Terminology
Dreg: R7-0

uimms: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Toggle instruction inverts the bit designated by bit_position in
the specified D-register. The instruction does not affect other bits in the
D-register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

Flags Affected
The Bit Toggle instruction affects flags as follows.
e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.

* ACO is cleared.

13-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For

more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

bittgl (r2, 24) ; /* toggle bit 24 (the 25th bit from LSB in
R2 */

For example, if R2 contains OxF1FFFFFF before this instruction, it con-
tains OxFOFFFFFF after the instruction. Executing the instruction a
second time causes the register to contain OxF1FFFFFF.

Also See
BITSET, BITTST, BITCLR

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-7

Instruction Overview

BITTST

General Form

CC = BITTST (register, bit_position)
CC = 1! BITTST (register, bit_position)
Syntax
CC = BITTST (Dreg , uimm5) ; /* set CC if bit =1 (a)*/
CC = 1! BITTST (Dreg , uimmb) ; /* set CC if bit =0 (a)*/

Syntax Terminology
Dreg: R7-0

uimm5: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Test instruction sets or clears the CC bit, based on the bit desig-
nated by bit_position in the specified D-register. One version tests
whether the specified bit is set; the other tests whether the bit is clear. The
instruction does not affect other bits in the D-register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

13-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

Flags Affected
The Bit Test instruction affects flags as follows.
* CC is set if the tested bit is 1; cleared otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
cc = bittst (r7, 15) ; /* test bit 15 TRUE in R7 */

For example, if R7 contains OxFFFFFFFF before this instruction, CC is set
to 1, and R7 still contains 0xFFFFFFFF after the instruction.

cc =1 bittst (r3, 0) ; /* test bit 0 FALSE in R3 */

If R3 contains OxFFFFFFFF, this instruction clears CC to 0.

Also See
BITCLR, BITSET, BITTGL

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-9

Instruction Overview

DEPOSIT

General Form

dest_reg = DEPOSIT (backgnd_reg, foregnd_reg)
dest_reg = DEPOSIT (backgnd_reg, foregnd_reg) (X)
Syntax
Dreg = DEPOSIT (Dreg, Dreg) ; /* no extension (b) */
Dreg = DEPOSIT (Dreg, Dreg) (X) ; /* sign-extended (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Field Deposit instruction merges the background bit field in
backgnd_reg with the foreground bit field in the upper half of
foregnd_reg and saves the result into dest_reg. The user determines the

length of the foreground bit field and its position in the background field.
The input register bit field definitions appear in Table 13-1.

13-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 13-1. Input Register Bit Field Definitions

Bit Operations

3l 24 23 e 16 | 55 JOPTR T e 0
backgnd_reg:l bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb
foregnd_reg:2 nnnn nnnn nnnn nnnn XXXp pppp xxxL LLLL
1 where b = background bit field (32 bits)

2 where:
—n = foreground bit field (16 bits); the L field determines the actual number of foreground bits
used.

—p = intended position of foreground bit field LSB in dest_reg (valid range 0 through 31)
—L = length of foreground bit field (valid range 0 through 16)

The operation writes the foreground bit field of length L over the back-
ground bit field with the foreground LSB located at bit p of the

background. See “Example,” below, for more.

Boundary Cases

Consider the following boundary cases.

* Unsigned syntax, L = 0: The architecture copies backgnd_reg con-
tents without modification into dest_reg. By definition, a
foreground of zero length is transparent.

» Sign-extended, L = 0 and p = 0: This case loads 0x0000 0000 into
dest_reg. The sign of a zero length, zero position foreground is
zero; therefore, sign-extended is all zeros.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

13-11

Instruction Overview

* Sign-extended, L = 0 and p = 0: The architecture copies the lower
order bits of backgnd_reg below position p into dest_reg, then
sign-extends that number. The foreground value has no effect. For
instance, if:

backgnd_reg = 0x0000 8123,

L=0,and
p = 16,
then:

dest_reg = OxFFFF 8123.

In this example, the architecture copies bits 15-0 from
backgnd_reg into dest_reg, then sign-extends that number.

e Sign-extended, (L + p) > 32: Any foreground bits that fall outside
the range 31-0 are truncated.

The Bit Field Deposit instruction does not modify the contents of the two
source registers. One of the source registers can also serve as dest_reg.

Options

The (X) syntax sign-extends the deposited bit field. If you specify the
sign-extended syntax, the operation does not affect the dest_reg bits that
are less significant than the deposited bit field.

Flags Affected
This instruction affects flags as follows.
e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.

® ACO is cleared.

13-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For

more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
Bit Field Deposit Unsigned
r7 = deposit (rd, r3) ;
o If

e R4=0b1111 11171 1111 11171 11171 11171 1111 1111
where this is the background bit field

® R3=0p0000 0000 0000 0000 0000 0111 0000 0011
where bits 31-16 are the foreground bit field, bits 15-8 are
the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

e R7=0b1111 1111 1111 1111 1111 1100 0111 1111

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-13

Instruction Overview

If

e R4=0bp1111 11171 1111 11171 11171 11171 1111 1111
where this is the background bit field

e R3=0b0000 0000 1111 1010 0000 1101 0000 1001
where bits 31-16 are the foreground bit field, bits 15-8 are
the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:
e R7=0b1111 1111 1101 1111 0101 1111 1111 1111
Bit Field Deposit Sign-Extended
r7 = deposit (r4, r3) (x) ; /* sign-extended*/
o If

e R4=0b1111 1111 1111 11171 1111 1111 1111 1111
where this is the background bit field

e R3=0b0101 1010 0101 1010 0000 0111 0000 0011
where bits 31-16 are the foreground bit field, bits 15-8 are
the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

* R7=0b0000 0000 0000 0000 0000 0001 O111 1111

13-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

If

e R4=0bp1111 11171 1111 11171 11171 11171 1111 1111
where this is the background bit field

e R3=0b0000 1001 1010 1100 0000 1101 0000 1001
where bits 31-16 are the foreground bit field, bits 15-8 are
the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

e R7=0b1111 1111 1111 0101 1001 1111 1111 1111

Also See
EXTRACT

Special Applications

Video image overlay algorithms

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-15

Instruction Overview

EXTRACT

General Form

dest_reg
dest_reg

EXTRACT (scene_reg, pattern_reg) (Z)
EXTRACT (scene_reg, pattern_reg) (X)

Syntax

EXTRACT (Dreg, Dreg_lo) (1) ; /* zero-extended (b)*/
EXTRACT (Dreg, Dreg_lo) (X) ; /* sign-extended (b)*/

Dreg
Dreg

Syntax Terminology
Dreg: R7-0

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Field Extraction instruction moves only specific bits from the
scene_reg into the low-order bits of the dest_reg. The user determines
the length of the pattern bit field and its position in the scene field.

The input register bit field definitions appear in Table 13-2.

13-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

Table 13-2. Input Register Bit Field Definitions

3loiiiiiiiiinn. 24 23, 16 15, 8 /2T 0
scene_reg:1 SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS
pattern_rf:tg:2 XXXp pppp xxxL LLLL

1 where s = scene bit field (32 bits)

2 where:
—p = position of pattern bit field LSB in scene_reg (valid range 0 through 31)
—L = length of pattern bit field (valid range 0 through 31)

The operation reads the pattern bit field of length L from the scene bit
field, with the pattern LSB located at bit p of the scene. See “Example”,
below, for more.

Boundary Case

If (p + L) > 32: In the zero-extended and sign-extended versions of the
instruction, the architecture assumes that all bits to the left of the
scene_reg are zero. In such a case, the user is trying to access more bits
than the register actually contains. Consequently, the architecture fills any
undefined bits beyond the MSB of the scene_reg with zeros.

The Bit Field Extraction instruction does not modify the contents of the
two source registers. One of the source registers can also serve as dest_reg.

Options

The user has the choice of using the (X) syntax to perform sign-extend
extraction or the (Z) syntax to perform zero-extend extraction.

Flags Affected

This instruction affects flags as follows.
e AZ is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-17

Instruction Overview

e ACO is cleared.
eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
Bit Field Extraction Unsigned
r7 = extract (r4, r3.1) (z) ; /* zero-extended*/
o If

® R4=0b1010 0101 1010 0101 1100 0011 1010 1010
where this is the scene bit field

® R3=0bxxxx xxxx xxxx xxxx 0000 0111 0000 0100
where bits 15-8 are the position, and bits 7-0 are the length

then the Bit Field Extraction (unsigned) instruction produces:

¢ R7=0b0000 0000 0000 0000 0000 0000 0000 0111

13-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

If

® R4=0b1010 0101 1010 0101 1100 0011 1010 1010
where this is the scene bit field

® R3=0bxxxx xxxx xxxx xxxx 0000 1101 0000 1001
where bits bits 158 are the position, and bits 7-0 are the

length
then the Bit Field Extraction (unsigned) instruction produces:
® R7=0b0000 0000 0000 0000 0000 0001 0010 1110
Bit Field Extraction Sign-Extended
r7 = extract (r4, r3.1) (x) ; /* sign-extended*/

o If

® R4=0b1010 0101 1010 0101 1100 0011 1010 1010
where this is the scene bit field

® R3=0bxxxXxX XXXX XXXX xxxx 0000 0111 0000 0100
where bits 15-8 are the position, and bits 7-0 are the length

then the Bit Field Extraction (sign-extended) instruction produces:

¢ R7=0b0000 0000 0000 0000 0000 0000 0000 0111

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-19

Instruction Overview

If

® R4=0b1010 0101 1010 0101 1100 0011 1010 1010
where this is the scene bit field

® R3=0bxxxx xxxx xxxx xxxx 0000 1101 0000 1001
where bits bits 15-8 are the position, and bits 7-0 are the

length

Then the Bit Field Extraction (sign-extended) instruction

produces:

e R7=0b1111 1111 1111 1111 1111 1111 0010 1110

Also See
DEPOSIT

Special Applications

Video image pattern recognition and separation algorithms

13-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

BITMUX

General Form
BITMUX (source_1l, source_0, A0) (ASR)

BITMUX (source_1l, source_0, A0) (ASL)

Syntax
BITMUX (Dreg , Dreg , AO) (ASR) ; /* shift right, LSB is
shifted out (b) */
BITMUX (Dreg , Dreg , A0) (ASL) ; /* shift left, MSB is

shifted out (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description
The Bit Multiplex instruction merges bit streams.

The instruction has two versions, Shift Right and Shift Left. This instruc-
tion overwrites the contents of source_1 and source_0. See Table 13-3,

Table 13-4, and Table 13-5.
In the Shift Right version, the processor performs the following sequence.

1. Right shift Accumulator A0 by one bit. Right shift the LSB of
source_1I into the MSB of the Accumulator.

2. Right shift Accumulator A0 by one bit. Right shift the LSB of
source_0 into the MSB of the Accumulator.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-21

Instruction Overview

In the Shift Left version, the processor performs the following sequence.

1. Left shift Accumulator A0 by one bit. Left shift the MSB of
source_0 into the LSB of the Accumulator.

2. Left shift Accumulator A0 by one bit. Left shift the MSB of
source_] into the LSB of the Accumulator.

source_1 and source_0 must not be the same D-register.

Table 13-3. Contents Before Shift

IF 39, 32 3l 24 23.en. 16 15.cee. 8 T, 0
source_1: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
source_0: YYYy Yyyy YYYy Yyyy YYYy Yyyy YYYy Yyyy
Accumulator A0: | zzzz zzzz 772727 72777 77227 72777 7277 7777 7277 2777

Table 13-4. A Shift Right Instruction

IF 39t 32 3l 24 23.en. 16 15.nn.e. 8 T, 0
source_1:! OXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
SOUFCC_OIZ Oyyy yyyy YYYy Yyyy YYYy Yyyy YYYy Yyyy
Accumulator A0 | yxzz zzzz 772727 72777 77227 7777 7277 7777 7277 72277

1 source_l is shifted right 1 place
2 source_0 is shifted right 1 place
3 Accumulator A0 is shifted right 2 places

13-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 13-5. A Shift Left Instruction

Bit Operations

IF 39 32 3l 24 23 16 15.inn. /AT 0
source_1:! XXXX XXXX XXXX XXXX XXXX XXXX XXXX XxX0
Soufce_052 YYYy yyyy YYYy yyyy YYYYy yyyy yyyy yyyo
Accumulator A0 | 222z zz2z 7777 7272 7777 7772 722727 7227 22727 727yX

1 source_l is shifted left 1 place
2 source_0 is shifted left 1 place
3 Accumulator A0 is shifted left 2 places

Flags Affected

None

®

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-23

Instruction Overview

Example
bitmux (r2, r3, a0) (asr) ; /* right shift*/
o If
e R2=0b1010 0101 1010 0101 1100 0011 1010 1010
¢ R3=0b1100 0011 1010 1010 1010 0101 1010 0101
* A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0000 0111
then the Shift Right instruction produces:
e R2=0b0101 0010 1101 0010 1110 0001 1101 0101
e R3=0b0110 0001 1101 0101 0101 0010 1101 0010
¢ A0O=0b1000 0000 0000 0000 0000 0000 0000 0000 0000 0001
bitmux (r3, r2, a0) (asl) ; /* left shiftx/
o If

e R3=0b1010 0101 1010 0101 1100 0011 1010 1010

* R2=0b1100 0011 1010 1010 1010 0101 1010 0101

e A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0000 0111
then the Shift Left instruction produces:

e RZ=0b1000 0111 0101 0101 0100 1011 0100 1010

e R3=0b0100 1011 0100 1011 1000 0111 0101 0100

* A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0001 1111

13-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

Also See

None

Special Applications

Convolutional encoder algorithms

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-25

Instruction Overview

ONES (One’s Population Count)

General Form

dest_reg = ONES src_reg

Syntax

Dreg_lo = ONES Dreg ; /* (b)) */

Syntax Terminology
Dreg: R7-0

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The One’s Population Count instruction loads the number of 1’s
contained in the src_reg into the lower half of the dest_reg.

The range of possible values loaded into dest_reg is 0 through 32.

The dest_reg and src_reg can be the same D-register. Otherwise, the
One’s Population Count instruction does not modify the contents of
src_reg.

13-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r3.1 = ones r7 ;
If R7 contains 0OxASASAS5AS, R3.L contains the value 16, or 0x0010.

If R7 contains 0x00000081, R3.L contains the value 2, or 0x0002.

Also See

None

Special Applications

Software parity testing

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-27

Instruction Overview

13-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

14 SHIFT/ROTATE OPERATIONS

Instruction Summary
e “Add with Shift” on page 14-2
e “Shift with Add” on page 14-5
e “Arithmetic Shift” on page 14-7
* “Logical Shift” on page 14-14
* “ROT (Rotate)” on page 14-21

Instruction Overview

This chapter discusses the instructions that manipulate bit operations.
Users can take advantage of these instructions to perform logical and
arithmetic shifts, combine addition operations with shifts, and rotate a
registered number through the Control Code (CC) bit.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-1

Instruction Overview

Add with Shift

General Form

dest_pntr = (dest_pntr + src_reg) << 1
dest_pntr

(dest_pntr + src_reg) << 2
dest_reg = (dest_reg + src_reg) << 1
dest_reg = (dest_reg + src_reg) << 2

Syntax

Pointer Operations

Preg = (Preg + Preg) << 1 ; /* dest_reg = (dest_reg +
src_reg) x 2 (a) */
Preg = (Preg + Preg) << 2 /* dest_reg = (dest_reg +

src_reg) x 4 (a) */

Data Operations

Dreg = (Dreg + Dreg) << 1 ; /* dest_reg = (dest_reg + src_reg)
X 2 (a) */
Dreg = (Dreg + Dreg) << 2 /* dest_reg = (dest_reg + src_reg)
X 4 (a) */

Syntax Terminology
Preg: P5-0

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

14-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Functional Description

The Add with Shift instruction combines an addition operation with a
one- or two-place logical shift left. Of course, a left shift accomplishes a x2
multiplication on sign-extended numbers. Saturation is not supported.

The Add with Shift instruction does not intrinsically modify values that
are strictly input. However, dest_reg serves as an input as well as the

result, so dest_reg is intrinsically modified.

Flags Affected

The D-register versions of this instruction affect flags as follows.

®

AZ is set if result is zero; cleared if nonzero.

AN is set if result is negative; cleared if non-negative.
V is set if result overflows; cleared if no overflow.

VS is set if V is set; unaffected otherwise.

All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register versions of this instruction do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-3

Instruction Overview

Example
p3 = (p3+p2)<L1 ; /* p3 = (p3 + p2) * 2 */
p3 = (p3+p2)<L2 ; /* p3 = (p3 + p2) * 4 */
r3 = (r3+r2)<<1 ; /* r3 = (r3 + r2) * 2 */
r3 = (r3+r2)<<2 ; /* r3 = (r3 + r2) *x 4 */
Also See

Shift with Add, Logical Shift, Arithmetic Shift, Add, Multiply 32-Bit
Operands

Special Applications

None

14-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Shift with Add

General Form
dest_pntr = adder_pntr + (src_pntr << 1)

dest_pntr = adder_pntr + (src_pntr < 2)

Syntax
Preg = Preg + (Preg << 1) /* adder_pntr + (src_pntr x 2)
(a) */
Preg = Preg + (Preg << 2) ; /* adder_pntr + (src_pntr x 4)
(a) */

Syntax Terminology

Preg: P5-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Shift with Add instruction combines a one- or two-place logical shift
left with an addition operation.

The instruction provides a shift-then-add method that supports a rudi-
mentary multiplier sequence useful for array pointer manipulation.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-5

Instruction Overview

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
p3 = p0+(p3<<K1) ; /* p3 = (p3 * 2) + p0 */
p3 = pO0+(p3<K<K2) /* p3 = (p3 * 4) + p0 */
Also See

Add with Shift, Logical Shift, Arithmetic Shift, Add, Multiply 32-Bit
Operands

Special Applications

None

14-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Arithmetic Shift

General Form

dest_reg >>>= shift_magnitude

dest_reg = src_reg >>> shift_magnitude (opt_sat)
dest_reg = src_reg << shift_magnitude (S)

accumulator = accumulator >>> shift_magnitude

dest_reg = ASHIFT src_reg BY shift_magnitude (opt_sat)
accumulator = ASHIFT accumulator BY shift_magnitude

Syntax

Constant Shift Magnitude

Dreg >>>= uimmb ; /* arithmetic right shift (a) */

Dreg <<= uimmb ; /* logical Teft shift (a) */

Dreg_lo_hi = Dreg_lo_hi >>> uimm4 ; /* arithmetic right shift
(b) */

Dreg_lo_hi = Dreg_Tlo_hi << uimm4 (S) ; /* arithmetic Teft
shift (b) */

Dreg = Dreg >>> uimmb ; /* arithmetic right shift (b) */
Dreg = Dreg << uimmb (S) ; /* arithmetic Teft shift (b) */
A0 = A0 >>> uimmb ; /* arithmetic right shift (b) */

A0 = A0 << uimmb ; /* logical left shift (b) */

Al = Al >>> uimm5 ; /* arithmetic right shift (b) */

Al = Al <L uimmb ; /* logical left shift (b) */

Registered Shift Magnitude

Dreg >>>= Dreg ; /* arithmetic right shift (a) */

Dreg <<= Dreg ; /* logical left shift (a) */

Dreg_Tlo_hi = ASHIFT Dreg_lo_hi BY Dreg_Jlo (opt_sat) ; /*
arithmetic right shift (b) */

Dreg = ASHIFT Dreg BY Dreg_Jlo (opt_sat) ; /* arithmetic right

shift (b) */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-7

Instruction Overview

A0
Al

ASHIFT A0 BY Dreg_lo ; /* arithmetic right shift (b)*/
ASHIFT Al BY Dreg_lo ; /* arithmetic right shift (b)*/

Syntax Terminology
Dreg: R7-0
Dreg_lo_hi: R7-0.L, R7-0.H
Dreg_Tlo: R7-0.L
uimm4: 4-bit unsigned field, with a range of 0 through 15
uimmb: 5-bit unsigned field, with a range of 0 through 31

opt_sat: optional “(S)” (without the quotes) to invoke saturation of the
result. Not optional on versions that show “(S)” in the syntax.

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Arithmetic Shift instruction shifts a registered number a specified dis-
tance and direction while preserving the sign of the original number. The
sign bit value back-fills the left-most bit positions vacated by the arith-
metic right shift.

Specific versions of arithmetic left shift are supported, too. Arithmetic left
shift saturates the result if the value is shifted too far. A left shift that
would otherwise lose nonsign bits off the left-hand side saturates to the
maximum positive or negative value instead.

14-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

The “ASHIFT” versions of this instruction support two modes.

1. Default—arithmetic right shifts and logical left shifts. Logical left
shifts do not guarantee sign bit preservation. The “ASHIFT” versions
automatically select arithmetic and logical shift modes based on the
sign of the shift_magnitude.

2. Saturation mode—arithmetic right and left shifts that saturate if the
value is shifted left too far.

The “>>>=" and “>>>” versions of this instruction supports only arithmetic
right shifts. If left shifts are desired, the programmer must explicitly use
arithmetic “<<” (saturating) or logical “<<” (non-saturating) instructions.

Logical left shift instructions are duplicated in the Syntax section
for programmer convenience. See the Logical Shift instruction for
details on those operations.

The Arithmetic Shift instruction supports 16-bit and 32-bit instruction
length.

e The “>>>=" syntax instruction is 16 bits in length, allowing for
smaller code at the expense of flexibility.

e The “>>>7, “<<”, and “ASHIFT” syntax instructions are 32 bits in
length, providing a separate source and destination register, alter-
native data sizes, and parallel issue with Load/Store instructions.

Both syntaxes support constant and registered shift magnitudes.

For the ASHIFT versions, the sign of the shift magnitude determines the
direction of the shift.

* Dositive shift magnitudes produce Logical Left shifts.

* Negative shift magnitudes produce Arithmetic Right shifts.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-9

Instruction Overview

Table 14-1. Arithmetic Shifts

Syntax Description

“S>>=" The value in dest_reg is right-shifted by the number of places specified
by shift_magnitude. The data size is always 32 bits long. The entire 32
bits of the shift_magnitude determine the shift value. Shift magnitudes
larger than 0x1F result in either 0x00000000 (when the input value is
positive) or OxXFFFFFFFF (when the input value is negative).

Only right shifting is supported in this syntax; there is no equivalent
“<<<=" arithmetic left shift syntax. However, logical left shift is sup-
ported. See the Logical Shift instruction.

“>>>7, “<<”, and The value in src_reg is shifted by the number of places specified in
“ASHIFT” shift_magnitude, and the result is stored into dest_reg.

The “ASHIFT” versions can shift 32-bit Dreg and 40-bit Accumulator
registers by up to —32 through +31 places.

In essence, the magnitude is the power of 2 multiplied by the src_reg
number. Positive magnitudes cause multiplication (N x 2") whereas neg-
ative magnitudes produce division (N x 27" or N /2").

The dest_regand src_reg can be a 16-, 32-, or 40-bit register. Some ver-
sions of the Arithmetic Shift instruction support optional saturation.

See “Saturation” on page 1-17 for a description of saturation behavior.

For 16-bit src_reg, valid shift magnitudes are —16 through +15, zero
included. For 32- and 40-bit src_reg, valid shift magnitudes are —32
through +31, zero included.

The D-register versions of this instruction shift 16 or 32 bits for half-word
and word registers, respectively. The Accumulator versions shift all 40 bits
of those registers.

The D-register versions of this instruction do not implicitly modify the
src_reg values. Optionally, dest_reg can be the same D-register as
src_reg. Doing this explicitly modifies the source register.

The Accumulator versions always modify the Accumulator source value.

14-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Options
Option (S) invokes saturation of the result.

In the default case—without the saturation option—numbers can be
left-shifted so far that all the sign bits overflow and are lost. However,
when the saturation option is enabled, a left shift that would otherwise
shift nonsign bits off the left-hand side saturates to the maximum positive
or negative value instead. Consequently, with saturation enabled, the
result always keeps the same sign as the original number.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

The versions of this instruction that send results to a Dreg set flags as
follows.

e A7 is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.
eV is set if result overflows; cleared if no overflow.

e VS is set if V is set; unaffected otherwise.

e All other flags are unaffected.

The versions of this instruction that send results to an Accumulator A0 set
flags as follows.

e AZ is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.
* AVO is set if result is zero; cleared if nonzero.

* AVOS is set if AVO is set; unaffected otherwise.

* All other flags are unaffected.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-11

Instruction Overview

The versions of this instruction that send results to an Accumulator A1 set
flags as follows.

e AZ is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.
* AV is set if result is zero; cleared if nonzero.

* AV1S is set if AV1 is set; unaffected otherwise.

e All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
ro >>>= 19 ; /* 16-bit instruction Tength arithmetic right
shift */
r3.1 = r0.h >>> 7 ; /* arithmetic right shift, half-word */
r3.h =r0.h >>> 5 ; /* same as above; any combination of upper

and Tower half-words is supported */

14-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

r3.1 = r0.h >>> 7(s)
saturated */
rd =r2 >>> 20 /
ADO = A0 >>> 1 /*
ro >>>= r2 ; /* 16
shift */
r3.1 = r0.h << 12 (9S)
ro = r2 << 24(S) ;
r3.1 = ashift r0.h by
r3.h = ashift r0.1 by
r3.h = ashift r0.h by
r3.1 = ashift r0.1 by
r3.1 = ashift r0.h by
saturated */
r3.h = ashift r0.1 by
saturated */
r3.h = ashift r0.h by
r3.1 = ashift r0.1 by
r4 = ashift r2 by r7.
r4 = ashift r2 by r7.
A0 = ashift AO by r7.
Al = ashift Al by r7.
// If r0.h = -64,

r3.h =r0.h >>> 4 ;
sign */

Also See

Vector Arithmetic Shift,

Add, ROT (Rotate)

Special Applications

Shift/Rotate Operations

/* arithmetic right shift, half-word,

* arithmetic right shift, word */
arithmetic right shift, Accumulator */
-bit instruction Tength arithmetic right

; /* arithmetic left shift */
/*

arithmetic Teft shift */
r7.1 /* shift, half-word */
r7.1
r7.1
r7.1 ;
r7.1(s) /* shift, half-word,
r7.1(s) /* shift, half-word,
r7.10s)
r7.1 (s)
1 /* shift, word */
1 (s) /* shift, word, saturated */
1 /* shift, Accumulator */
1 /* shift, Accumulator */
then performing
/* . . produces r3.h = -4, preserving the

Vector Logical Shift, Logical Shift, Shift with

Multiply, divide, and normalize signed numbers

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

14-13

Instruction Overview

Logical Shift

General Form

dest_pntr = src_pntr >> 1
dest_pntr

src_pntr >> 2

dest_pntr = src_pntr << 1

dest_pntr = src_pntr << 2

dest_reg >>= shift_magnitude

dest_reg <<= shift_magnitude

dest_reg src_reg >> shift_magnitude
dest_reg = src_reg << shift_magnitude
dest_reg LSHIFT src_reg BY shift_magnitude

Syntax

Pointer Shift, Fixed Magnitude

Preg = Preg >> 1 ; /* right shift by 1 bit (a) */
Preg = Preg >> 2 ; /* right shift by 2 bit (a) */
Preg = Preg << 1 ; /* left shift by 1 bit (a) */
Preg = Preg << 2 /* left shift by 2 bit (a) */

Data Shift, Constant Shift Magnitude

Dreg >>= uimmb ; /* right shift (a) */

Dreg <<= uimmb ; /* left shift (a) */

Dreg_lo_hi = Dreg_Tlo_hi >> uimm4 ; /* right shift (b) */
Dreg_lo_hi = Dreg_Tlo_hi << uimm4 ; /* left shift (b) */
Dreg = Dreg >> uimmb ; /* right shift (b) */

Dreg = Dreg << uimmb ; /* left shift (b) */

AO = AD >> uimm5 ; /* right shift (b) */

A0 = A0 << wuimmb ; /* left shift (b) */

Al = A1 << uimmb ; /* left shift (b) */

Al = A1 >> uimmb ; /* right shift (b) */

14-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Data Shift, Registered Shift Magnitude

Dreg >>= Dreg ; /* right shift (a) */

Dreg <<= Dreg ; /* left shift (a) */

Dreg_lo_hi = LSHIFT Dreg_lo_hi BY Dreg_Tlo ; /* (b) */
Dreg = LSHIFT Dreg BY Dreg_lo ; /* (b) */

A0 = LSHIFT AO BY Dreg_lo ; /* (b) */

Al LSHIFT Al BY Dreg_lo ; /* (b)) */

Syntax Terminology
Dreg: R7-0
Dreg_Tlo: R7-0.L
Dreg_lo_hi: R7-0.L, R7-0.H
Preg: P5-0
uimm4: 4-bit unsigned field, with a range of 0 through 15

uimmb: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Logical Shift instruction logically shifts a register by a specified dis-
tance and direction.

Logical shifts discard any bits shifted out of the register and backfill
vacated bits with zeros.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-15

Instruction Overview

Four versions of the Logical Shift instruction support pointer shifting.
The instruction does not implicitly modify the input src_pntr value. For
the P-register versions of this instruction, dest_pntr can be the same
P-register as src_pntr. Doing so explicitly modifies the source register.

The rest of this description applies to the data shift versions of this
instruction relating to D-registers and Accumulators.

The Logical Shift instruction supports 16-bit and 32-bit instruction
length.

e The “>>=" and “<<=" syntax instruction is 16 bits in length, allow-
ing for smaller code at the expense of flexibility.

e The “>>7, “<<”, and “LSHIFT” syntax instruction is 32 bits in
length, providing a separate source and destination register, alter-
native data sizes, and parallel issue with Load/Store instructions.

Both syntaxes support constant and registered shift magnitudes.

Table 14-2. Logical Shifts

Syntax Description
“>>=7 The value in dest_reg is shifted by the number of places specified by
and “<<=" shift_magnitude. The data size is always 32 bits long. The entire 32 bits

of the shift_magnitude determine the shift value. Shift magnitudes larger
than 0x1F produce a 0x00000000 result.

» o«

“>>7, “<<”, The value in src_reg is shifted by the number of places specified in

and “LSHIFT” shift_magnitude, and the result is stored into dest_reg.

The LSHIFT versions can shift 32-bit Dreg and 40-bit Accumulator reg-
isters by up to —32 through +31 places.

For the LSHIFT version, the sign of the shift magnitude determines the
direction of the shift.

* Dositive shift magnitudes produce Left shifts.

* Negative shift magnitudes produce Right shifts.

14-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

The dest_reg and src_reg can be a 16-, 32-, or 40-bit register.

For the LSHIFT instruction, the shift magnitude is the lower 6 bits of the
Dreg_To, sign extended. The Dreg >>= Dreg and Dreg <<= Dreg instruc-
tions use the entire 32 bits of magnitude.

The D-register versions of this instruction shift 16 or 32 bits for half-word
and word registers, respectively. The Accumulator versions shift all 40 bits
of those registers.

Forty-bit Accumulator values can be shifted by up to —32 to +31 bit
places.

Shift magnitudes that exceed the size of the destination register produce
all zeros in the result. For example, shifting a 16-bit register value by 20
bit places (a valid operation) produces 0x0000.

A shift magnitude of zero performs no shift operation at all.

The D-register versions of this instruction do not implicitly modify the
src_reg values. Optionally, dest_reg can be the same D-register as
src_reg. Doing this explicitly modifies the source register.

Flags Affected
The P-register versions of this instruction do not affect any flags.

The versions of this instruction that send results to a Dreg set flags as
follows.

e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
eV is cleared.

* All other flags are unaffected.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-17

Instruction Overview

The versions of this instruction that send results to an Accumulator A0 set
flags as follows.

e AZ is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.
® AVO is cleared.

* All other flags are unaffected.

The versions of this instruction that send results to an Accumulator A1 set
flags as follows.

e A7 is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.
* AV1 is cleared.

e All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

14-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Example
p3 =p2 >> 1 ; /* pointer right shift by 1 */
p3 = p3 >> 2 ; /* pointer right shift by 2 */
p4d = pb KK 1 ; /* pointer left shift by 1 */
p0 = pl <K 2 ; /* pointer left shift by 2 */
r3 >>= 17 /* data right shift */
r3 =17 ; /* data Teft shift */
r3.1 =r0.1 > 4 ; /* data right shift, half-word register */
r3.1 =r0.h >> 4 ; /* same as above; half-word register combi-
nations are arbitrary */
r3.h = r0.1 <K 12 ; /* data left shift, half-word register */
r3.h = r0.h << 14 ; /* same as above; half-word register com-
binations are arbitrary */
r3a =r6 > 4 ; /* right shift, 32-bit word */
r3 = r6 << 4 ; /* left shift, 32-bit word */
a0 = a0 >> 7 ; /* Accumulator right shift */
al = al >> 25 ; /* Accumulator right shift */
a0 = a0 << 7 ; /* Accumulator Teft shift */
al = al << 14 ; /* Accumulator left shift */
r3 >>=r0 /* data right shift */
r3 <<= rl /* data left shift */
r3.1 = Ishift r0.1 by r2.1 ; /* shift direction controlled by

sign of R2.L */

r3.h = 1shift r0.1 by r2.1
a0 = Ishift a0 by r7.1 ;
al = Ishift al by r7.1
/* If r0.h = -64 (or OxFFCO), then performing . . . */
r3.h = r0.h >> 4 ; /* . . . produces r3.h = 0xO0FFC (or 4092),

losing the sign */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-19

Instruction Overview

Also See

Arithmetic Shift, ROT (Rotate), Shift with Add, Vector Arithmetic Shift,
Vector Logical Shift

Special Applications

None

14-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

ROT (Rotate)

General Form

dest_reg = ROT src_reg BY rotate_magnitude
accumulator_new = ROT accumulator_old BY rotate_magnitude

Syntax

Constant Rotate Magnitude

Dreg = ROT Dreg BY immé6 ; /* (b) */
A0 = ROT AO BY immé6 ; /* (b)) */
Al = ROT Al BY immé6 ; /* (b) */

Registered Rotate Magnitude

Dreg = ROT Dreg BY Dreg_lo ; /* (b)) */
A0 = ROT AO BY Dreg_lo ; /* (b) */
Al = ROT Al BY Dreg_lo ; */ (b)) */

Syntax Terminology
Dreg: R7-0

immé: 6-bit signed field, with a range of —32 through +31

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Rotate instruction rotates a register through the CC bit a specified dis-
tance and direction. The CC bit is in the rotate chain. Consequently, the
first value rotated into the register is the initial value of the CC bit.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-21

Instruction Overview

Rotation shifts all the bits either right or left. Each bit that rotates out of
the register (the LSB for rotate right or the MSB for rotate left) is stored in
the CC bit, and the CC bit is stored into the bit vacated by the rotate on the

opposite end of the register.

If 31

D-register: 1010 1111 0000 0000 0000 0000 0001 1010
CC bit: N (“1” or “0”)

Rotate left 1 bit 31

D—register: 0101 1110 0000 0000 0000 0000 0011 OION
CC bit: 1

Rotate left 1 bit again 31

D-register: 1011 1100 0000 0000 0000 0000 0110 10N1
CC bit: 0

If 31

D—register: 1010 1111 0000 0000 0000 0000 0001 1010
CC bit: N (“1” or “0”)

Rotate right 1 bit 31

D-register: N101 0111 1000 0000 0000 0000 0000 1101
CC bit: 0

Rotate right 1 bit again 31

D—register: ON10O 1011 1100 0000 0000 0000 0000 0110
CC bit: 1

14-22

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

The sign of the rotate magnitude determines the direction of the rotation.
 Dositive rotate magnitudes produce Left rotations.
* Negative rotate magnitudes produce Right rotations.

Valid rotate magnitudes are —32 through +31, zero included. The Rotate
instruction masks and ignores bits that are more significant than those
allowed. The distance is determined by the lower 6 bits (sign extended) of
the shift_magnitude.

Unlike shift operations, the Rotate instruction loses no bits of the source
register data. Instead, it rearranges them in a circular fashion. However,
the last bit rotated out of the register remains in the CC bit, and is not
returned to the register. Because rotates are performed all at once and not
one bit at a time, rotating one direction or another regardless of the rotate
magnitude produces no advantage. For instance, a rotate right by two bits
is no more efficient than a rotate left by 30 bits. Both methods produce
identical results in identical execution time.

The D-register versions of this instruction rotate all 32 bits. The Accumu-
lator versions rotate all 40 bits of those registers.

The D-register versions of this instruction do not implicitly modify the
src_reg values. Optionally, dest_reg can be the same D-register as
src_reg. Doing this explicitly modifies the source register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-23

Instruction Overview

Flags Affected
The following flags are affected by the Rotate instruction.
* (C contains the latest value shifted into it.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r4 = rot rl by 8 ; /* rotate left */
r4d = rot rl by -5 ; /* rotate right */
a0 = rot a0 by 22 ; /* rotate Accumulator Tleft */
al = rot al by -31 ; /* rotate Accumulator right */
r4 = rot rl by r2.1

a0 rot a0 by r3.1
al = rot al by r7.1

14-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift/Rotate Operations

Also See
Arithmetic Shift, Logical Shift

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-25

Instruction Overview

14-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

15 ARITHMETIC OPERATIONS

Instruction Summary

“ABS” on page 15-3

“Add” on page 15-6

“Add/Subtract — Prescale Down” on page 15-10
“Add/Subtract — Prescale Up” on page 15-13
“Add Immediate” on page 15-16

“DIVS, DIVQ (Divide Primitive)” on page 15-19
“EXPAD]J” on page 15-26

“MAX” on page 15-30

“MIN” on page 15-32

“Modify — Decrement” on page 15-34

“Modify — Increment” on page 15-37
“Multiply 16-Bit Operands” on page 15-43
“Multiply 32-Bit Operands” on page 15-51

“Multiply and Multiply-Accumulate to Accumulator” on
page 15-53

“Multiply and Multiply-Accumulate to Half-Register” on
page 15-58

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

15-1

Instruction Overview

e “Multiply and Multiply-Accumulate to Data Register” on
page 15-67

* “Negate (Two’s Complement)” on page 15-73
e “RND (Round to Half-Word)” on page 15-77
e “Saturate” on page 15-80

o “SIGNBITS” on page 15-83

e “Subtract” on page 15-86

e “Subtract Immediate” on page 15-90

Instruction Overview

This chapter discusses the instructions that specify arithmetic operations.
Users can take advantage of these instructions to add, subtract, divide, and
multiply, as well as to calculate and store absolute values, detect expo-
nents, round, saturate, and return the number of sign bits.

15-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ABS

General Form

dest_reg = ABS src_reg
Syntax

A0 = ABS A0 ; /* (b)) */
A0 = ABS Al ; /* (b) */
Al = ABS A0 ; /* (b)) */
Al = ABS Al ; /* (b) */
Al = ABS Al, A0 = ABS AQ ;
Dreg = ABS Dreg ; /* (b)

Syntax Terminology

Dreg: R7-0

Instruction Length

/* (b)) */

Arithmetic Operations

In the syntax, comment (b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-3

Instruction Overview

Functional Description

The Dreg form of the Absolute Value instruction calculates the absolute
value of a 32-bit register and stores it into a 32-bit dest_reg. The accumu-
lator form of this instruction takes the absolute value of a 40-bit input
value in a register and produces a 40-bit result. Calculation is done
according to the following rules.

If the input value is positive or zero, copy it unmodified to the
destination.

If the input value is negative, subtract it from zero and store the
result in the destination. Saturation is automatically performed
with the instruction, so taking the absolute value of the larg-
est-magnitude negative number returns the largest-magnitude
positive number.

The ABS operation can also be performed on both Accumulators by a sin-
gle instruction.

Flags Affected

This instruction affects flags as follows.

AZ is set if result is zero; cleared if nonzero. In the case of two
simultaneous operations, AZ represents the logical “OR” of the two.

AN is cleared.

V is set if the maximum negative value is saturated to the maximum
positive value and the dest_reg is a Dreg; cleared if no saturation.

VS is set if V is set; unaffected otherwise.

AVO is set if result overflows and the dest_reg is AO; cleared if no
overflow.

AVOS is set if AVO is set; unaffected otherwise.

15-4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

®

Arithmetic Operations

AV1 is set if result overflows and the dest_reg is Al; cleared if no

overflow.

AV1S is set if AV1 is set; unaffected otherwise.

All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

a0 =
a0 =
al =
al =
al =
r3 =

Also See

abs
abs
abs
abs
abs
abs

a0 ;
al ;
a0 ;
al ;

al,

al0=abs a0 ;

rl ;

Vector ABS

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-5

Instruction Overview

Add

General Form

dest_reg = src_reg_1l + src_reg_2?

Syntax
Pointer Registers — 32-Bit Operands, 32-Bit Result
Preg = Preg + Preg ; /* (a) */
Data Registers — 32-Bit Operands, 32-bit Result

Dreg = Dreg + Dreg ; /* no saturation support but shorter
instruction length (a) */

Dreg = Dreg + Dreg (sat_flag) ; /* saturation optionally sup-
ported, but at the cost of longer instruction length (b) */

Data Registers — 16-Bit Operands, 16-Bit Result

Dreg_lo_hi = Dreg_lo_hi + Dreg_lo_hi (sat_flag) ; /* (b)) */

Syntax Terminology
Preg: P5-0, SP, FP
Dreg: R7-0
Dreg_lo_hi: R7-0.L, R7-0.H

sat_flag: nonoptional saturation flag, (S) or (NS)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

15-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Functional Description

The Add instruction adds two source values and places the result in a des-
tination register.

There are two ways to specify addition on 32-bit data in D-registers:
* One does not support saturation (16-bit instruction length)
* The other supports optional saturation (32-bit instruction length)

The shorter 16-bit instruction takes up less memory space. The larger
32-bit instruction can sometimes save execution time because it can be
issued in parallel with certain other instructions. See “Parallel Issue” on

page 15-5.

The D-register version that accepts 16-bit half-word operands stores the
result in a half-word data register. This version accepts any combination
of upper and lower half-register operands, and places the results in the
upper or lower half of the destination register at the user’s discretion.

All versions that manipulate 16-bit data are 32 bits long.

Options

In the syntax, where sat_f7ag appears, substitute one of the following
values.

(S) — saturate the result
(NS) — no saturation

See “Saturation” on page 1-17 for a description of saturation behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-7

Instruction Overview

Flags Affected
D-register versions of this instruction set flags as follows.

e A7 is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
e ACO is set if the operation generates a carry; cleared if no carry.
eV is set if result overflows; cleared if no overflow.
e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register versions of this instruction do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

15-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Example
r5=r2+rl ; /* 16-bit instruction Tength add, no
saturation */
rb =r2 + rl(ns) ; /* same result as above, but 32-bit
instruction length */
rb=r2 + rl(s) ; /* saturate the result */
p5 = p3 + pO0 ;
/* If r0.1 = 0x7000 and r7.1 = 0x2000, then . . . */
rd.1 =r0.1 + r7.1 (ns) ; /* . . . produces r4.1 = 0x9000,
because no saturation is enforced */
/* If r0.1 = 0x7000 and r7.h = 0x2000, then . . . */
rd.1 =r0.1 + r7.h (s) ; /* . . . produces r4.1 = O0x7FFF, satu-
rated to the maximum positive value */
ro.1T = r2.h + r4.1(ns)
ri.17 =r3.h + r7.h(ns)
rd.h =r0.1 + r7.1 (ns) ;
ré.h = r0.1 + r7.h (ns)
ro.h = r2.h + rd.1(s) ; /* saturate the result */
rl.h = r3.h + r7.h(ns) ;
Also See
Modify — Increment, Add with Shift, Shift with Add, Vector Add /
Subtract
Special Applications
None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-9

Instruction Overview

Add/Subiract - Prescale Down

General Form

dest_reg = src_reg_0 + src_reg_1 (RND20)

dest_reg = src_reg_0 - src_reg_1 (RND20)
Syntax
Dreg_lo_hi = Dreg + Dreg (RND20) ; // (b)

Dreg_lo_hi = Dreg - Dreg (RND20) ; // (b)

Syntax Terminology

Dreg: R7-0

Dreg_lo_hi: R7-0.L, R7-0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Add/Subtract -- Prescale Down instruction combines two 32-bit val-
ues to produce a 16-bit result as follows:

Prescale down both input operand values by arithmetically shifting
them four places to the right

Add or subtract the operands, depending on the instruction version
used

Round the upper 16 bits of the result

Extract the upper 16 bits to the dest_reg

15-10

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

The instruction supports only biased rounding. The RND_MOD bit in the
ASTAT register has no bearing on the rounding behavior of this instruction.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Flags Affected
The following flags are affected by this instruction:
e A7 is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
* Vis cleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
rl.1 = r6+r7(rnd20)
ri.1 = r6-r7(rnd20) ;
rl.h = r6+r7(rnd20) ;
rl.h = r6-r7(rnd20)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-11

Instruction Overview

Also See
Add/Subtract — Prescale Up, RND (Round to Half~-Word), Add

Special Applications

Typically, use the Add/Subtract — Prescale Down instruction to provide
an IEEE 1180—compliant 2D 8x8 inverse discrete cosine transform.

15-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Add/Subtract - Prescale Up

General Form

dest_reg = src_reg_0 + src_reg_1 (RND12)

dest_reg = src_reg_0 - src_reg_1 (RND12)
Syntax
Dreg_lo_hi = Dreg + Dreg (RND12) ; // (b)

Dreg_lo_hi = Dreg - Dreg (RND12) ; // (b)

Syntax Terminology
Dreg: R7-0

Dreg_lo_hi: R7-0.L, R7-0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Add/Subtract — Prescale Up instruction combines two 32-bit values
to produce a 16-bit result as follows:

* Prescale up both input operand values by shifting them four places
to the left

* Add or subtract the operands, depending on the instruction version
used

* Round and saturate the upper 16 bits of the result

* Extract the upper 16 bits to the dest_reg

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-13

Instruction Overview

The instruction supports only biased rounding. The RND_MOD bit in the
ASTAT register has no bearing on the rounding behavior of this instruction.

See “Saturation” on page 1-17 for a description of saturation behavior.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Flags Affected
The following flags are affected by this instruction:
e A7 is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
eV is set if result saturates; cleared if no saturation.
e VS is set if V is set; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
ri.1 = r6+r7(rndl2)
ri.1 = r6-r7(rndl2)
ri.h = r6+r7(rndl2) ;
rl.h = r6-r7(rndl2)

15-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Also See
RND (Round to Half~Word), Add/Subtract — Prescale Down, Add

Special Applications

Typically, use the Add/Subtract — Prescale Up instruction to provide an
IEEE 1180—compliant 2D 8x8 inverse discrete cosine transform.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-15

Instruction Overview

Add Immediate

General Form

register += constant

Syntax
Dreg += imm7 ; /* Dreg = Dreg + constant (a) */
Preg += imm7 ; /* Preg = Preg + constant (a) */
Ireg += 2 ; /* increment Ireg by 2, half-word address pointer

increment (a) */
Ireg += 4 /* word address pointer increment (a) */

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP
Ireg: 13-0

imm7: 7-bit signed field, with the range of 64 through +63

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Add Immediate instruction adds a constant value to a register without
saturation.

To subtract immediate values from I-registers, use the Subtract
Immediate instruction.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”

15-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Flags Affected

D-register versions of this instruction set flags as follows.

AZ is set if result is zero; cleared if nonzero.

AN is set if result is negative; cleared if non-negative.

ACO is set if the operation generates a carry; cleared if no carry.
V is set if result overflows; cleared if no overflow.

VS is set if V is set; unaffected otherwise.

All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register and I-register versions of this instruction do not affect any

flags.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-17

Instruction Overview

Required Mode

User & Supervisor

Parallel Issue

The Index Register versions of this instruction can be issued in parallel
with specific other instructions. For details, see “Issuing Parallel Instruc-
tions” on page 20-1.

The Data Register and Pointer Register versions of this instruction cannot
be issued in parallel with other instructions.

Example
ro += 40 ;
p5 += -4 /* decrement by adding a negative value */
i0 += 2
il += 4
Also See

Subtract Immediate

Special Applications

None

15-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

DIVS, DIVQ (Divide Primitive)

General Form

DIVS (dividend_register, divisor_register)
DIVQ (dividend_register, divisor_register)

Syntax

DIVS (Dreg, Dreg) ; /* Initialize for DIVQ. Set the AQ flag
based on the signs of the 32-bit dividend and the 16-bit divisor.
Left shift the dividend one bit. Copy AQ into the dividend LSB.
(a) */

DIVQ (Dreg, Dreg) ; /* Based on AQ flag, either add or sub-
tract the divisor from the dividend. Then set the AQ flag based
on the MSBs of the 32-bit dividend and the 16-bit divisor. Left
shift the dividend one bit. Copy the logical inverse of AQ into
the dividend LSB. (a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Divide Primitive instruction versions are the foundation elements of a
nonrestoring conditional add-subtract division algorithm. See “Example”
on page 15-24 for such a routine.

The dividend (numerator) is a 32-bit value. The divisor (denominator) is
a 16-bit value in the lower half of divisor_register. The high-order
half-word of divisor_register is ignored entirely.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-19

Instruction Overview

The division can either be signed or unsigned, but the dividend and divi-
sor must both be of the same type. The divisor cannot be negative. A
signed division operation, where the dividend may be negative, begins the
sequence with the DIVS (“divide-sign”) instruction, followed by repeated
execution of the D1VQ (“divide-quotient”) instruction. An unsigned divi-
sion omits the DIVS instruction. In that case, the user must manually clear
the AQ flag of the ASTAT register before issuing the DIVQ instructions.

Up to 16 bits of signed quotient resolution can be calculated by issuing
DIVS once, then repeating the DIVQ instruction 15 times. A 16-bit
unsigned quotient is calculated by omitting DIVS, clearing the AQ flag, then
issuing 16 DIVQ instructions.

Less quotient resolution is produced by executing fewer DIVQ iterations.

The result of each successive addition or subtraction appears in
dividend_register, aligned and ready for the next addition or subtraction
step. The contents of divisor_register are not modified by this
instruction.

The final quotient appears in the low-order half-word of
dividend_register at the end of the successive add/subtract sequence.

DIVS computes the sign bit of the quotient based on the signs of the divi-
dend and divisor. DIVS initializes the AQ flag based on that sign, and
initializes the dividend for the first addition or subtraction. DIVS performs
no addition or subtraction.

DIVQ either adds (dividend + divisor) or subtracts (dividend — divisor)
based on the AQ flag, then reinitializes the AQ flag and dividend for the next
iteration. If AQ is 1, addition is performed; if AQ is 0, subtraction is
performed.

See “Flags Affected” on page 15-4 for the conditions that set and clear the
AQ flag.

15-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Both instruction versions align the dividend for the next iteration by left
shifting the dividend one bit to the left (without carry). This left shift
accomplishes the same function as aligning the divisor one bit to the right,
such as one would do in manual binary division.

The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor. Let:

* NL represent the number of bits to the left of the binal point of the

dividend, and

* NR represent the number of bits to the right of the binal point of

the dividend (numerator);

* DL represent the number of bits to the left of the binal point of the

divisor, and

* DR represent the number of bits to the right of the binal point of

the divisor (denominator).

Then the quotient has NL — DL + 1 bits to the left of the binal point and
NR — DR - 1 bits to the right of the binal point. See the following

example.
Dividend (numerator) BBBB B .
NL bits
Divisor (denominator) BB .
DL bits
Quotient BBBB .
NL - DL +1
(5 -2 +1)
4.12 format

BBB BBBB BBBB BBBB BBBB BBBB BBBB
NR bits

BB BBBB BBBB BBBB
DR bits

BBBB BBBB BBBB

NR - DR -1
(27 - 14 - 1)

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format), the result is fully

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-21

Instruction Overview

fractional (in 1.15 format) and therefore the upper 16 bits of the dividend
must have a smaller magnitude than the divisor to avoid a quotient over-
flow beyond 16 bits. If an overflow occurs, AVO is set. User software is able
to detect the overflow, rescale the operand, and repeat the division.

Dividing two integers (32.0 dividend by a 16.0 divisor) results in an
invalid quotient format because the result will not fit in a 16-bit register.
To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), one must shift the
dividend one bit to the left (into 31.1 format) before dividing. This
requirement to shift left limits the usable dividend range to 31 bits. Viola-
tions of this range produce an invalid result of the division operation.

The algorithm overflows if the result cannot be represented in the format
of the quotient as calculated above, or when the divisor is zero or less than
the upper 16 bits of the dividend in magnitude (which is tantamount to
multiplication).

Error Conditions

Two special cases can produce invalid or inaccurate results. Software can
trap and correct both cases.

1. The Divide Primitive instructions do not support signed division
by a negative divisor. Attempts to divide by a negative divisor result
in a quotient that is, in most cases, one LSB less than the correct
value. If division by a negative divisor is required, follow the steps
below.

* Before performing the division, save the sign of the divisor
in a scratch register.

¢ (Calculate the absolute value of the divisor and use that value
as the divisor operand in the Divide Primitive instructions.

15-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

After the divide sequence concludes, multiply the resulting
quotient by the original divisor sign.

The quotient then has the correct magnitude and sign.

2. The Divide Primitive instructions do not support unsigned divi-
sion by a divisor greater than 0x7FFF. If such divisions are
necessary, prescale both operands by shifting the dividend and divi-
sor one bit to the right prior to division. The resulting quotient
will be correctly aligned.

Of course, prescaling the operands decreases their resolution, and
may introduce one LSB of error in the quotient. Such error can be
detected and corrected by the following steps.

Save the original (unscaled) dividend and divisor in scratch
registers.

Prescale both operands as described and perform the divi-
sion as usual.

Multiply the resulting quotient by the unscaled divisor. Do
not corrupt the quotient by the multiplication step.

Subtract the product from the unscaled dividend. This step
produces an error value.

Compare the error value to the unscaled divisor.
e Iferror > divisor, add one LSB to the quotient.

e Iferror < divisor, subtract one LSB from the
quotient.

e If error = divisor, do nothing.

Tested examples of these solutions are planned to be added in a later edi-
tion of this document.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-23

Instruction Overview

Flags Affected

This instruction affects flags as follows.

* AQequals dividend_msB Exclusive-OR divisor_mMs8 where dividend
is a 32-bit value and divisor is a 16-bit value.

* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
/* Evaluate given a signed integer dividend and divisor */
p0 = 15 ; /* Evaluate the quotient to 16 bits. */
ro = 70 ; /* Dividend, or numerator */
rl. =5 /* Divisor, or denominator */
ro <=1 ; /* Left shift dividend by 1 needed for integer divi-
sion */
divs (r0, rl) ; /* Evaluate quotient MSB. Initialize AQ flag
and dividend for the DIVQ loop. */
loop .div_prim 1c0=p0 ; /* Evaluate DIVQ p0=15 times. */

loop_begin .div_prim ;
divg (r0, rl) ;
loop_end .div_prim ;

15-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

rO = r0.1 (x) ; /* Sign extend the 16-bit quotient to 32bits.
*/
/* r0 contains the quotient (70/5 = 14). */

Also See
LSETUP, LOOP, Multiply 32-Bit Operands

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-25

Instruction Overview

EXPADJ

General Form

dest_reg = EXPADJ (sample_register, exponent_register)

Syntax
Dreg_lo = EXPADJ (Dreg, Dreg_lo) ; /* 32-bit sample (b) */
Dreg_lo = EXPADJ (Dreg_lo_hi, Dreg_lo) ; /* one 16-bit sam-
ple (b) */
Dreg_lo = EXPADJ (Dreg, Dreg_lo) (V) ; /* two 16-bit samples
(b) */

Syntax Terminology
Dreg_lo_hi: R7-0.L, R7-0.H
Dreg_Tlo: R7-0.L

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Exponent Detection instruction identifies the largest magnitude of
two or three fractional numbers based on their exponents. It compares the
magnitude of one or two sample values to a reference exponent and
returns the smallest of the exponents.

The exponent is the number of sign bits minus one. In other words, the
exponent is the number of redundant sign bits in a signed number.

15-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Exponents are unsigned integers. The Exponent Detection instruction
accommodates the two special cases (0 and —1) and always returns the
smallest exponent for each case.

The reference exponent and destination exponent are 16-bit half-word
unsigned values. The sample number can be either a word or half-word.
The Exponent Detection instruction does not implicitly modify input val-
ues. The dest_reg and exponent_register can be the same D-register.
Doing this explicitly modifies the exponent_register.

The valid range of exponents is 0 through 31, with 31 representing the
smallest 32-bit number magnitude and 15 representing the smallest 16-bit
number magnitude.

Exponent Detection supports three types of samples—one 32-bit sample,
one 16-bit sample (either upper-half or lower-half word), and two 16-bit
samples that occupy the upper-half and lower-half words of a single 32-bit
register.

Flags Affected

None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-27

Instruction Overview

Example
r5.1 = expadj (r4, r2.1) ;

e Assume R4 = 0x0000 0052 and R2.L = 12. Then R5.L becomes 12.

Assume R4 = 0xFFFF 0052 and R2.L = 12. Then R5.L becomes 12.

Assume R4 = 0x0000 0052 and R2.L = 27. Then R5.L becomes 24.

Assume R4 = 0xF000 0052 and R2.L = 27. Then R5.L becomes 3.

r5.1 = expadj (r4.1, r2.1) ;

Assume R4.L = 0x0765 and R2.L = 12. Then R5.L becomes 4.

Assume R4.L = 0xC765 and R2.L = 12. Then R5.L becomes 1.

r5.1 = expadj (r4.h, r2.1) ;

Assume R4.H = 0x0765 and R2.L = 12. Then R5.L becomes 4.

Assume R4.H = 0xC765 and R2.L = 12. Then R5.L becomes 1.

r5.1 = expadj (r4, r2.1)(v) ;

Assume R4.L = 0x0765, R4.H = 0xFF74 and R2.L = 12. Then R5.L
becomes 4.

Assume R4.L = 0x0765, R4.H = 0xE722 and R2.L = 12. Then R5. L
becomes 2.

Also See
SIGNBITS

15-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Special Applications

EXPADJ detects the exponent of the largest magnitude number in an array.
The detected value may then be used to normalize the array on a subse-
quent pass with a shift operation. Typically, use this feature to implement

block floating-point capabilities.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-29

Instruction Overview

MAX

General Form

dest_reg = MAX (src_reg_0, src_reg_1)

Syntax

Dreg = MAX (Dreg , Dreg) ; /* 32-bit operands (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Maximum instruction returns the maximum, or most positive, value

of the source registers. The operation subtracts src_reg_1I from src_reg_0
and selects the output based on the signs of the input values and the arith-
metic flags.

The Maximum instruction does not implicitly modify input values. The
dest_reg can be the same D-register as one of the source registers. Doing
this explicitly modifies the source register.

Flags Affected
This instruction affects flags as follows.
e AZ is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.

15-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For

more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode
User & Supervisor
Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r5 = max (r2, r3) ;

e Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 =
0x0000000F.

e Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 =
0x0000000F.

e Assume R2 = OxFFFFFFFF and R3 = 0x0000000F, then R5 =
0x0000000F.

Also See

MIN, Vector MAX, Vector MIN, VIT_MAX (Compare-Select)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-31

Instruction Overview

MIN

General Form

dest_reg = MIN (src_reg_0, src_reg_1)

Syntax

Dreg = MIN (Dreg , Dreg) ; /* 32-bit operands (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Minimum instruction returns the minimum value of the source regis-
ters to the dest_reg. (The minimum value of the source registers is the
value closest to — o) The operation subtracts src_reg_1I from src_reg_0
and selects the output based on the signs of the input values and the arith-
metic flags.

The Minimum instruction does not implicitly modify input values. The
dest_reg can be the same D-register as one of the source registers. Doing
this explicitly modifies the source register.

Flags Affected
This instruction affects flags as follows.
e A7 is set if result is zero; cleared if nonzero.

* AN is set if result is negative; cleared if non-negative.

15-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

eV is cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode
User & Supervisor
Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r5 min (r2, r3) ;

e Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 =
0x00000000.

e Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 =
0x80000000.

e Assume R2 = OxFFFFFFFF and R3 = 0x0000000F, then R5 =
OxFFFFFFFF.

Also See

MAX, Vector MAX, Vector MIN

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-33

Instruction Overview

Modify — Decrement

General Form
dest_reg -= src_reg

Syntax

40-Bit Accumulators

A0 -= Al ; /* dest_reg_new = dest_reg_old - src_reg, saturate
the result at 40 bits (b) */
AO -= Al (W32) ; /* dest_reg_new = dest_reg_old - src_reg, dec-

rement and saturate the result at 32 bits, sign extended (b) */
32-Bit Registers

Preg -= Preg ; /* dest_reg_new = dest_reg_old - src_reg (a) */
Ireg -= Mreg ; /* dest_reg_new dest_reg_old - src_reg (a) */

Syntax Terminology
Preg. P5-0, SP, FP
Ireg: 13-0

Mreg: M3-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Modify — Decrement instruction decrements a register by a
user-defined quantity.

15-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

See “Saturation” on page 1-17 for a description of saturation behavior.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Flags Affected

The Accumulator versions of this instruction affect the flags as follows.

AZ is set if result is zero; cleared if nonzero.

AN is set if result is negative; cleared if non-negative.

ACO is set if the operation generates a carry; cleared if no carry.
AVO is set if result saturates; cleared if no saturation.

AVOS is set if AVO is set; unaffected otherwise.

All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register and I-register versions do not affect any flags.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-35

Instruction Overview

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction and the 16-bit versions that use
Ireg can be issued in parallel with specific other 16-bit instructions. For
details, see “Issuing Parallel Instructions” on page 20-1.

All other 16-bit versions of this instruction cannot be issued in parallel
with other instructions.

Example
a0 -= al ;
a0 -= al (w32) ;
p3 -=p0 ;
i1 = m2 ;
Also See

Modify — Increment, Subtract, Shift with Add

Special Applications

Typically, use the Index Register and Pointer Register versions of the
Modify — Decrement instruction to decrement indirect address pointers
for load or store operations.

15-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Modify - Increment

General Form

dest_reg += src_reg
dest_reg = (src_reg_0 += src_reg_1)

Syntax

40-Bit Accumulators

AO += Al ; /* dest_reg_new = dest_reg_old + src_reg, saturate
the result at 40 bits (b) */
A0 += A1l (W32) ; /* dest_reg_new = dest_reg_old + src_reg,

signed saturate the result at 32 bits, sign extended (b) */
32-Bit Registers

Preg += Preg (BREV) ; /* dest_reg_new = dest_reg_old +
src_reg, bit reversed carry, only (a) */

Ireg += Mreg (opt_brev) ; /* dest_reg_new = dest_reg_old +
src_reg, optional bit reverse (a) */

Dreg = (A0 += A1l) ; /* increment 40-bit A0 by Al with satura-
tion at 40 bits, then extract the result into a 32-bit register
with saturation at 32 bits (b) */

16-Bit Half-Word Data Registers

Dreg_Tlo_hi = (A0 += Al) ; /* Increment 40-bit A0 by Al with
saturation at 40 bits, then extract the result into a half regis-
ter. The extraction step involves first rounding the 40-bit

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-37

Instruction Overview

result at bit 16 (according to the RND_MOD bit in the ASTAT reg-
ister), then saturating at 32 bits and moving bits 31:16 into the
half register. (b) */

Syntax Terminology
Dreg: R7-0
Preg: P5-0, SP, FP
Ireg: 13-0
Mreg: M3-0
opt_brev: optional bit reverse syntax; replace with (brev)

Dreg_lo_hi: R7-0.L, R7-0.H

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Modify — Increment instruction increments a register by a
user-defined quantity. In some versions, the instruction copies the result
into a third register.

The 16-bit Half-Word Data Register version increments the 40-bit A0 by
Al with saturation at 40 bits, then extracts the result into a half register.
The extraction step involves first rounding the 40-bit result at bit 16
(according to the RND_MOD bit in the ASTAT register), then saturating at 32
bits and moving bits 31-16 into the half register.

See “Saturation” on page 1-17 for a description of saturation behavior.

15-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

(BREV)—Dbit reverse carry adder. When specified, the carry bit is propagated
from left to right, as shown in Figure 15-1, instead of right to left.

When bit reversal is used on the Index Register version of this instruction,
circular buffering is disabled to support operand addressing for FFT,
DCT and DFT algorithms. The Pointer Register version does not support
circular buffering in any case.

Table 15-1. Bit Addition Flow for the Bit Reverse (BREV) Case

an a2 al a0

| cn | c2 | cl |

+ + + + c0
—P —P —P

| | I |

bn b2 bl b0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-39

Instruction Overview

Flags Affected

The versions of the Modify — Increment instruction that store the results
in an Accumulator affect flags as follows.

AZ is set if Accumulator result is zero; cleared if nonzero.
AN is set if Accumulator result is negative; cleared if non-negative.
ACO is set if the operation generates a carry; cleared if no carry.

V is set if result saturates and the dest_regis a Dreg; cleared if no
saturation.

VS is set if V is set; unaffected otherwise.

AVO is set if result saturates and the dest_reg is A0; cleared if no
saturation.

AVOS is set if AVO is set; unaffected otherwise.

All other flags are unaffected.

The versions of the Modify — Increment instruction that store the results
in a Data Register affect flags as follows.

AZ is set if Data Register result is zero; cleared if nonzero.
AN is set if Data Register result is negative; cleared if non-negative.
ACO is set if the operation generates a carry; cleared if no carry.

V is set if result saturates and the dest_regis a Dreg; cleared if no
saturation.

VS is set if V is set; unaffected otherwise.

AVO is set if result saturates and the dest_reg is A0; cleared if no
saturation.

15-40

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

* AVOS is set if AVO is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The Pointer Register, Index Register, and Modify Register versions of the

instruction do not affect the flags.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction and the 16-bit versions that use
Ireg can be issued in parallel with specific other 16-bit instructions. For
details, see “Issuing Parallel Instructions” on page 20-1.

All other 16-bit versions of this instruction cannot be issued in parallel
with other instructions.

Example

a0 += al ;
a0 += al (w32) ;
p3 += p0 (brev)

il +=ml ;

i0 += m0 (brev) ; /* optional carry bit reverse mode */
r5 = (a0 += al)

re.1 = (a0 += al) ;

1
r5.h = (a0 += al) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-41

Instruction Overview

Also See
Modify — Decrement, Add, Shift with Add

Special Applications

Typically, use the Index Register and Pointer Register versions of the
Modify — Increment instruction to increment indirect address pointers for
load or store operations.

15-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Multiply 16-Bit Operands

General Form

dest_reg = src_reg_0 * src_reg_1 (opt_mode)

Syntax

Multiply-And-Accumulate Unit 0 (MACO)

Dreg_lo = Dreg_lo_hi * Dreg_Jlo_hi (opt_mode_1) ; /* 16-bit
result into the destination lower half-word register (b) */
Dreg_even = Dreg_Jlo_hi * Dreg_lo_hi (opt_mode_2) ; /* 32-bit

result (b) */

Multiply-And-Accumulate Unit 1 (MACI)

Dreg_hi = Dreg_lo_hi * Dreg_Tlo_hi (opt_mode_1) ; /* 16-bit
result into the destination upper half-word register (b) */
Dreg_odd = Dreg_Tlo_hi * Dreg_1lo_hi (opt_mode_2) ; /* 32-bit

result (b) */

Syntax Terminology
Dreg: R7-0
Dreg_Tlo: R7-0.L
Dreg_hi: R7-0.H
Dreg_lo_hi: R7-0.L, R7-0.H

opt_mode_1I: Optionally (FU), (IS), (TU), (T), (TFU), (S2RND), (ISS2) or
(IH). Optionally, (M) can be used with MACI versions either alone or
with any of these other options. When used together, the option flags
must be enclosed in one set of parentheses and separated by a comma.
Example: (M, IS)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-43

Instruction Overview

opt_mode_2: Optionally (FU), (IS), or (1552). Optionally, (M) can be
used with MACI1 versions either alone or with any of these other options.
When used together, the option flags must be enclosed in one set of
parenthesis and separated by a comma. Example: (M, 19)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply 16-Bit Operands instruction multiplies the two 16-bit oper-
ands and stores the result directly into the destination register with
saturation.

The instruction is like the Multiply-Accumulate instructions, except that
Multiply 16-Bit Operands does not affect the Accumulators.

Operations performed by the Multiply-and-Accumulate Unit 0 (MACO)
portion of the architecture load their 16-bit results into the lower half of
the destination data register; 32-bit results go into an even numbered
Dreg. Operations performed by MACI load their results into the upper
half of the destination data register or an odd numbered Dreg.

In 32-bit result syntax, the MAC performing the operation will be deter-
mined by the destination Dreg. Even-numbered Dregs (R6, R4, R2, RO)
invoke MACO. Odd-numbered Dregs (R7, R5, R3, R1) invoke MACI.
Therefore, 32-bit result operations using the (M) option can only be per-
formed on odd-numbered Dreg destinations.

In 16-bit result syntax, the MAC performing the operation will be deter-
mined by the destination Dreg half. Low-half Dregs (R7-0.L) invoke
MACO. High-half pregs (R7-0.H) invoke MAC1. Therefore, 16-bit result
operations using the (M) option can only be performed on high-half nreg
destinations.

15-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

The versions of this instruction that produce 16-bit results are affected by
the RND_MOD bit in the ASTAT register when they copy the results into the
16-bit destination register. RND_M0D determines whether biased or unbi-
ased rounding is used. RND_MOD controls rounding for all versions of this
instruction that produce 16-bit results except the (IS), (IU) and (I5S2)
options.

See “Saturation” on page 1-17 for a description of saturation behavior.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

The versions of this instruction that produce 32-bit results do not perform
rounding and are not affected by the RND_MOD bit in the ASTAT register.

Options

The Multiply 16-Bit Operands instruction supports the following
options. Saturation is supported for every option.

To truncate the result, the operation eliminates the least significant bits
that do not fit into the destination register.

In fractional mode, the product of the smallest representable fraction
times itself (for example, 0x8000 times 0x8000) is saturated to the maxi-
mum representable positive fraction (0x7FFF).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-45

Instruction Overview

Table 15-2. Multiply 16-Bit Operands Options

Option Description for Description for
Register Half Destination 32-Bit Register Destination

Default Signed fraction. Multiply 1.15* 1.15 to | Signed fraction. Multiply 1.15 * 1.15 to
produce 1.31 results after left-shift cor- | produce 1.31 results after left-shift cor-
rection. Round 1.31 format value at bit | rection. Saturate results between mini-
16. (RND_MOD bit in the ASTAT mum -1 and maximum 1-271,
register controls the rounding.) Saturate | The resulting hexadecimal range is mini-
the result to 1.15 precision in destina- | mum 0x8000 0000 through maximum
tion register half. Result is between 0x7FFF FFFF
minimum -1 and maximum 1-2°1 (or,
expressed in hex, between minimum
0x8000 and maximum 0x7FFF).

(FU) Unsigned fraction. Multiply 0.16 * Unsigned fraction. Multiply 0.16 * 0.16
0.16 to produce 0.32 results. No shift to produce 0.32 results. No shift correc-
correction. Round 0.32 format value at | tion. Saturate results between minimum
bit 16. (RND_MOD bit in the ASTAT | 0 and maximum 1-2732,
register controls the rounding.) Satu- | Unsigned integer. Multiply 16.0 * 16.0 to
rate the result to 0.16 precision in desti- | produce 32.0 results. No shift correction.
nation register half. Result is between Saturate results between minimum 0 and
minimum 0 and maximum 1-271¢ (or, maximum 23%-1.
expressed in hex, between minimum In either case, the resulting hexadecimal
0x0000 and maximum OxFFFF). range is minimum 0x0000 0000 through

maximum OxFFFF FFFE

(IS) Signed integer. Multiply 16.0 * 16.0 to | Signed integer. Multiply 16.0 * 16.0 to
produce 32.0 results. No shift correc- produce 32.0 results. No shift correction.
tion. Extract the lower 16 bits. Saturate | Saturate integer results between mini-
for 16.0 precision in destination register | mum -231 and maximum 231-1.
half. Result is between minimum -21°
and maximum 2'°-1 (or, expressed in
hex, between minimum 0x8000 and
maximum 0x7FFF).

119)] Unsigned integer. Multiply 16.0 * 16.0 | Not applicable. Use (IS).
to produce 32.0 results. No shift correc-
tion. Extract the lower 16 bits. Saturate
for 16.0 precision in destination register
half. Result is between minimum 0 and
maximum 216-1 (or, expressed in hex,
between minimum 0x0000 and maxi-
mum 0xFFFF).

15-46

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Table 15-2. Multiply 16-Bit Operands Options (Contd)

Option

Description for
Register Half Destination

Description for
32-Bit Register Destination

(T)

Signed fraction with truncation. Trun-
cate Accumulator 9.31 format value at
bit 16. (Perform no rounding.) Satu-
rate the result to 1.15 precision in desti-
nation register half. Result is between
minimum -1 and maximum 1-2"1> (or,
expressed in hex, between minimum
0x8000 and maximum Ox7FFF).

Not applicable. Truncation is meaning-
less for 32-bit register destinations.

(TFU)

Unsigned fraction with truncation.
Multiply 1.15 * 1.15 to produce 1.31
results after left-shift correction. (Iden-
tical to Default.) Truncate 1.32 format
value at bit 16. (Perform no rounding.)
Saturate the result to 0.16 precision in
destination register half. Result is
between minimum 0 and maximum
1-2°16 (or, expressed in hex, between
minimum 0x0000 and maximum

0xFFFF).

Not applicable.

(S2RND)

Signed fraction with scaling and round-
ing. Multiply 1.15 * 1.15 to produce
1.31 results after left-shift correction.
(Identical to Default.) Shift the result
one place to the left (multiply x 2).
Round 1.31 format value at bit 16.
(RND_MOD bit in the ASTAT register
controls the rounding.) Saturate the
result to 1.15 precision in destination
register half. Result is between mini-
mum -1 and maximum 1-271° (or,
expressed in hex, between minimum
0x8000 and maximum Ox7FFF).

Not applicable.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

15-47

Instruction Overview

Table 15-2. Multiply 16-Bit Operands Options (Cont’d)

Option Description for Description for
Register Half Destination 32-Bit Register Destination

(ISS2) Signed integer with scaling. Multiply Signed integer with scaling. Multiply
16.0 * 16.0 to produce 32.0 results. No | 16.0 * 16.0 to produce 32.0 results. No
shift correction. Extract the lower 16 shift correction. Shift the results one
bits. Shift them one place to the left place to the left (multiply x 2). Saturate
(multiply x 2). Saturate the result for | result to 32.0 format. Copy to destina-
16.0 format in destination register half. | tion register. Results range between min-
Result is between minimum -2'> and imum -1 and maximum 231-1,
maximum 2°-1 (or, expressed in hex, The resulting hexadecimal range is mini-
between minimum 0x8000 and maxi- mum 0x8000 0000 through maximum
mum O0x7FFF). 0x7FFF FFFE

(IH) Signed integer, high word extract. Mul- | Not applicable.
tiply 16.0 * 16.0 to produce 32.0
results. No shift correction. Round 32.0
format value at bit 16. (RND_MOD
bit in the ASTAT register controls the
rounding.) Saturate to 32.0 result.

Extract the upper 16 bits of that value
to the destination register half. Resultis
between minimum -2'% and maximum
215-1 (or, expressed in hex, between
minimum 0x8000 and maximum
0x7FFF).

(M) Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.

When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.

No shift correction in either case. Src_reg 0 is the signed operand and Src_reg_1 is
the unsigned operand.

All other operations proceed according to the other mode flag or Default.

15-48

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Flags Affected
This instruction affects flags as follows.
eV is set if result saturates; cleared if no saturation.
e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.
Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r3.1=r3.h*r2.h ; /* MACO. Both operands are signed
fractions. */
r3.h=r6.h*r4.1 (fu) ; /* MAC1. Both operands are unsigned frac-
tions. */
ré=r3.h*rd.h ; /* MACO. Signed fraction operands, results saved

as 32 bits. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-49

Instruction Overview

Also See

Multiply 32-Bit Operands, Multiply and Multiply-Accumulate to Accu-
mulator, Multiply and Multiply-Accumulate to Half-Register, Multiply
and Multiply-Accumulate to Data Register, Vector Multiply, Vector Mul-
tiply and Multiply-Accumulate

Special Applications

None

15-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Multiply 32-Bit Operands

General Form

dest_reg *= multiplier_register

Syntax

Dreg *= Dreg ; /* 32 x 32 integer multiply (a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Multiply 32-Bit Operands instruction multiplies two 32-bit data reg-
isters (dest_regand multiplier_register) and saves the product in
dest_reg. The instruction mimics multiplication in the C language and
effectively performs Dregl = (Dregl * Dreg2) modulo 232 Since the
integer multiply is modulo 232 the result always fits in a 32-bit dest_reg,
and overflows are possible but not detected. The overflow flag in the
ASTAT register is never set.

Users are required to limit input numbers to ensure that the resulting
product does not exceed the 32-bit dest_reg capacity. If overflow notifi-
cation is required, users should write their own multiplication macro with
that capability.

Accumulators A0 and Al are unchanged by this instruction.

The Multiply 32-Bit Operands instruction does not implicitly modify the
number in multiplier_register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-51

Instruction Overview

This instruction might be used to implement the congruence method of
random number generation according to:

X[n+al = (ax X[n])mod 2°°
where:

e X][n] is the seed value,

* aisalarge integer, and

e X[n+1] is the result that can be multiplied again to further the
pseudo-random sequence.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.
Example
r3 *=r0 ;

Also See

DIVS, DIVQ (Divide Primitive), Arithmetic Shift, Shift with Add, Add
with Shift, Vector Multiply and Multiply-Accumulate, Vector Multiply

Special Applications

None

15-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Multiply and Multiply-Accumulate to Accumulator

General Form

accumulator = src_reg_0 * src_reg_1l (opt_mode)
accumulator += src_reg_0 * src_reg_1l (opt_mode)
accumulator -= src_reg_0 * src_reg_1 (opt_mode)

Syntax

Multiply-And-Accumulate Unit 0 (MACO0) Operations

A0 =Dreg_Tlo_hi * Dreg_Tlo_hi (opt_mode) ; /* multiply and
store (b) */

A0 += Dreg_lo_hi * Dreg_Tlo_hi (opt_mode) ; /* multiply and
add (b) */

A0 -= Dreg_Tlo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

subtract (b) */

Multiply-And-Accumulate Unit 1 (MAC1) Operations

Al = Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and
store (b) */

Al += Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and
add (b) */

Al -= Dreg_lo_hi * Dreg_Tlo_hi (opt_mode) ; /* multiply and

subtract (b) */

Syntax Terminology
Dreg_lo_hi: R7-0.L, R7-0.H

opt_mode: Optionally (FU), (IS), or (W32). Optionally, (M) can be used
on MACI versions either alone or with (W32). If multiple options are
specified together for a MAC, the options must be separated by commas
and enclosed within a single set of parenthesis. Example: (M, W32)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-53

Instruction Overview

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply and Multiply-Accumulate to Accumulator instruction mul-
tiplies two 16-bit half-word operands. It stores, adds or subtracts the
product into a designated Accumulator with saturation.

The Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture
performs operations that involve Accumulator A0. MAC1 performs Al
operations.

By default, the instruction treats both operands of both MAC:s as signed
fractions with left-shift correction as required.

Options

The Multiply and Multiply-Accumulate to Accumulator instruction sup-
ports the following options. Saturation is supported for every option.

When the (M) and (W32) options are used together, both MAC:s saturate
their Accumulator products at 32 bits. MAC1 multiplies signed fractions
by unsigned fractions and MACO multiplies signed fractions.

When used together, the order of the options in the syntax makes no
difference.

In fractional mode, the product of the most negative representable frac-
tion times itself (for example, 0x8000 times 0x8000) is saturated to the
maximum representable positive fraction (0x7FFF) before accumulation.

See “Saturation” on page 1-17 for a description of saturation behavior.

15-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Table 15-3. Multiply and Multiply-Accumulate to Accumulator Options

Option

Description

Default

Signed fraction. Multiply 1.15 x 1.15 to produce 1.31 format data after shift correc-
tion. Sign extend the result to 9.31 format before passing it to the Accumulator. Sat-
urate the Accumulator after copying or accumulating to maintain 9.31 precision.
Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex, between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF).

(FU)

Unsigned fraction. Multiply 0.16 x 0.16 to produce 0.32 format data. Perform no
shift correction. Zero extend the result to 8.32 format before passing it to the Accu-
mulator. Saturate the Accumulator after copying or accumulating to maintain 8.32
precision.

Unsigned integer. Multiply 16.0 x 16.0 to produce 32.0 format data. Perform no
shift correction. Zero extend the result to 40.0 format before passing it to the Accu-
mulator. Saturate the Accumulator after copying or accumulating to maintain 40.0
precision.

In either case, the resulting hexadecimal range is minimum 0x00 0000 0000 through
maximum OxFF FFFF FFFE

as)

Signed integer. Multiply 16.0 x 16.0 to produce 32.0 format data. Perform no shift
correction. Sign extend the result to 40.0 format before passing it to the Accumulator.
Saturate the Accumulator after copying or accumulating to maintain 40.0 precision.
Result is between minimum -239 and maximum 239-1 (or, expressed in hex, between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF).

(W32)

Signed fraction with 32-bit saturation. Multiply 1.15 x 1.15 to produce 1.31 format
data after shift correction. Sign extend the result to 9.31 format before passing it to
the Accumulator. Saturate the Accumulator after copying or accumulating at bit 31
to maintain 1.31 precision. Result is between minimum -1 and maximum 1-2-31
(or, expressed in hex, between minimum 0xFF 8000 0000 and maximum 0x00 7FFF
FFFF).

Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.

When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.

No shift correction in either case. Src_reg 0 is the signed operand and Src_reg_1 is
the unsigned operand.

Accumulation and extraction proceed according to the other mode flag or Default.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-55

Instruction Overview

Flags Affected
This instruction affects flags as follows.

e AVO is set if result in Accumulator A0 (MACO operation) saturates;
cleared if A0 result does not saturate.

* AVOS is set if AVO is set; unaffected otherwise.

e AVl is set if result in Accumulator A1 (MACI1 operation) saturates;
cleared if A1 result does not saturate.

* AVIS is set if AV1 is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
a0=r3.h*r2.h ; /* MACO, only. Both operands are signed frac-
tions. Load the product into AQ. */
al+=r6.h*rd4.1 (fu) ; /* MAC1, only. Both operands are unsigned

fractions. Accumulate into Al */

15-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Also See

Multiply 16-Bit Operands, Multiply 32-Bit Operands, Multiply and Mul-
tiply-Accumulate to Half-Register, Multiply and Multiply-Accumulate to
Data Register, Vector Multiply, Vector Multiply and
Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate

to Accumulator instruction to calculate the dot product between two sig-
nal vectors.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-57

Instruction Overview

Multiply and Multiply-Accumulate to Half-Register

General Form

dest_reg_half = (accumulator = src_reg_0 * src_reg_1) (opt_mode)
dest_reg_half (accumulator += src_reg_0 * src_reg_1) (opt_mode)
dest_reg_half = (accumulator -= src_reg_0 * src_reg_1) (opt_mode)

Syntax
Multiply-And-Accumulate Unit 0 (MACO)

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-
tiply and store (b) */

Dreg_lo = (AQO += Dreg_Jlo_hi * Dreg_lo_hi) (opt_mode) ; /* multi-
ply and add (b) */

Dreg_lo = (A0 -= Dreg_Tlo_hi * Dreg_lo_hi) (opt_mode) ; /* mul -
tiply and subtract (b) */

Multiply-And-Accumulate Unit 1 (MAC1)

Dreg_hi = (Al = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul -
tiply and store (b) */

Dreg_hi = (Al += Dreg_Tlo_hi * Dreg_Tlo_hi) (opt_mode) ; /* mul-
tiply and add (b) */

Dreg_hi = (Al -= Dreg_Tlo_hi * Dreg_Jlo_hi) (opt_mode) ; /* mul -

tiply and subtract (b) */

Syntax Terminology
Dreg_lo_hi: R7-0.L, R7-0.H
Dreg_Tlo: R7-0.L

Dreg_hi: R7-0.H

15-58 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

opt_mode: Optionally (FU), (I1S), (IU), (T), (TFU), (S2RND), (ISS2) or
(IH). Optionally, (M) can be used with MACI versions either alone or
with any of these other options. If multiple options are specified together
for a MAC, the options must be separated by commas and enclosed within
a single set of parentheses. Example: (M, TFU)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply and Multiply-Accumulate to Half-Register instruction mul-
tiplies two 16-bit half-word operands. The instruction stores, adds or
subtracts the product into a designated Accumulator. It then copies 16
bits (saturated at 16 bits) of the Accumulator into a data half-register.

The fraction versions of this instruction (the default and “(FU)” options)
transfer the Accumulator result to the destination register according to the
diagrams in Figure 15-1.

The integer versions of this instruction (the “(1S)” and “(1U)” options)
transfer the Accumulator result to the destination register according to the
diagrams in Figure 15-2.

The Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture
performs operations that involve Accumulator A0 and loads the results
into the lower half of the destination data register. MAC1 performs Al
operations and loads the results into the upper half of the destination data
register.

All versions of this instruction that support rounding are affected by the
RND_MOD bit in the ASTAT register when they copy the results into the desti-
nation register. RND_MOD determines whether biased or unbiased rounding
is used.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-59

Instruction Overview

A0.X AO.H AO.L

0000 0000 | XXXX XXXX XXXX XXXX I XXXX XXXX XXXX XXXX |

N

Destination Register | XXXX XXXX XXXX XXXX | XX00X XXXX XXXX XXXX |

A0

A0.X AO.H AO.L

0000 0000 | XXXX XXXX XXXXXXXX | XXXX XXXX XXXX XXXX |

#

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

Al

Figure 15-1. Result to Destination Register (Default and (FU) Options)

A0.X AO.H AO.L

0000 0000 | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

¢

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

A0

A0.X AO.H AO.L

A1 0000 0000 | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

'/—\J

Destination Register | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

Figure 15-2. Result to Destination Register ((IS) and (IU) Options)

15-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Options

The Multiply and Multiply-Accumulate to Half-Register instruction sup-
ports operand and Accumulator copy options.

The options are listed in Table 15-4.

Table 15-4. Multiply and Multiply-Accumulate to Half-Register

Options

Option

Description

Default

Signed fraction format. Multiply 1.15 * 1.15 formats to produce 1.31 results after
shift correction. The special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF
to fit the 1.31 result.

Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE

To extract to half-register, round Accumulator 9.31 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the result
to 1.15 precision and copy it to the destination register half. Result is between
minimum -1 and maximum 1-271° (or, expressed in hex, between minimum
0x8000 and maximum Ox7FFF).

(FU)

Unsigned fraction format. Multiply 0.16* 0.16 formats to produce 0.32 results.
No shift correction. The special case of 0x8000 * 0x8000 yields 0x4000 0000. No
saturation is necessary since no shift correction occurs.

Zero extend 0.32 result to 8.32 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 8.32 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum OxFF FFFF FFFF.

To extract to half-register, round Accumulator 8.32 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the result
to 0.16 precision and copy it to the destination register half. Result is between
minimum 0 and maximum 1-271° (or, expressed in hex, between minimum 0x0000
and maximum OxFFFF).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-61

Instruction Overview

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options (Contd)

Option

Description

(18)

Signed integer format. Multiply 16.0 * 16.0 formats to produce 32.0 results. No
shift correction.

Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE.

Extract the lower 16 bits of the Accumulator. Saturate for 16.0 precision and copy
to the destination register half. Result is between minimum -21% and maximum
2151 (or, expressed in hex, between minimum 0x8000 and maximum 0x7FFF).

Iv)

Unsigned integer format. Multiply 16.0 * 16.0 formats to produce 32.0 results.
No shift correction.

Zero extend 32.0 result to 40.0 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum OxFF FFFF FFFF.
Extract the lower 16 bits of the Accumulator. Saturate for 16.0 precision and copy
to the destination register half. Result is between minimum 0 and maximum 2164
(or, expressed in hex, between minimum 0x0000 and maximum OxFFFF).

(T)

Signed fraction with truncation. Multiply 1.15 * 1.15 formats to produce 1.31
results after shift correction. The special case of 0x8000 * 0x8000 is saturated to
0x7FFF FFFF to fit the 1.31 result. (Same as the Default mode.)

Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE

To extract to half-register, truncate Accumulator 9.31 format value at bit 16. (Per-
form no rounding.) Saturate the result to 1.15 precision and copy it to the destina-
tion register half. Result is between minimum -1 and maximum 12715 (or,
expressed in hex, between minimum 0x8000 and maximum 0x7FFF).

15-62

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options (Contd)

Option

Description

(TFU)

Unsigned fraction with truncation. Multiply 0.16* 0.16 formats to produce 0.32
results. No shift correction. The special case of 0x8000 * 0x8000 yields 0x4000
0000. No saturation is necessary since no shift correction occurs. (Same as the FU
mode.)

Zero extend 0.32 result to 8.32 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 8.32 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum OxFF FFFF FFFF.

To extract to half-register, truncate Accumulator 8.32 format value at bit 16. (Per-
form no rounding.) Saturate the result to 0.16 precision and copy it to the destina-
tion register half. Result is between minimum 0 and maximum 1-2°16 (or,
expressed in hex, between minimum 0x0000 and maximum OxFFFF).

(S2RND)

Signed fraction with scaling and rounding. Multiply 1.15 * 1.15 formats to pro-
duce 1.31 results after shift correction. The special case of 0x8000 * 0x8000 is sat-
urated to Ox7FFF FFFF to fit the 1.31 result. (Same as the Default mode.)

Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE

To extract to half-register, shift the Accumulator contents one place to the left
(multiply x 2). Round Accumulator 9.31 format value at bit 16. (RND_MOD bit
in the ASTAT register controls the rounding.) Saturate the result to 1.15 precision
and copy it to the destination register half. Result is between minimum -1 and
maximum 1-2°13 (or, expressed in hex, between minimum 0x8000 and maximum

0x7FFF).

(ISS2)

Signed integer with scaling. Multiply 16.0 * 16.0 formats to produce 32.0 results.
No shift correction. (Same as the IS mode.)

Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE

Extract the lower 16 bits of the Accumulator. Shift them one place to the left
(multiply x 2). Saturate the result for 16.0 format and copy to the destination reg-
ister half. Result is between minimum -21° and maximum 21°-1 (or, expressed in
hex, between minimum 0x8000 and maximum 0x7FFF).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-63

Instruction Overview

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options (Contd)

Option

Description

(IH)

Signed integer, high word extract. Multiply 16.0 * 16.0 formats to produce 32.0
results. No shift correction. (Same as the IS mode.)

Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 32.0 precision; Accumulator result
is between minimum 0x00 8000 0000 and maximum 0x00 7FFF FFFE.

To extract to half-register, round Accumulator 40.0 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate to 32.0
result. Copy the upper 16 bits of that value to the destination register half. Result
is between minimum -2'> and maximum 21°-1 (or, expressed in hex, between min-
imum 0x8000 and maximum 0x7FFF).

M)

Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.

When issued in an integer mode instruction (with IS, 1SS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.

No shift correction in either case. Src_reg 0 is the signed operand and Src_reg_1
is the unsigned operand.

Accumulation and extraction proceed according to the other mode flag or Default.

To truncate the result, the operation eliminates the least significant bits
that do not fit into the destination register.

When necessary, saturation is performed after the rounding.

The accumulator is unaffected by extraction.

If you want to keep the unaltered contents of the Accumulator, use a sim-
ple Move instruction to copy An.X or An.l to or from a register.

See “Saturation” on page 1-17 for a description of saturation behavior.

15-64

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

e V is set if the result extracted to the Dreg saturates; cleared if no

saturation.
VS is set if V is set; unaffected otherwise.

AVO is set if result in Accumulator A0 (MACO operation) saturates;
cleared if A0 result does not saturate.

AVOS is set if AVO is set; unaffected otherwise.

AV1 is set if result in Accumulator A1 (MACI1 operation) saturates;
cleared if A1 result does not saturate.

AV1S is set if AV1 is set; unaffected otherwise.
All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit

instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

15-65

Instruction Overview

Example
r3.1=(al0=r3.h*r2.h) ; /* MACO, only. Both operands are signed
fractions. Load the product into AO, then copy to r3.1. */
r3.h=(al+=r6.h*r4.1) (fu) ; /* MACLl, only. Both operands are

unsigned fractions. Add the product into Al, then copy to r3.h */

Also See

Multiply 32-Bit Operands, Multiply and Multiply-Accumulate to Accu-
mulator, Multiply and Multiply-Accumulate to Data Register, Vector
Multiply, Vector Multiply and Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate
to Half-Register instruction to calculate the dot product between two sig-
nal vectors.

15-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Multiply and Multiply-Accumulate to Data Register

General Form

dest_reg = (accumulator = src_reg_0 * src_reg_1) (opt_mode)

dest_reg = (accumulator += src_reg_0 * src_reg_1) (opt_mode)
dest_reg = (accumulator -= src_reg_0 * src_reg_1) (opt_mode)
Syntax

Multiply-And-Accumulate Unit 0 (MACO)

Dreg_even = (A0 = Dreg_Tlo_hi * Dreg_lo_hi) (opt_mode) ; /* mul -
tiply and store (b) */

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /*
multiply and add (b) */

Dreg_even = (A0 -= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /*

multiply and subtract (b) */

Multiply-And-Accumulate Unit 1 (MAC1)

Dreg_odd = (Al = Dreg_Jlo_hi * Dreg_Jlo_hi) (opt_mode) ; /* mul -
tiply and store (b) */

Dreg_odd = (Al += Dreg_Tlo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-
tiply and add (b) */

Dreg_odd = (Al -= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul -

tiply and subtract (b) */

Syntax Terminology
Dreg_lo_hi: R7-0.L, R7-0.H
Dreg_even: RO, R2, R4, R6

Dreg_odd: R1, R3, R5, R7

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-67

Instruction Overview

opt_mode: Optionally (FU), (IS), (S2RND), or (1SS2). Optionally, (M) can
be used with MACI1 versions either alone or with any of these other
options. If multiple options are specified together for a MAC, the options
must be separated by commas and enclosed within a single set of parenthe-
sis. Example: (M, IS)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

This instruction multiplies two 16-bit half-word operands. The instruc-
tion stores, adds or subtracts the product into a designated Accumulator.
It then copies 32 bits of the Accumulator into a data register. The 32 bits
are saturated at 32 bits.

The Multiply-and-Accumulate Unit 0 (MACO) portion of the architecture
performs operations that involve Accumulator A0; it loads the results into
an even-numbered data register. MAC1 performs Al operations and loads
the results into an odd-numbered data register.

Combinations of these instructions can be combined into a single instruc-
tion. See “Vector Multiply and Multiply-Accumulate” on page 19-41.

Options

The Multiply and Multiply-Accumulate to Data Register instruction sup-
ports operand and Accumulator copy options.

These options are as shown in Table 15-5.

The syntax supports only biased rounding. The RND_MOD bit in the ASTAT
register has no bearing on the rounding behavior of this instruction.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

15-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Table 15-5. Multiply and Multiply-Accumulate to Data Register

Options

Option

Description

Default

Signed fraction format. Multiply 1.15 * 1.15 formats to produce 1.31 results after
shift correction. The special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF
to fit the 1.31 result.

Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE.

To extract, saturate the result to 1.31 precision and copy it to the destination regis-
ter. Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex,
between minimum 0x8000 0000 and maximum Ox7FFF FFFF).

(FU)

Unsigned fraction format. Multiply 0.16* 0.16 formats to produce 0.32 results.
No shift correction. The special case of 0x8000 * 0x8000 yields 0x4000 0000. No
saturation is necessary since no shift correction occurs.

Zero extend 0.32 result to 8.32 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 8.32 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum OxFF FFFF FFFE

To extract, saturate the result to 0.32 precision and copy it to the destination regis-
ter. Result is between minimum 0 and maximum 1-2-32 (or, expressed in hex,
between minimum 0x0000 0000 and maximum OxFFFF FFFF).

1s)

Signed integer format. Multiply 16.0 * 16.0 formats to produce 32.0 results. No
shift correction.

Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE

To extract, saturate for 32.0 precision and copy to the destination register. Result
is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum Ox7FFF FFFF).

(S2RND)

Signed fraction with scaling and rounding. Multiply 1.15 * 1.15 formats to pro-
duce 1.31 results after shift correction. The special case of 0x8000 * 0x8000 is sat-
urated to 0x7FFF FFFF to fit the 1.31 result. (Same as the Default mode.)

Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE.

To extract, shift the Accumulator contents one place to the left (multiply x 2), sat-
urate the result to 1.31 precision, and copy it to the destination register. Result is
between minimum -1 and maximum 1-2-31 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-69

Instruction Overview

Table 15-5. Multiply and Multiply-Accumulate to Data Register
Options (Contd)

Option

Description

(ISS2)

Signed integer with scaling. Multiply 16.0 * 16.0 formats to produce 32.0 results.
No shift correction. (Same as the IS mode.)

Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFE.

To extract, shift the Accumulator contents one place to the left (multiply x 2), sat-
urate the result for 32.0 format, and copy to the destination register. Result is
between minimum -231 and maximum 231-1 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

M)

Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.

When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.

No shift correction in either case. Src_reg 0 is the signed operand and Src_reg_1
is the unsigned operand.

Accumulation and extraction proceed according to the other mode flag or Default.

The accumulator is unaffected by extraction.

In fractional mode, the product of the most negative representable frac-
tion times itself (for example, 0x8000 times 0x8000) is saturated to the
maximum representable positive fraction (0x7FFF) before accumulation.

If you want to keep the unaltered contents of the Accumulator, use a sim-
ple Move instruction to copy An.X or An.W to or from a register.

See “Saturation” on page 1-17 for a description of saturation behavior.

15-70

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

* Vis set if the result extracted to the Dreg saturates; cleared if no

saturation.
VS is set if V is set; unaffected otherwise.

AVO is set if result in Accumulator A0 (MACO operation) saturates;
cleared if A0 result does not saturate.

AVOS is set if AVO is set; unaffected otherwise.

AV1 is set if result in Accumulator A1 (MACI1 operation) saturates;
cleared if A1 result does not saturate.

AV1S is set if AV1 is set; unaffected otherwise.
All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit

instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

15-71

Instruction Overview

Example
rd=(al0=r3.h*r2.h) ; /* MACO, only. Both operands are signed
fractions. Load the product into AO, then into r4. */
r3=(al+=r6.h*r4.1) (fu) ; /* MAC1, only. Both operands are

unsigned fractions. Add the product into Al, then into r3. */

Also See

Move Register, Move Register Half, Multiply 32-Bit Operands, Multiply
and Multiply-Accumulate to Accumulator, Multiply and Multiply-Accu-
mulate to Half-Register, Vector Multiply, Vector Multiply and
Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate
to Data Register instruction or the vector version (“Vector Multiply and
Multiply-Accumulate” on page 19-41) to calculate the dot product
between two signal vectors.

15-72 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Negate (Two’s Complement)

General Form

dest_reg = - src_reg
dest_accumulator = - src_accumulator
Syntax
Dreg = - Dreg ; /* (a) */
Dreg = - Dreg (sat_flag) ; /* (b)) */
A0 = - AOD ; /* (b) */
AO = - Al ; /* (b) */
Al = - A0 ; /* (b) */
Al = - Al ; /* (b) */
Al = - Al, A0 = - AO ; /* negate both Accumulators simulta-

neously in one 32-bit length instruction (b) */

Syntax Terminology
Dreg: R7-0

sat_flag: nonoptional saturation ﬂag, (S) or (NS)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Negate (Two’s Complement) instruction returns the same magnitude
with the opposite arithmetic sign. The Accumulator versions saturate the
result at 40 bits. The instruction calculates by subtracting from zero.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-73

Instruction Overview

The Dreg version of the Negate (Two’s Complement) instruction is
offered with or without saturation. The only case where the nonsaturating
Negate would overflow is when the input value is 0x8000 0000. The satu-
rating version returns 0x7FFF FFFF; the nonsaturating version returns
0x8000 0000.

In the syntax, where sat_f7ag appears, substitute one of the following
values.

e (S) saturate the result
®* (NS) no saturation

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected
This instruction affects the flags as follows.
e AZ is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.

eV is set if result overflows or saturates and the dest_regis a Dreg;
cleared if no overflow or saturation.

e VS is set if V is set; unaffected otherwise.

e AVO is set if result saturates and the dest_reg is AQ; cleared if no
saturation.

* AVOS is set if AVO is set; unaffected otherwise.

e AV1 is set if result saturates and the dest_reg is Al; cleared if no
saturation.

* AV1S is set if AV1 is set; unaffected otherwise.

15-74 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

®

Arithmetic Operations

ACO is set if src_regis zero; otherwise it is cleared.

All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel

Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with

other instructions.

Example

r5 =-
a0 =-
a0 =-
al =-
al =-
al =-

ro ;
a0 ;
al ;
a0 ;
al ;
al,

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-75

Instruction Overview

Also See

Vector Negate (Two’s Complement)

Special Applications

None

15-76 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

RND (Round to Half-Word)

General Form

dest_reg = src_reg (RND)

Syntax

Dreg_1lo_hi =Dreg (RND) ; /* round and saturate the source to
16 bits. (b) */

Syntax Terminology
Dreg: R7- 0

Dreg_lo_hi: R7-0.L, R7-0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Round to Half~Word instruction rounds a 32-bit, normalized-frac-
tion number into a 16-bit, normalized-fraction number by extracting and
saturating bits 31-16, then discarding bits 15-0. The instruction supports
only biased rounding, which adds a half LSB (in this case, bit 15) before
truncating bits 15-0. The ALU performs the rounding. The RND_MOD bit
in the ASTAT register has no bearing on the rounding behavior of this
instruction.

Fractional data types such as the operands used in this instruction are
always signed.

See “Saturation” on page 1-17 for a description of saturation behavior.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-77

Instruction Overview

Flags Affected
The following flags are affected by this instruction.
e A7 is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
eV is set if result saturates; cleared if no saturation.
e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
/* If r6 = OxFFFC FFFF, then rounding to 16-bits with . . . */
ri.1 = r6 (rnd) ; // . . . produces rl.1 = OxFFFD
// 1f r7 = 0x0001 8000, then rounding . . .
rl.h = r7 (rnd) ; // . . . produces rl.h = 0x0002

15-78 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Also See
Add, Add/Subtract — Prescale Up, Add/Subtract — Prescale Down

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-79

Instruction Overview

Saturate

General Form

dest_reg = src_reg (S)

Syntax
AO = AOD (S) /* (b) */
Al = A1 (S) ; /* (b) */
Al = A1 (S), A0 = A0 (S) ; /* signed saturate both Accumula-

tors at the 32-bit boundary (b) */

Syntax Terminology

None

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Saturate instruction saturates the 40-bit Accumulators at 32 bits. The
resulting saturated value is sign extended into the Accumulator extension
bits.

See “Saturation” on page 1-17 for a description of saturation behavior.

15-80 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

AZ is set if result is zero; cleared if nonzero. In the case of two
simultaneous operations, AZ represents the logical “OR” of the two.

AN is set if result is negative; cleared if non-negative. In the case of
two simultaneous operations, AN represents the logical “OR” of the
two.

AVO is set if result saturates and the dest_reg is A0; cleared if no
overflow.

AVOS is set if AVO is set; unaffected otherwise.

AV1 is set if result saturates and the dest_reg is Al; cleared if no
overflow.

AV1S is set if AV1 is set; unaffected otherwise.
All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-81

Instruction Overview

Example

a0 = a0 (s)

al = al (s) ;

al = al (s), a0 = a0 (s)
Also See

Subtract (saturate options), Add (saturate options)

Special Applications

None

15-82 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

SIGNBITS

General Form

dest_reg = SIGNBITS sample_register

Syntax
Dreg_lo = SIGNBITS Dreg ; /* 32-bit sample (b) */
Dreg_lo = SIGNBITS Dreg_lo_hi ; /* 16-bit sample (b) */
Dreg_lo = SIGNBITS AO ; /* 40-bit sample (b) */
Dreg_lo = SIGNBITS Al ; /* 40-bit sample (b) */

Syntax Terminology
Dreg: R7-0
Dreg_Tlo: R7-0.L

Dreg_Tlo_hi: R7-0.L, R7-0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Sign Bit instruction returns the number of sign bits in a number, and
can be used in conjunction with a shift to normalize numbers. This
instruction can operate on 16-bit, 32-bit, or 40-bit input numbers.

* Fora 16-bit input, Sign Bit returns the number of leading sign bits
minus one, which is in the range 0 through 15. There are no spe-
cial cases. An input of all zeros returns +15 (all sign bits), and an
input of all ones also returns +15.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-83

Instruction Overview

* Fora 32-bit input, Sign Bit returns the number of leading sign bits
minus one, which is in the range 0 through 31. An input of all
zeros or all ones returns +31 (all sign bits).

* For a 40-bit Accumulator input, Sign Bit returns the number of
leading sign bits minus 9, which is in the range —8 through +31. A
negative number is returned when the result in the Accumulator
has expanded into the extension bits; the corresponding normaliza-
tion will shift the result down to a 32-bit quantity (losing
precision). An input of all zeros or all ones returns +31.

The result of the SIGNBITS instruction can be used directly as the argu-
ment to ASHIFT to normalize the number. Resultant numbers will be in
the following formats (S == signbit, M == magnitude bit).

16-bit: S.MMM MMMM MMMM MMMM
32-bit: .MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM
40-bit: SSSS SSSS S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

In addition, the SIGNBITS instruction result can be subtracted directly to
form the new exponent.

The Sign Bit instruction does not implicitly modify the input value. For
32-bit and 16-bit input, the dest_reg and sample_register can be the
same D-register. Doing this explicitly modifies the sampie_register.

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

15-84 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r2.1 = signbits r7 ;
rl.1 = signbits r5.1
r0.1 = signbits r4.h
ré.l = signbits a0 ;
r5.1 = signbits al ;

Also See
EXPAD]

Special Applications

You can use the exponent as shift magnitude for array normalization. You
can accomplish normalization by using the ASHIFT instruction directly,
without using special normalizing instructions, as required on other
architectures.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-85

Instruction Overview

Subtract

General Form

dest_reg = src_reg_1l - src_reg_2?

Syntax

32-Bit Operands, 32-Bit Result

Dreg = Dreg - Dreg ; /* no saturation support but shorter
instruction length (a) */
Dreg = Dreg - Dreg (sat_flag) ; /* saturation optionally sup-

ported, but at the cost of longer instruction length (b) */
16-Bit Operands, 16-Bit Result

Dreg_lo_hi = Dreg_lo_hi - Dreg_lo_hi (sat_flag) ; /* (b) */

Syntax Terminology
Dreg: R7-0
Dreg_lo_hi: R7-0.L, R7-0.H

sat_flag: nonoptional saturation flag, (S) or (NS)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Subtract instruction subtracts src_reg_2 from src_reg_I and places
the result in a destination register.

15-86 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

There are two ways to specify subtraction on 32-bit data. One instruction
that is 16-bit instruction length does not support saturation. The other
instruction, which is 32-bit instruction length, optionally supports satura-
tion. The larger DSP instruction can sometimes save execution time
because it can be issued in parallel with certain other instructions. See
“Parallel Issue” on page 15-5.

The instructions for 16-bit data use half-word data register operands and
store the result in a half-word data register.

All the instructions for 16-bit data are 32-bit instruction length.

In the syntax, where sat_f7ag appears, substitute one of the following
values.

e (S) saturate the result
* (NS) no saturation
See “Saturation” on page 1-17 for a description of saturation behavior.

The Subtract instruction has no subtraction equivalent of the addition
syntax for P-registers.

Flags Affected
This instruction affects flags as follows.
e A7 is set if result is zero; cleared if nonzero.
* AN is set if result is negative; cleared if non-negative.
* ACO is set if the operation generates a carry; cleared if no carry.

eV is set if result overflows; cleared if no overflow.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-87

Instruction Overview

e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example
ro=r2 -rl ; /* 16-bit instruction Tength subtract, no
saturation */
r5 =r2 - rl(ns) ; /* same result as above, but 32-bit

instruction length */

rb=r2 - rl(s) ; /* saturate the result */

ré.1 =r0.17 - r7.1 (ns)

rd. T =r0.1 - r7.h (s) ; /* saturate the result */
ro.1 =r2.h - rd.1(ns) ;

rl.T = r3.h - r7.h(ns)

ré.h=r0.17 - r7.1 (ns)

rd.h =r0.1 - r7.h (ns) ;

rO.h = r2.h - rd.1(s) ; /* saturate the result */
rl.h = r3.h - r7.h(ns)

15-88 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Also See
Modify — Decrement, Vector Add / Subtract

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-89

Instruction Overview

Subtract Immediate

General Form

register -= constant
Syntax
Ireg -= 2 ; /* decrement Ireg by 2, half-word address pointer
increment (a) */
Ireg -= 4 ; /* word address pointer decrement (a) */

Syntax Terminology

Ireg: 13-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Subtract Immediate instruction subtracts a constant value from an
Index register without saturation.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.

15-90 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Operations

Example: If you use 12 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

To subtract immediate values from D-registers or P-registers, use a
negative constant in the Add Immediate instruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For details, see “Issuing Parallel Instructions” on page 20-1.

Example
10 =4
iz =2 ;
Also See

Add Immediate, Subtract

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-91

Instruction Overview

15-92 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

16 EXTERNAL EVENT
MANAGEMENT

Instruction Summary

“Idle” on page 16-3

“Core Synchronize” on page 16-5

“System Synchronize” on page 16-8
“EMUEXCPT (Force Emulation)” on page 16-11
“Disable Interrupts” on page 16-13

“Enable Interrupts” on page 16-15

“RAISE (Force Interrupt / Reset)” on page 16-17
“EXCPT (Force Exception)” on page 16-20
“Test and Set Byte (Atomic)” on page 16-22

“No Op” on page 16-25

Instruction Overview

This chapter discusses the instructions that manage external events. Users
can take advantage of these instructions to enable interrupts, force a spe-

cific interrupt or reset to occur, or put the processor in idle state. The

Core Synchronize instruction resolves all pending operations and flushes
the core store buffer before proceeding to the next instruction. The Sys-
tem Synchronize instruction forces all speculative, transient states in the

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

16-1

Instruction Overview

core and system to complete before processing continues. Other instruc-
tions in this chapter force an emulation exception, placing the processor in
Emulation mode; test the value of a specific, indirectly-addressed byte; or
increment the Program Counter (PC) without performing useful work.

16-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Idle

General Form

IDLE

Syntax

IDLE ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

Typically, the Idle instruction is part of a sequence to place the Blackfin
processor in a quiescent state so that the external system can switch
between core clock frequencies.

The IDLE instruction requests an idle state by setting the id1e_req bit in
SEQSTAT register. Setting the id1e_req bit precedes placing the Blackfin
processor in a quiescent state. If you intend to place the processor in Idle
mode, the IDLE instruction must immediately precede an SSYNC
instruction.

The first instruction following the SSYNC is the first instruction to execute
when the processor recovers from Idle mode.

The Idle instruction is the only way to set the idle_req bit in SEQSTAT.
The architecture does not support explicit writes to SEQSTAT.

Flags Affected

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-3

Instruction Overview

Required Mode

The Idle instruction executes only in Supervisor mode. If execution is
attempted in User mode, the instruction produces an Illegal Use of Pro-
tected Resource exception.

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example
idle ;
Also See

System Synchronize

Special Applications

None

16-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Core Synchronize

General Form

CSYNC

Syntax

CSYNC /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Core Synchronize (CSYNC) instruction ensures resolution of all pend-
ing core operations and the flushing of the core store buffer before
proceeding to the next instruction. Pending core operations include any
speculative states (for example, branch prediction) or exceptions. The core
store buffer lies between the processor and the L1 cache memory.

CCYNC is typically used after core MMR writes to prevent imprecise
behavior.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-5

Instruction Overview

Parallel Issue

The Core Synchronize instruction cannot be issued in parallel with other
instructions.

Example

Consider the following example code sequence.

if cc jump away_from_here ; /* produces speculative branch
prediction */

csync

ro = [p0] ; /* load */

In this example, the CSYNC instruction ensures that the load instruction is
not executed speculatively. CSYNC ensures that the conditional branch is
resolved and any entries in the processor store buffer have been flushed. In
addition, all speculative states or exceptions complete processing before
CSYNC completes.

Also See

System Synchronize

Special Applications

Use CSYNC to enforce a strict execution sequence on loads and stores or to
conclude all transitional core states before reconfiguring the core modes.
For example, issue CSYNC before configuring memory-mapped registers
(MMRs). CSYNC should also be issued after stores to MMRs to make sure
the data reaches the MMR before the next instruction is fetched.

Typically, the Blackfin processor executes all load instructions strictly in
the order that they are issued and all store instructions in the order that
they are issued. However, for performance reasons, the architecture relaxes
ordering between load and store operations. It usually allows load opera-
tions to access memory out of order with respect to store operations.

16-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Further, it usually allows loads to access memory speculatively. The core
may later cancel or restart speculative loads. By using the Core Synchro-
nize or System Synchronize instructions and managing interrupts
appropriately, you can restrict out-of-order and speculative behavior.

@ Stores never access memory speculatively.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-7

Instruction Overview

System Synchronize

General Form

SSYNC

Syntax

SSYNC /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The System Synchronize (SSYNC) instruction forces all speculative, tran-
sient states in the core and system to complete before processing
continues. Until SSYNC completes, no further instructions can be issued to

the pipeline.

The SSYNC instruction performs the same function as Core Synchronize
(csyYNC). In addition, SSYNC flushes any write buffers (between the L1
memory and the system interface) and generates a Synch request signal to
the external system. The operation requires an acknowledgement
Synch_Ack signal by the system before completing the instruction.

If the idle_req bit of the SEQSTAT register is set when SSYNC is executed,
the processor enters Idle state and asserts the external Idle signal after
receiving the external Synch_Ack signal. After the external Idle signal is
asserted, exiting the Idle state requires an external Wakeup signal.

SSYNC should be issued immediately before and after writing to a system
MMR. Otherwise, the MMR change can take effect at an indeterminate
time while other instructions are executing, resulting in imprecise
behavior.

16-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The SSYNC instruction cannot be issued in parallel with other instructions.

Example

Consider the following example code sequence.

if cc jump away_from_here ; /* produces speculative branch
prediction */

ssync

ro = [p0] ; /* load */

In this example, SSYNC ensures that the load instruction will not be exe-
cuted speculatively. The instruction ensures that the conditional branch is
resolved and any entries in the processor store buffer and write buffer have
been flushed. In addition, all exceptions complete processing before SSYNC
completes.

Also See

Core Synchronize, Idle

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-9

Instruction Overview

Special Applications

Typically, SSYNC prepares the architecture for clock cessation or frequency
change. In such cases, the following instruction sequence is typical.

instruction...
instruction...

CLI rO ; /* disable interrupts */
idle ; /* enable Idle state */
ssync ; /* conclude all speculative states, assert external

Sync signal, await Synch_Ack, then assert external Idle signal
and stall in the Idle state until the Wakeup signal. Clock input
can be modified during the stall. */

sti rO ; /* re-enable interrupts when Wakeup occurs */
instruction...

instruction...

16-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

EMUEXCPT (Force Emulation)

General Form

EMUEXCPT

Syntax

EMUEXCPT /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Force Emulation instruction forces an emulation exception, thus
allowing the processor to enter emulation mode.

When emulation is enabled, the processor immediately takes an exception
into emulation mode. When emulation is disabled, EMUEXCPT generates an
illegal instruction exception.

An emulation exception is the highest priority event in the processor.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Force Emulation instruction cannot be issued in parallel with other
instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-11

Instruction Overview

Example

emuexcpt ;

Also See
RAISE (Force Interrupt / Reset)

Special Applications

None

16-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Disable Interrupts

General Form

CLI

Syntax

CLI Dreg ; /* previous state of IMASK moved to Dreg (a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Disable Interrupts instruction globally disables general interrupts by

setting IMASK to all zeros. In addition, the instruction copies the previous

contents of IMASK into a user-specified register in order to save the state of
the interrupt system.

The Disable Interrupts instruction does not mask NMI, reset, exceptions
and emulation.

Flags Affected

None

Required Mode

The Disable Interrupts instruction executes only in Supervisor mode. If
execution is attempted in User mode, the instruction produces an Illegal
Use of Protected Resource exception.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-13

Instruction Overview

Parallel Issue

The Disable Interrupts instruction cannot be issued in parallel with other
instructions.

Example
cli r3 ;
Also See

Enable Interrupts

Special Applications

This instruction is often issued immediately before an IDLE instruction.

16-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Enable Interrupts

General Form

STI

Syntax

STI Dreg ; /* previous state of IMASK restored from Dreg
(a) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Enable Interrupts instruction globally enables interrupts by restoring
the previous state of the interrupt system back into IMASK.

Flags Affected

None

Required Mode

The Enable Interrupts instruction executes only in Supervisor mode. If
execution is attempted in User mode, the instruction produces an Illegal
Use of Protected Resource exception.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-15

Instruction Overview

Parallel Issue

The Enable Interrupts instruction cannot be issued in parallel with other
instructions.

Example
sti r3 ;
Also See

Disable Interrupts

Special Applications

This instruction is often located after an IDLE instruction so that it will
execute after a wake-up event from the idle state.

16-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

RAISE (Force Interrupt / Reset)

General Form

RAISE

Syntax

RAISE uimm4 ; /* (a) */

Syntax Terminology

uimm4: 4-bit unsigned field, with the range of 0 through 15

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Force Interrupt / Reset instruction forces a specified interrupt or reset
to occur. Typically, it is a software method of invoking a hardware event

for debug purposes.

When the RAISE instruction is issued, the processor sets a bit in the ILAT
register corresponding to the interrupt vector specified by the uimn4 con-
stant in the instruction. The interrupt executes when its priority is high
enough to be recognized by the processor. The RAISE instruction causes
these events to occur given the uimm4 arguments shown in Table 16-1.

Table 16-1. uimm4 Arguments and Events

uimm4 Event

0 <reserved>
1 RST

2 NMI

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-17

Instruction Overview

Table 16-1. uimm4 Arguments and Events (Contd)

uimm4 Event

3 <reserved>
4 <reserved>
5 IVHW

6 IVITMR

7 IVG7

8 IVGS

9 IVGY

10 IVG10

11 IVG11

12 IVG12

13 IVG13

14 IVG14

15 IVG15

The Force Interrupt / Reset instruction cannot invoke Exception (EXC)
or Emulation (EMU) events; use the EXCPT and EMUEXCPT instructions,
respectively, for those events.

The RAISE instruction does not take effect before the write-back stage in
the pipeline.

Flags Affected

None

16-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Required Mode

The Force Interrupt / Reset instruction executes only in Supervisor mode.
If execution is attempted in User mode, the Force Interrupt / Reset
instruction produces an Illegal Use of Protected Resource exception.

Parallel Issue

The Force Interrupt / Reset instruction cannot be issued in parallel with
other instructions.

Example

raise 1 ; /* Invoke RST */

raise 6 ; /* Invoke IVTMR timer interrupt */
Also See

EXCPT (Force Exception), EMUEXCPT (Force Emulation)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-19

Instruction Overview

EXCPT (Force Exception)

General Form

EXCPT

Syntax

EXCPT uimm4 ; /* (a) */

Syntax Terminology

uimm4: 4-bit unsigned field, with the range of 0 through 15

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Force Exception instruction forces an exception with code uimma4.
When the EXCPT instruction is issued, the sequencer vectors to the excep-
tion handler that the user provides.

Application-level code uses the Force Exception instruction for operating
system calls. The instruction does not set the EVSW bit (bit 3) of the ILAT
register.

Flags Affected

None

Required Mode

User & Supervisor

16-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

Parallel Issue

The Force Exception instruction cannot be issued in parallel with other
instructions.

Example

excpt 4 ;

Also See

None

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-21

Instruction Overview

Test and Set Byte (Atomic)

General Form

TESTSET

Syntax

TESTSET (Preg) /* (a) */

Syntax Terminology

Preg: P5-0 (SP and FP are not allowed as the register for this instruction)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Test and Set Byte (Atomic) instruction loads an indirectly addressed
memory byte, tests whether it is zero, then sets the most significant bit of
the memory byte without affecting any other bits. If the byte is originally
zero, the instruction sets the CC bit. If the byte is originally nonzero the
instruction clears the CC bit. The sequence of this memory transaction is
atomic.

TESTSET accesses the entire logical memory space except the core Mem-
ory-Mapped Register (MMR) address region. The system design must
ensure atomicity for all memory regions that TESTSET may access. The
hardware does not perform atomic access to L1 memory space configured
as SRAM. Therefore, semaphores must not reside in on-core memory.

The memory architecture always treats atomic operations as cache-inhib-
ited accesses, even if the CPLB descriptor for the address indicates a
cache-enabled access. If a cache hit is detected, the operation flushes and
invalidates the line before allowing the TESTSET to proceed.

16-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

The software designer is responsible for executing atomic operations in the
proper cacheable / non-cacheable memory space. Typically, these opera-
tions should execute in non-cacheable, off-core memory. In a chip
implementation that requires tight temporal coupling between processors
or processes, the design should implement a dedicated, non-cacheable
block of memory that meets the data latency requirements of the system.

TESTSET can be interrupted before the load portion of the instruction
completes. If interrupted, the TESTSET will be re-executed upon return
from the interrupt. After the test or load portion of the TESTSET com-
pletes, the TESTSET sequence cannot be interrupted. For example, any
exceptions associated with the CPLB lookup for both the load and store
operations must be completed before the load of the TESTSET completes.

The integrity of the TESTSET atomicity depends on the L2 memory
resource-locking mechanism. If the L2 memory does not support atomic
locking for the address region you are accessing, your software has no
guarantee of correct semaphore behavior. See the processor L2 memory
documentation for more on the locking support.

Flags Affected
This instruction affects flags as follows.
* CC is set if addressed value is zero; cleared if nonzero.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-23

Instruction Overview

Parallel Issue

The TESTSET instruction cannot be issued in parallel with other
instructions.

Example
testset (pl)

The TESTSET instruction may be preceded by a CSYNC or SSYNC instruction
to ensure that all previous exceptions or interrupts have been processed
before the atomic operation begins.

Also See

Core Synchronize, System Synchronize

Special Applications

Typically, use TESTSET as a semaphore sampling method between copro-
CEsSOIs Or COprocesses.

16-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Event Management

No Op

General Form

NOP
MNOP
Syntax
NOP ; /* (a) */
MNOP ; /* (b) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description
The No Op instruction increments the PC and does nothing else.

Typically, the No Op instruction allows previous instructions time to
complete before continuing with subsequent instructions. Other uses are
to produce specific delays in timing loops or to act as hardware event tim-
ers and rate generators when no timers and rate generators are available.

Flags Affected
None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-25

Instruction Overview

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For details, see “Issuing Parallel Instructions” on
page 20-1.

Example

nop
mnop ;
mnop || /* a 16-bit instr. */ || /* a 16-bit instr. */ ;

Also See

None

Special Applications

MNOP can be used to issue loads or store instructions in parallel without
invoking a 32-bit MAC or ALU operation. Refer to “Issuing Parallel

Instructions” on page 20-1 for more information.

16-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

17 CACHE CONTROL

Instruction Summary
 “PREFETCH” on page 17-3
* “FLUSH” on page 17-5
* “FLUSHINV” on page 17-7
e “IFLUSH” on page 17-9

Instruction Overview

This chapter discusses the instructions that are used to flush, invalidate,
and prefetch data cache lines as well as the instruction used to invalidate a
line in the instruction cache.

As part of the data-cache related instructions, the PREFETCH instruction
can be used to improve performance by initiating a data cache-line fill in
advance of when the desired data is actually required for processing. The
FLUSH instruction is useful when data cache is configured in the write-back
mode (which is described in further detail in the “Memory” chapter). This
instruction forces data in the cache line that has been changed by the pro-
cessor (and thus has been marked as “dirty”) to be written to its source
memory.

There is no single instruction that can be used to invalidate a data
cache-line. The FLUSHINV instruction provides a way to directly flush and
invalidate a data cache-line. The FLUSHINV instruction is commonly used

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-1

Instruction Overview

to invalidate a buffer, but the instruction also performs a flush of data
marked as “dirty.” The ITEST and DTEST registers, which are described in
the “Memory” chapter, can also be used to directly invalidate a line in
cache. Buffers in source memory need to be invalidated when a DMA
channel is filling the buffer and data cache has been enabled and the
source memory has been defined as cacheable. By invalidating the
cache-lines associated with the buffer, “coherency” is maintained between
the contents stored in cache and the actual values in source memory.
When the buffer size is less than or equal in size to the actual cache on the
processor, it is better to use the FLUSHINY instruction in a loop to invali-
date the cache-lines. When the buffer is larger in size than the cache, it is
better to use the DTEST registers described in the “Memory” chapter to
invalidate the cache-lines.

The IFLUSH instruction is used to invalidate an instruction cache-line.

On the Blackfin processors, the cache-line size is 32 bytes.

17-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Cache Control

PREFETCH

General Form

PREFETCH
Syntax
PREFETCH [Preg 1 ; /* indexed (a) */
PREFETCH [Preg ++ 1 ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5-0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Data Cache Prefetch instruction causes the data cache to prefetch the
cache line that is associated with the effective address in the P-register.
The operation causes the line to be fetched if it is not currently in the data
cache and if the address is cacheable (that is, if bit CPLB_L1_CHBL = 1). If
the line is already in the cache or if the cache is already fetching a line, the
prefetch instruction performs no action, like a NOP.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-3

Instruction Overview

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

prefetch [p2 1 ;
prefetch [p0 ++ 1 ;

Also See

None

Special Applications

None

17-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Cache Control

FLUSH

General Form

FLUSH
Syntax
FLUSH [Preg 1 ; /* indexed (a) */
FLUSH [Preg ++ 1 ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5-0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Data Cache Flush instruction causes the data cache to synchronize
the specified cache line with higher levels of memory. This instruction
selects the cache line corresponding to the effective address contained in
the P-register. If the cached data line is dirty, the instruction writes the
line out and marks the line clean in the data cache. If the specified data
cache line is already clean or the cache does not contain the address in the
P-register, this instruction performs no action, like a NOP.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-5

Instruction Overview

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The instruction cannot be issued in parallel with other instructions.

Example

flush [p2 1 ;
flush [p0 ++ 1 ;

Also See

None

Special Applications

None

17-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Cache Control

FLUSHINV

General Form

FLUSHINV
Syntax
FLUSHINV [Preg 1 ; /* indexed (a) */
FLUSHINV [Preg ++ 1 ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5-0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Data Cache Line Invalidate instruction causes the data cache to inval-
idate a specific line in the cache. The contents of the P-register specify the
line to invalidate. If the line is in the cache and dirty, the cache line is
written out to the next level of memory in the hierarchy. If the line is not
in the cache, the instruction performs no action, like a NOP.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-7

Instruction Overview

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Data Cache Line Invalidate instruction cannot be issued in parallel
with other instructions.

Example

flushinv [p2 1 ;
flushinv [p0 ++ 1 ;

Also See

None

Special Applications

None

17-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Cache Control

IFLUSH

General Form

[FLUSH
Syntax
IFLUSH [Preg 1 ; /* indexed (a) */
IFLUSH [Preg ++ 1 ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5-0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Instruction Cache Flush instruction causes the instruction cache to
invalidate a specific line in the cache. The contents of the P-register spec-
ify the line to invalidate. The instruction cache contains no dirty bit.
Consequently, the contents of the instruction cache are never flushed to

higher levels.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-9

Instruction Overview

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

iflush [p2 1 ;
iflush [p0 ++ 1 ;

Also See

None

Special Applications

None

17-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

18 VIDEO PIXEL OPERATIONS

Instruction Summary

“ALIGNS, ALIGN16, ALIGN24” on page 18-3
“DISALGNEXCPT” on page 18-6
“BYTEOP3P (Dual 16-Bit Add / Clip)” on page 18-8

“Dual 16-Bit Accumulator Extraction with Addition” on
page 18-13

“BYTEOP16P (Quad 8-Bit Add)” on page 18-15
“BYTEOPIP (Quad 8-Bit Average — Byte)” on page 18-19

“BYTEOP2P (Quad 8-Bit Average — Half-Word)” on page 18-24

“BYTEPACK (Quad 8-Bit Pack)” on page 18-30
“BYTEOP16M (Quad 8-Bit Subtract)” on page 18-32

“SAA (Quad 8-Bit Subtract-Absolute-Accumulate)” on page 18-36

“BYTEUNPACK (Quad 8-Bit Unpack)” on page 18-41

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

18-1

Instruction Overview

Instruction Overview

This chapter discusses the instructions that manipulate video pixels. Users
can take advantage of these instructions to align bytes, disable exceptions
that result from misaligned 32-bit memory accesses, and perform dual and
quad 8- and 16-bit add, subtract, and averaging operations.

18-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

ALIGNS8, ALIGN16, ALIGN24

General Form

dest_reg = ALIGN8 (src_reg_1, src_reg_0)
dest_reg
dest_reg = ALIGNZ24 (src_reg_1, src_reg_0)

ALIGN16 (src_reg_1l, src_reg_0)

Syntax
Dreg = ALIGN8 (Dreg, Dreg) ; /* overlay 1 byte (b) */
Dreg = ALIGN16 (Dreg, Dreg) ; /* overlay 2 bytes (b) */
Dreg = ALIGN24 (Dreg, Dreg) ; /* overlay 3 bytes (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Byte Align instruction copies a contiguous four-byte unaligned word
from a combination of two data registers. The instruction version deter-
mines the bytes that are copied; in other words, the byte alignment of the
copied word. Alignment options are shown in Table 18-1.

The ALIGN16 version performs the same operation as the Vector Pack
instruction using the dest_reg = PACK (Dreg_lo, Dreg_hi) syntax.

Use the Byte Align instruction to align data bytes for subsequent sin-
gle-instruction, multiple-data (SIMD) instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-3

Instruction Overview

Table 18-1. Byte Alignment Options

src_reg_1 src_reg 0

byte7 ‘ byte6 | byte5 | byte4 |byte3 |byte2 |bytel |byte0
dest_reg for ALIGNS: byte4 |byte3 |byte2 | bytel
dest_reg for ALIGN16: byte5 | byte4 | byte3 | byte2
dest_reg for ALIGN24: byte6 | byte5 |byte4 | byte3

The input values are not implicitly modified by this instruction. The des-
tination register can be the same D-register as one of the source registers.
Doing this explicitly modifies that source register.

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

18-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Example

// If r3 = OxABCD 1234 and r4 = OxBEEF DEAD, then

ro = align8 (r3, r4) ; /* produces r0 = 0x34BE EFDE,
roO = alignlée (r3, rd4) ; /* produces r0 = 0x1234 BEEF,
rO = align24 (r3, r4) ; /* produces r0 = 0xCD12 34BE,
Also See
Vector PACK
Special Applications
None

and */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

18-5

Instruction Overview

DISALGNEXCPT

General Form

DISALGNEXCPT

Syntax

DISALGNEXCPT /* (b)) */

Syntax Terminology

None

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Disable Alignment Exception for Load (DISALGNEXCPT) instruction
prevents exceptions that would otherwise be caused by misaligned 32-bit
memory loads issued in parallel. This instruction only affects misaligned
32-bit load instructions that use I-register indirect addressing.

In order to force address alignment to a 32-bit boundary, the two LSBs of
the address are cleared before being sent to the memory system. The I-reg-
ister is not modified by the DISALIGNEXCPT instruction. Also, any
modifications performed to the I-register by a parallel instruction are not
affected by the DISALIGNEXCPT instruction.

Flags Affected

None

18-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
disalgnexcpt || r1 = [10++] || r3 = [il++] ; /* three instruc-
tions in parallel */
disalgnexcpt || [p0 ++ pll =r5 || r3 = [11++] ; /* alignment
exception is prevented only for the load */
disalgnexcpt || r0 = [p2++] || r3 = [il++] ; /% alignment

exception is prevented only for the I-reg load */

Also See
Any Quad 8-Bit instructions, ALIGNS8, ALIGN16, ALIGN24

Special Applications

Use the DISALGNEXCPT instruction when priming data registers for Quad
8-Bit single-instruction, multiple-data (SIMD) instructions.

Quad 8-Bit SIMD instructions require as many as sixteen 8-bit operands,
four D-registers worth, to be preloaded with operand data. The operand
data is 8 bits and not necessarily word aligned in memory. Thus, use DIS-
ALGNEXCPT to prevent spurious exceptions for these potentially misaligned
accesses.

During execution, when Quad 8-Bit SIMD instructions perform 8-bit
boundary accesses, they automatically prevent exceptions for misaligned
accesses. No user intervention is required.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-7

Instruction Overview

BYTEOP3P (Dual 16-Bit Add / Clip)

General Form

dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (LO)
dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (HI)
dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (LO, R)
dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (HI, R)
Syntax
/* forward byte order operands */
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO) ; /* sum into Tow
bytes (b) */
Dreg = BYTEQOP3P (Dreg_pair, Dreg_pair) (HI) ; /* sum into high
bytes (b) */
/* reverse byte order operands */
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO, R) ; /* sum into
low bytes (b) */
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI, R) ; /* sum into

high bytes (b) */

Syntax Terminology
Dreg: R7-0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Dual 16-Bit Add / Clip instruction adds two 8-bit unsigned values to
two 16-bit signed values, then limits (or “clips”) the result to the 8-bit
unsigned range 0 through 255, inclusive. The instruction loads the results

18-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

as bytes on half-word boundaries in one 32-bit destination register. Some
syntax options load the upper byte in the half-word and others load the
lower byte, as shown in Table 18-2, Table 18-4, and Table 18-4.

Table 18-2. Assuming the source registers contain:

aligned_src_reg_0: yl y0

aligned_src_reg_1: 73 72 z1 20

Table 18-3. The versions that load the result into the lower byte—“(LO)”-
produce:

dest_reg: 0..... 0 y1 + 23 clipped 0..... 0 y0 + z1 clipped
to 8 bits to 8 bits

Table 18-4. And the versions that load the result into the higher byte—
“(HI)”—produce:

dest_reg: yl + 22 clipped 0..... 0 y0 + z0 clipped 0..... 0
to 8 bits to 8 bits

In either case, the unused bytes in the destination register are filled with
0x00.

The 8-bit and 16-bit addition is performed as a signed operation. The
16-bit operand is sign-extended to 32 bits before adding.

The only valid input source register pairs are R1:0 and R3:2.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-9

Instruction Overview

The Dual 16-Bit Add / Clip instruction provides byte alignment directly
in the source register pairs src_reg_0and src_reg_1I based on index regis-
ters 10 and I1.

e The two LSBs of the 10 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

* The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_I (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated in Table 18-5.

In the default source order case (for example, not the (-, R) syntax),
assuming a source register pair contains the following.

Table 18-5. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of 10 or 11 | byte? ‘ byte6 | byte5 ‘ byted |byte3 |byte2 | bytel | byte0
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The (-, R) syntax reverses the order of the source registers within each
register pair. Typical high performance applications cannot afford the
overhead of reloading both register pair operands to maintain byte order
for every calculation. Instead, they alternate and load only one register
pair operand each time and alternate between the forward and reverse byte

18-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

order versions of this instruction. By default, the low order bytes come
from the low register in the register pair. The (-, R) option causes the
low order bytes to come from the high register.

In the optional reverse source order case (for example, using the (-, R)
syntax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-6.

Table 18-6. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI
Two LSB’s of 10 or I1 byte7 ‘ byte6 | byte5 ‘ byte4 | byte3 |byte2 |bytel | byte0
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel
10b: byte5 | byte4 |byte3 | byte2
11b: byte6 | byte5 |byte4 | byte3
Flags Affected
None
Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3 = byteop3p (rl:0, r3:2) (l0)
r3 byteop3p (rl:0, r3:2) (hi)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-11

Instruction Overview

r3 = byteop3p (rl1:0, r3:2) (lo, r) ;
r3 = byteop3p (rl:0, r3:2) (hi, r) ;

Also See
BYTEOP16P (Quad 8-Bit Add)

Special Applications

This instruction is primarily intended for video motion compensation
algorithms. The instruction supports the addition of the residual to a
video pixel value, followed by unsigned byte saturation.

18-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Dual 16-Bit Accumulator Extraction with Addition

General Form

dest_reg_1 = Al1.L + Al.H, dest_reg_0 = AO.L + AO.H

Syntax

Dreg = Al.L + Al.H, Dreg = AO.L + AO.H ; /* (b)) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Dual 16-Bit Accumulator Extraction with Addition instruction adds
together the upper half-words (bits 31through 16) and lower half-words
(bits 15 through 0) of each Accumulator and loads each result into a
32-bit destination register.

Each 16-bit half-word in each Accumulator is sign extended before being
added together.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-13

Instruction Overview

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r4d=al.l+al.h, r7=a0.1+a0.h ;

Also See
SAA (Quad 8-Bit Subtract-Absolute-Accumulate)

Special Applications

Use the Dual 16-Bit Accumulator Extraction with Addition instruction
for motion estimation algorithms in conjunction with the Quad 8-Bit
Subtract-Absolute-Accumulate instruction.

18-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

BYTEOP16P (Quad 8-Bit Add)

General Form

BYTEOP16P (src_reg_0, src_reg_1)
BYTEOP16P (src_reg_0, src_reg_1) (R)

(dest_reg_1, dest_reg_0)
(dest_reg_1, dest_reg_0)

Syntax

/* forward byte order operands */
(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair) ; [/* (b) */
/* reverse byte order operands */
(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair) (R)
/* (b) */
Syntax Terminology
Dreg: R7-0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Add instruction adds two unsigned quad byte number
sets byte-wise, adjusting for byte alignment. It then loads the byte-wise
results as 16-bit, zero-extended, half-words in two destination registers, as

shown inTable 18-7 and Table 18-8.

The only valid input source register pairs are R1:0 and R3:2.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-15

Instruction Overview

Table 18-7. Source Registers Contain

aligned_src_reg_0: y3 y2 yl y0

aligned_src_reg_1: 73 72 z1 20

Table 18-8. Destination Registers Receive

5 DO 24 23, 16 150, 8 T e eas 0
aligned_src_reg_0: yl +zl y0 + z0
aligned_src_reg_1: y3 + 123 y2 + 22

The Quad 8-Bit Add instruction provides byte alignment directly in the
source register pairs src_reg_0 and src_reg_1 based on index registers 10
and I1.

e The two LSBs of the 10 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

e The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated below.

In the default source order case (for example, not the (R) syntax), assume
that a source register pair contains the data shown in Table 18-9.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The (R) syntax reverses the order of the source registers within each regis-
ter pair. Typical high performance applications cannot afford the
overhead of reloading both register pair operands to maintain byte order

18-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Table 18-9. I-register Bits and the Byte Alignment

The bytes selected are

src_reg_pair_HI

src_reg_pair_LO

Two LSB% of 10or 11 | byte7 |byte6 |byte5 |byted |byte3 |byte2 [bytel [byteo
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 |byte4 | byte3

for every calculation. Instead, they alternate and load only one register
pair operand each time and alternate between the forward and reverse byte
order versions of this instruction. By default, the low order bytes come
from the low register in the register pair. The (R) option causes the low
order bytes to come from the high register.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the

register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-10.

Table 18-10. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB% of 10or 11 | byte7 |byte6 |byte |byted |byte3 |byte2 |bytel [byteo
00b: byte3 | byte2 |bytel | byteO
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

The mnemonic derives its name from the fact that the operands are bytes,
the result is 16 bits, and the arithmetic operation is “plus” for addition.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

18-17

Instruction Overview

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

(rl,r2)= byteoplép (r3:2,r1:0) ;
(rl,r2)= byteopl6p (r3:2,r1:0) (r) ;

Also See
BYTEOP16M (Quad 8-Bit Subtract)

Special Applications

This instruction provides packed data arithmetic typical of video and
image processing applications.

18-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

BYTEOP1P (Quad 8-Bit Average - Byte)

General Form

dest_reg BYTEOP1P (
dest_reg BYTEOP1IP (src_reg_0, src_reg_1
dest_reg = BYTEOP1IP (src_reg_0, src_reg_1
dest_reg BYTEOP1IP (src_reg_0, src_reg_1

src_reg_0, src_reg_1

Syntax

/* forward byte order operands */

Dreg BYTEOP1P (Dreg_pair, Dreg_pair) ; /* (b) */

Dreg BYTEOP1P (Dreg_pair, Dreg_pair) (T) ; /* truncated (b)
*/

/* reverse byte order operands */

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (R) ; /* (b)) */

Dreg = BYTEQOP1P (Dreg_pair, Dreg_pair) (T, R) ; /* truncated (b)
*/

Syntax Terminology
Dreg: R7-0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Average — Byte instruction computes the arithmetic aver-
age of two unsigned quad byte number sets byte wise, adjusting for byte
alignment. This instruction loads the byte-wise results as concatenated
bytes in one 32-bit destination register, as shown in Table 18-11 and
Table 18-12.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-19

Instruction Overview

Table 18-11. Source Registers Contain

aligned_src_reg_0: y3 y2 yl y0

aligned_src_reg_1: 73 72 z1 20

Table 18-12. Destination Registers Receive

dest_reg: avg(y3, z3) avg(y2, z2) avg(yl, z1) avg(y0, z0)

Arithmetic average (or mean) is calculated by summing the two operands,
then shifting right one place to divide by two.

The user has two options to bias the result—truncation or rounding up. By
default, the architecture rounds up the mean when the sum is odd. How-
ever, the syntax supports optional truncation.

See “Rounding and Truncating” on page 1-19 for a description of biased
rounding and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding
behavior of this instruction.

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Average — Byte instruction provides byte alignment
directly in the source register pairs src_reg_0 and src_reg_1 based on
index registers 10 and 11.

e The two LSBs of the 10 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

e The two LSBs of the 11 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

18-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

The relationship between the I-register bits and the byte alignment is

illustrated below.

In the default source order case (for example, not the (R) syntax), assume a

source register pair contains the data shown in Table 18-13.

Table 18-13. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB% of 10or 11 | byte7 |byte6 |byte5 |byted |byte3 |byte2 [bytel [byteo
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 |byte4 | byte3

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The Quad 8-Bit Average — Byte instruction supports the following

options.

Table 18-14. Options for Quad 8-Bit Average — Byte

Option Description
Default Rounds up the arithmetic mean.
(T) Truncates the arithmetic mean.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

18-21

Instruction Overview

Table 18-14. Options for Quad 8-Bit Average — Byte (Cont'd)

Option Description

(R) Reverses the order of the source registers within each register pair. Typical
high performance applications cannot afford the overhead of reloading
both register pair operands to maintain byte order for every calculation.
Instead, they alternate and load only one register pair operand each time
and alternate between the forward and reverse byte order versions of this
instruction. By default, the low order bytes come from the low register in
the register pair. The (R) option causes the low order bytes to come from
the high register.

(T, R) Combines both of the above options.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the

register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-15.

Table 18-15. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB's of [0 0r 11 | byte7 |byte6 |bytes |byted |byte3 |byte2 |bytel | byteo
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 |byte4 | byte3

The mnemonic derives its name from the fact that the operands are bytes,
the result is one word, and the basic arithmetic operation is “plus” for
addition. The single destination register indicates that averaging is
performed.

18-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3 = byteoplp (rl:0, r3:2) ;

r3 = byteoplp (rl:0, r3:2) (r) ;
r3 = byteoplp (rl:0, r3:2) (t) ;
r3 = byteoplp (rl:0, r3:2) (t,r) ;

Also See
BYTEOP16P (Quad 8-Bit Add)

Special Applications

This instruction supports binary interpolation used in fractional motion
search and motion compensation algorithms.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-23

Instruction

Overview

BYTEOP2P (Quad 8-Bit Average - Half-Word)

General Form

dest_reg
dest_reg
dest_reg
dest_reg
dest_reg
dest_reg
dest_reg
dest_reg

Syntax

/* forward byte order operands */
Dreg = BYTEOP2P (Dreg_pair,

= BYTEOPZ2P
= BYTEOPZP
= BYTEOPZ2P
= BYTEQOPZ2P
= BYTEOPZ2P
= BYTEOPZ2P
= BYTEOPZ2P
= BYTEOPZ2P

~ o~ o~ o~ o~ o~ o~ ~

/* round into low bytes (b) */

Dreg = BYTEOP2P (Dreg_pair,

/* round into high bytes (b) */

Dreg = BYTEQP2P (Dreg_pair,
/* truncate into low bytes
Dreg = BYTEOP2P (Dreg_pair,

/* truncate into high bytes (b) */

/* reverse byte order operands */
Dreg = BYTEOP2P (Dreg_pair,

/* round into low bytes (b) */

Dreg = BYTEOP2P (Dreg_pair,

/* round into high bytes (b) */

Dreg = BYTEQP2P (Dreg_pair,
/* truncate into low bytes
Dreg = BYTEOP2P (Dreg_pair,

src_reg_0, src_reg_1l) (RNDL)
src_reg_0, src_reg_1l) (RNDH)
src_reg_0, src_reg_1) (TL)
src_reg_0, src_reg_1) (TH)
src_reg_0, src_reg_1l) (RNDL, R)
src_reg_0, src_reg_1) (RNDH, R)
src_reg_0, src_reg_1) (TL, R)
src_reg_0, src_reg_1) (TH, R)

Dreg_pair) (RNDL)

Dreg_pair) (RNDH) ;

Dreg_pair) (TL)

(b) */

Dreg_pair) (TH)

Dreg_pair) (RNDL, R)

Dreg_pair) (RNDH, R) ;

Dreg_pair) (TL, R)

(b) */

Dreg_pair) (TH, R)

/* truncate into high bytes (b) */

18-24

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Syntax Terminology
Dreg: R7-0

Dreg_pair: R1:0, R3:2, only

Instruction Length

Video Pixel Operations

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Average — Half-Word instruction finds the arithmetic
average of two unsigned quad byte number sets byte wise, adjusting for

byte alignment. This instruction averages four bytes together. The instruc-
tion loads the results as bytes on half-word boundaries in one 32-bit
destination register. Some syntax options load the upper byte in the
half-word and others load the lower byte, as shown in Table 18-16,

Table 18-17, and Table 18-18.

Table 18-16. Source Registers Contain

aligned_src_reg_0: y3 y2

aligned_src_reg_1: z3 72

Table 18-17. The versions that load the result into the lower byte — RNDL

and TL — produce:

dest_reg: 0...... 0 avg(y3, y2, z3,

22)

avg(yl, y0, z1,
20)

In either case, the unused bytes in the destination register are filled with

0x00.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

18-25

Instruction Overview

Table 18-18. And the versions that load the result into the higher byte —
RNDH and TH - produce:

dest_reg: avg(y3, y2, z3, 0...... 0 avg(yl, y0, z1, 0...... 0
22) 20)

Arithmetic average (or mean) is calculated by summing the four byte oper-
ands, then shifting right two places to divide by four.

When the intermediate sum is not evenly divisible by 4, precision may be
lost.

The user has two options to bias the result—truncation or biased rounding.

See “Rounding and Truncating” on page 1-19 for a description of unbi-
ased rounding and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding
behavior of this instruction.

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Average — Half-Word instruction provides byte align-
ment directly in the source register pairs src_reg_0 (typically R1:0) and
src_reg_1 (typically R3:2) based only on the 10 register. The byte align-
ment in both source registers must be identical since only one register
specifies the byte alignment for them both.

The relationship between the I-register bits and the byte alignment is
illustrated in Table 18-19.

In the default source order case (for example, not the (R) syntax), assume a
source register pair contains the data shown in Table 18-19.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

18-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Table 18-19. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO
Two LSB% of 10or 11 | byte7 |byte6 |byte5 |byted |byte3 |byte2 [bytel [byteo
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel
10b: byte5 | byte4 |byte3 | byte2
11b: byte6 | byte5 |byte4 | byte3

Options

The Quad 8-Bit Average — Half-Word instruction supports the following
options.

Table 18-20. Options for Quad 8-Bit Average — Half-Word

Option Description

(RND—) Rounds up the arithmetic mean.

(T—) Truncates the arithmetic mean.

(—L) Loads the results into the lower byte of each destination half-word.

(—H) Loads the results into the higher byte of each destination half-word.

(,R) Reverses the order of the source registers within each register pair. Typical

high performance applications cannot afford the overhead of reloading both
register pair operands to maintain byte order for every calculation. Instead,
they alternate and load only one register pair operand each time and alternate
between the forward and reverse byte order versions of this instruction. By
default, the low order bytes come from the low register in the register pair.
The (R) option causes the low order bytes to come from the high register.

When used together, the order of the options in the syntax makes no
difference.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-27

Instruction Overview

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-21.

Table 18-21. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB's of [0 0 11 | byte7 |byte6 | bytes |byted |byte3 [byte2 |bytel |byteo
00b: byte3 | byte2 |bytel | byteO
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

The mnemonic derives its name from the fact that the operands are bytes,
the result is two half-words, and the basic arithmetic operation is “plus”
for addition. The single destination register indicates that averaging is
performed.

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

18-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r3 = byteop2p (rl1:0, r3:2) (rndl)
r3 = byteop2p (rl1:0, r3:2) (rndh)
r3 = byteop2p (rl:0, r3:2) (t1) ;
r3 = byteop2p (rl:0, r3:2) (th)
r3 = byteop2p (rl1:0, r3:2) (rndl, r)
r3 = byteop2p (rl:0, r3:2) (rndh r)
r3 = byteop2p (rl:0, r3:2) (t r)
r3 = byteop2p (rl1:0, r3:2) (t r)

Also See
BYTEOP1P (Quad 8-Bit Average — Byte)

Special Applications

This instruction supports binary interpolation used in fractional motion
search and motion compensation algorithms.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-29

Instruction Overview

BYTEPACK (Quad 8-Bit Pack)

General Form

dest_reg = BYTEPACK (src_reg_0, src_reg_1)
Syntax
Dreg = BYTEPACK (Dreg, Dreg) ; /* (b)) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Pack instruction packs four 8-bit values, half-word
aligned, contained in two source registers into one register, byte aligned as

shown in Table 18-22 and Table 18-23.

Table 18-22. Source Registers Contain

src_reg_0: bytel byte0

src_reg_1: byte3 byte2

Table 18-23. Destination Register Receives

dest_reg: byte3 byte2 bytel byte0

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

18-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r2 = bytepack (r4,r5) ;
* Assuming:
* R4 = OxFEED FACE
* R5 = 0xBEEF BADD
then this instruction returns:

* R2 = 0xEFDD EDCE

Also See
BYTEUNPACK (Quad 8-Bit Unpack)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-31

Instruction Overview

BYTEOP16M (Quad 8-Bit Subtract)

General Form

(dest_reg_1, dest_reg_0)
(dest_reg_1, dest_reg_0)

BYTEOP16M (src_reg_0, src_reg_1)
BYTEOP16M (src_reg_0, src_reg_1) (R)

Syntax

/* forward byte order operands */
(Dreg, Dreg) = BYTEOP16M (Dreg_pair, Dreg_pair) ; /* (b */)
/* reverse byte order operands */
(Dreg, Dreg) = BYTEOP16M (Dreg-pair, Dreg-pair) (R) ; /* (b) */

Syntax Terminology
Dreg: R7-0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Subtract instruction subtracts two unsigned quad byte
number sets byte wise, adjusting for byte alignment. The instruction loads

the byte-wise results as sign-extended half-words in two destination regis-
ters, as shown in Table 18-24 and Table 18-25.

Table 18-24. Source Registers Contain

aligned_src_reg_0: y3 y2 yl y0

aligned_src_reg_1: 73 72 z1 20

18-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Table 18-25. Destination Registers Receive

3l 24 23 16 150, 8 T 0
dest_reg_0: yl -zl y0 - z0
dest_reg_1: y3 -123 y2 - 22

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Subtract instruction provides byte alignment directly in
the source register pairs src_reg_0 and src_reg_1I based on index registers
10 and I1.

e The two LSBs of the 10 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

e The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated shown in Table 18-26.

In the default source order case (for example, not the (R) syntax), assume a
source register pair contains the data shown in Table 18-26.

Table 18-26. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB% of 10or 11 | byte7 |byte6 |byte |byted |byte3 |byte2 |bytel [byteo
00b: byte3 | byte2 |bytel | byteO
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-33

Instruction Overview

Options

The (R) syntax reverses the order of the source registers within each regis-
ter pair. Typical high performance applications cannot afford the
overhead of reloading both register pair operands to maintain byte order
for every calculation. Instead, they alternate and load only one register
pair operand each time and alternate between the forward and reverse byte
order versions of this instruction. By default, the low order bytes come
from the low register in the register pair. The (R) option causes the low
order bytes to come from the high register.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume that a source register pair con-
tains the data shown in Table 18-27.

Table 18-27. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB% of 100r 11 | byte7 |byte6 |byte |byted |byte3 |byte2 |bytel [byteo
00b: byte3 | byte2 |bytel | byteO
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

The mnemonic derives its name from the fact that the operands are bytes,
the result is 16 bits, and the arithmetic operation is “minus” for
subtraction.

18-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

(rl,r2)= byteoplém (r3:2,r1:0) ;
(rl,r2)= byteoplém (r3:2,r1:0) (r) ;

Also See
BYTEOP16P (Quad 8-Bit Add)

Special Applications

This instruction provides packed data arithmetic typical of video and
image processing applications.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-35

Instruction Overview

SAA (Quad 8-Bit Subtract-Absolute-Accumulate)

General Form

SAA (src_reg_0, src_reg_1)
SAA (src_reg_0, src_reg_1) (R)

Syntax
SAA (Dreg_pair, Dreg_pair) ; /* forward byte order operands
(b) */
SAA (Dreg_pair, Dreg_pair) (R) ; /* reverse byte order oper-
ands (b) */

Syntax Terminology

Dreg_pair: R1:0, R3:2 (This instruction only supports register pairs R1:0
and R3:2.)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Subtract-Absolute-Accumulate instruction subtracts four
pairs of values, takes the absolute value of each difference, and accumu-
lates each result into a 16-bit Accumulator half. The results are placed in
the upper- and lower-half Accumulators A0.H, A0. L, A1.H, and Al. L.

Saturation is performed if an operation overflows a 16-bit Accumulator

half.
Only register pairs R1:0 and R3:2 are valid sources for this instruction.

This instruction supports the following byte-wise Sum of Absolute Differ-
ence (SAD) calculations.

18-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

N-1 N-1
SAD = % Y laiy) - b(i)
i=0 j=0

Figure 18-1. Absolute Difference (SAD) Calculations

Typical values for N are 8 and 16, corresponding to the video block size of
8x8 and 16x16 pixels, respectively. The 16-bit Accumulator registers limit
the pixel region or block size to 32x32 pixels.

The SAA instruction behavior is shown below.

Table 18-28. SAA Instruction Behavior

src_reg 0 |a(i, j+3) a(i, j+2) a(i, j+1) a(i, j)

src_reg 1 | b(i, j+3) b(i, j+2) b(, j+1) b(, j)

Al.H +=| a(i, j+3) ALL | +=| a(i, j+2) AO0.H |+=| a(i, j+1) AO.L | +=|a(i, j)
-b(i, j+3) | - b(i, j+2) | - b(i, j+1) | - b, j) |

The Quad 8-Bit Subtract-Absolute-Accumulate instruction provides byte
alignment directly in the source register pairs src_reg_0 and src_reg_I
based on index registers 10 and I1.

e The two LSBs of the 10 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

e The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated in Table 18-29.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-37

Instruction Overview

In the default source order case (for example, not the (R) syntax), assume a
source register pair contain the data shown in Table 18-29.

Table 18-29. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of 10 or 11 | byte? ‘ byte6 | byte5 ‘ byted |byte3 |byte2 | bytel | byte0
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 |byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The (R) syntax reverses the order of the source registers within each pair.
Typical high performance applications cannot afford the overhead of
reloading both register pair operands to maintain byte order for every cal-
culation. Instead, they alternate and load only one register pair operand
each time and alternate between the forward and reverse byte order ver-
sions of this instruction. By default, the low order bytes come from the
low register in the register pair. The (R) option causes the low order bytes
to come from the high register.

When reversing source order by using the (R) syntax, the source registers
swap places within the register pair in their byte ordering. If a source reg-
ister pair contains the data shown in Table 18-30, then the SAA
instruction computes 12 pixel operations simultaneously—the three-opera-
tion subtract-absolute-accumulate on four pairs of operand bytes in

parallel.

18-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

Table 18-30. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI
Two LSB’s of 10 or I1 byte7 ‘ byte6 | byte5 ‘ byte4 | byte3 |byte2 |bytel | byte0
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel
10b: byte5 | byte4 |byte3 | byte2
11b: byte6 | byte5 |byte4 | byte3
Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

saa (r1:0, r3:2) || r0 = [i0++] || r2 = [il++] ; /* parallel fill
instructions */

saa (rl:0, r3:2) (R) || r1 = [i0++] || r3 = [i1++] ; /* reverse,
parallel fill instructions */

saa (rl:0, r3:2) ; /* last SAA in a loop, no more fill

required */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-39

Instruction Overview

Also See
DISALGNEXCPT, Load Data Register

Special Applications

Use the Quad 8-Bit Subtract-Absolute-Accumulate instruction for
block-based video motion estimation algorithms using block Sum of
Absolute Difference (SAD) calculations to measure distortion.

18-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

BYTEUNPACK (Quad 8-Bit Unpack)

General Form

BYTEUNPACK src_reg_pair
BYTEUNPACK src_reg_pair (R)

(dest_reg_1, dest_reg_0)
(dest_reg_1, dest_reg_0)

Syntax
(Dreg , Dreg) = BYTEUNPACK Dreg_pair ; /* (b)) */
(Dreg , Dreg) = BYTEUNPACK Dreg_pair (R) ; /* reverse source

order (b) */

Syntax Terminology
Dreg: R7-0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Unpack instruction copies four contiguous bytes from a
pair of source registers, adjusting for byte alignment. The instruction
loads the selected bytes into two arbitrary data registers on half-word
alignment.

The two LSBs of the 10 register determine the source byte alignment, as
illustrated in Table 18-31.

In the default source order case (for example, not the (R) syntax), assume
the source register pair contains the data shown in Table 18-31.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-41

Instruction Overview

Table 18-31. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO
Two LSB’s of 10 or I1 byte7 ‘ byte6 | byte5 ‘ byte4 | byte3 |byte2 |bytel |byte0
00b: byte3 | byte2 | bytel | byte0
01b: byte4 | byte3 | byte2 | bytel
10b: byte5 | byte4 |byte3 | byte2
11b: byte6 | byte5 |byte4 | byte3

Options

The (R) syntax reverses the order of the source registers within the pair.
Typical high performance applications cannot afford the overhead of
reloading both register pair operands to maintain byte order for every cal-
culation. Instead, they alternate and load only one register pair operand
each time and alternate between the forward and reverse byte order ver-
sions of this instruction. By default, the low order bytes come from the
low register in the register pair. The (R) option causes the low order bytes
to come from the high register.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places in their byte
ordering. Assume the source register pair contains the data shown in

Table 18-32.

Table 18-32. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSBs of [0 or 11 | byte7 | byte6 |byte5 |byted |byte3 |byte2 |bytel |byteo
00b: byte3 | byte2 |bytel | byte0
01b: byte4 | byte3 | byte2 | bytel

10b: byte5 | byte4 | byte3 | byte2

11b: byte6 | byte5 | byte4 | byte3

18-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

The four bytes, now byte aligned, are copied into the destination registers
on half-word alignment, as shown in Table 18-33 and Table 18-34.

Table 18-33. Source Register Contains

Aligned bytes: byte_D byte_C byte_B byte_A

Table 18-34. Destination Registers Receive

dest_reg_0: byte_B byte_A

dest_reg_1: byte_D byte_C

Only register pairs R1:0 and R3:2 are valid sources for this instruction.

Misaligned access exceptions are disabled during this instruction.

Flags Affected

None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-43

Instruction Overview

Example
(r6,r5) = byteunpack rl1:0 ; /* non-reversing sources */
e Assuming:
* register 10°s two LSBs = 00b,
e R1=0xFEED FACE
* R0 = OxBEEF BADD
then this instruction returns:
* R6 = 0x00BE 00EF
* R5=0x00BA 00DD
* Assuming:
* register 10°s two LSBs = 01b,
* R1=0xFEED FACE
* R0 = OxBEEF BADD
then this instruction returns:
* R6 = 0x00CE 00BE
* R5=0x00EF 00BA

18-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

* Assuming:
* register 10’s two LSBs = 10b,
* R1 = 0xFEED FACE
* RO = 0xBEEF BADD
then this instruction returns:
* R6 = 0x00FA 00CE
* R5 = 0xO00BE OOEF
* Assuming:
* register 10’s two LSBs = 11b,
* R1 = 0xFEED FACE
* RO = 0xBEEF BADD
then this instruction returns:
* R6 = 0xO0OED 00FA
* R5=0x00CE 00BE

(r6,r5) = byteunpack r1:0 (R) ; /* reversing sources case */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-45

Instruction Overview

* Assuming:
* register 10’s two LSBs = 00b,
* R1 = 0xFEED FACE
* RO = 0xBEEF BADD
then this instruction returns:
* R6 = 0xO00FE 00ED
* R5 = 0x00FA 00CE
* Assuming:
* register 10’s two LSBs = 01b,
* R1 = 0xFEED FACE
* RO = 0xBEEF BADD
then this instruction returns:
* R6 =0x00DD 00FE
* R5=0x00ED 00FA
e Assuming:
* register 10°s two LSBs = 10b,
* R1 = 0xFEED FACE
* R0 = 0xBEEF BADD
then this instruction returns:
* R6 =0x00BA 00DD
* R5 = 0x00FE O0ED

18-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations

* Assuming:
* register 10’s two LSBs = 11b,
* R1 = 0xFEED FACE
* RO = 0xBEEF BADD
then this instruction returns:
* R6 = 0x00EF 00BA
* R5=0x00DD 00FE

Also See
BYTEPACK (Quad 8-Bit Pack)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-47

Instruction Overview

18-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

19 VECTOR OPERATIONS

Instruction Summary
* “Add on Sign” on page 19-3
e “VIT_MAX (Compare-Select)” on page 19-8
* “Vector ABS” on page 19-15
* “Vector Add / Subtract” on page 19-18
* “Vector Arithmetic Shift” on page 19-23
* “Vector Logical Shift” on page 19-28
e “Vector MAX” on page 19-32
e “Vector MIN” on page 19-35
* “Vector Multiply” on page 19-38
e “Vector Multiply and Multiply-Accumulate” on page 19-41
* “Vector Negate (Two’s Complement)” on page 19-46
* “Vector PACK” on page 19-48
* “Vector SEARCH” on page 19-50

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-1

Instruction Overview

Instruction Overview

This chapter discusses the instructions that control vector operations.
Users can take advantage of these instructions to perform simultaneous
operations on multiple 16-bit values, including add, subtract, multiply,
shift, negate, pack, and search. Compare-Select and Add-On-Sign are also
included in this chapter.

19-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Add on Sign

General Form

dest_hi = dest_lo = SIGN (srcO_hi) * srcl_hi
+ SIGN (src0_To) * srcl_1o
Syntax
Dreg_hi = Dreg_lo = SIGN (Dreg_hi) * Dreg_hi
+ SIGN (Dreg_lo) * Dreg_lo ;
/* (b)) */

Register Consistency

The destination registers dest_hi and dest_7o must be halves of the same
data register. Similarly, src0_ni and src0_70 must be halves of the same
register and srcl_hi and srci_7lo must be halves of the same register.

Syntax Terminology
Dreg_hi: R7-0.H

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-3

Instruction Overview

Functional Description

The Add on Sign instruction performs a two step function, as follows.

1. Multiply the arithmetic sign of a 16-bit half-word number in srco

by the corresponding half-word number in src1. The arithmetic
sign of src0 is either (+1) or (1), depending on the sign bit of

src0. The instruction performs this operation on the upper and
lower half-words of the same data registers.

The results of this step obey the signed multiplication rules sum-
marized in Table 19-1. Y is the number in srco, and Z is the
number in srcl. The numbers in src0 and srcl may be positive or
negative.

Table 19-1. Signed Multiplication Rules

SRCO SRC1 Sign-Adjusted SRC1
+Y +Z +Z
+Y -Z -Z
Y +Z -Z
-Y -Z +Z

Note the result always bears the magnitude of Z with only the sign

affected.

. Then, add the sign-adjusted src1 upper and lower half-word

results together and store the same 16-bit sum in the upper and
lower halves of the destination register, as shown in Table 19-2 and

Table 19-3.

The sum is not saturated if the addition exceeds 16 bits.

19-4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 19-2. Source Registers Contain

Vector Operations

5 DETT 24 23, 16 15, 8 T eeeieeeeeeans 0
src0: al a0
srcl: bl b0
Table 19-3. Destination Register Receives
[DT 24 23 i, 16 15, 8 T e aas 0
dest: (sign_adjusted_b1) + (sign_adjusted_b1) +

(sign_adjusted_b0)

(sign_adjusted_b0)

Flags Affected

None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-5

Instruction Overview

Example

r7.h=r7.1=sign(r2.h)*r3.h+sign(r2.1)*r3.1

o If
e R2.H=2
* R3.H=23
¢ R2.L=2001
e R3.L=1234
then
* R7.H=1257 (or 1234 + 23)
e R7.L=1257
o If
* R2.H==2
* R3.H=23
* R2.L=2001
e R3.L=1234
then

e R7.H=1211 (or 1234 — 23)
e R7.L=1211

19-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

o If
* R2.H=2
* R3.H=23
e R2.L=-2001
* R3.L=1234
then
e R7.H=-1211 (or (-1234) + 23)
e R7.L=-1211
o If
* R2.H=-2
* R3.H=23
¢ R2.L=-2001
e R3.L=1234
then
* R7.H=-1257 (or (-1234) — 23)
e R7.L=-1257
Also See
None
Special Applications

Use the Sum on Sign instruction to compute the branch metric used by
each Viterbi Butterfly.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-7

Instruction Overview

VIT_MAX (Compare-Select)

General Form

dest_reg = VIT_MAX (src_reg_0, src_reg_1) (ASL)
dest_reg VIT_MAX (src_reg_0, src_reg_1) (ASR)
dest_reg_lo = VIT_MAX (src_reg) (ASL)
dest_reg_Tlo VIT_MAX (src_reg) (ASR)

Syntax

Dual 16-Bit Operation

Dreg = VIT_MAX (Dreg , Dreg) (ASL) ; /* shift history bits
left (b) */
Dreg = VIT_MAX (Dreg , Dreg) (ASR) /* shift history bits

right (b) */

Single 16-Bit Operation

Dreg_lo = VIT_MAX (Dreg) (ASL) ; /* shift history bits left
(b) */
Dreg_lo = VIT_MAX (Dreg) (ASR) ; /* shift history bits right
(b) */

Syntax Terminology
Dreg: R7-0

Dreg_Tlo: R7-0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

19-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Functional Description

The Compare-Select (VIT_MAX) instruction selects the maximum values of
pairs of 16-bit operands, returns the largest values to the destination regis-
ter, and serially records in A0. W the source of the maximum.This operation
performs signed operations. The operands are compared as two’s
complements.

Versions are available for dual and single 16-bit operations. Whereas the
dual versions compare four operands to return two maxima, the single ver-
sions compare only two operands to return one maximum.

The Accumulator extension bits (bits 39—32) must be cleared before exe-
cuting this instruction.

This operation is illustrated in Table 19-4 and Table 19-5.

Table 19-4. Source Registers Contain

3l 24 23 16 15 8 T, 0
src_reg_0 yl yO0
src_reg_1 z1 z0

Table 19-5. Destination Register Contains

dest_reg Maximum, y1 or y0 Maximum, z1 or z0

Dual 16-Bit Operand Behavior

The ASL version shifts A0 left two bit positions and appends two LSBs to
indicate the source of each maximum as shown in Table 19-6 and

Table 19-7.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-9

Instruction Overview

Table 19-6. ASL Version Shifts

A0

Table 19-7. Where

A0.X A0.W

00000000 XXXXXXXXXXKX XXX XXX XXX XXXXXXXXXBB

BB

Indicates

00

z0 and y0 are maxima

01

z0 and y1 are maxima

10

z1 and y0 are maxima

11

zl and y1 are maxima

Conversely, the ASR version shifts A0 right two bit positions and appends
two MSBs to indicate the source of each maximum as shown in

Table 19-8 and Table 19-9.

Table 19-8. ASR Version Shifts

A0

A0.X A0 W

00000000 BBXXXXXXXXXXX XXX XXX XXX XXX XXXXXXX

Table 19-9. Where

BB Indicates
00 y0 and z0 are maxima
01 y0 and z1 are maxima
10 yl and z0 are maxima
11 yl and z1 are maxima
19-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Notice that the history bit code depends on the A0 shift direction. The bit
for src_reg_1 is always shifted onto A0 first, followed by the bit for
src_reg_J0.

The single operand versions behave similarly.

Single 16-Bit Operand Behavior

If the dual source register contains the data shown in Table 19-10 the des-
tination register receives the data shown in Table 19-11.

Table 19-10. Source Registers Contain

src_reg yl y0

Table 19-11. Destination Register Contains

dest_reg_lo Maximum, y1 or y0

The ASL version shifts A0 left one bit position and appends an LSB to
indicate the source of the maximum.

Table 19-12. ASL Version Shifts

A0.X A0 W

A0 00000000 KXXXXXXXXKXXX XX XXX XXX XXX XXX XXXXB

Conversely, the ASR version shifts A0 right one bit position and appends
an MSB to indicate the source of the maximum.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-11

Instruction Overview

Table 19-13. ASR Version Shifts

A0.X A0 W

A0 00000000 BXXXXXXXXXXXXX XXX XXX XXXXXXXXXXXX

Table 19-14. Where

B Indicates
0 yO0 is the maximum
1 y1 is the maximum

The path metrics are allowed to overflow, and maximum comparison is
done on the two’s complement circle. Such comparison gives a better indi-
cation of the relative magnitude of two large numbers when a small
number is added/subtracted to both.

Flags Affected
None

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

19-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Example

r5 = vit_max(r3, r2)(asl) ; /* shift left, dual operation */

e Assume:
* R3 = 0xFFFF 0000
* R2 =0x0000 FFFF
* A0 = 0x00 0000 0000
This example produces:
* R5=0x0000 0000
* A0 = 0x00 0000 0002

r7 = vit_max (rl, r0) (asr) ; /* shift right, dual operation */

e Assume:
e R1=0xFEED BEEF
* R0 = 0xDEAF 0000
* A0 = 0x00 0000 0000
This example produces:
¢ R7 = 0xFEED 0000

* A0 =0x00 8000 0000

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

19-13

Instruction Overview

r3.1 = vit_max (rl)(asl) ; /* shift left, single operation */
* Assume:
* R1 = 0xFFFF 0000
* A0 =0x00 0000 0000
This example produces:
* R3.L=0x0000
* A0 = 0x00 0000 0000
r3.1 = vit_max (rl)(asr) ; /* shift right, single operation */
* Assume:
* R1=0x1234 FADE
* A0 = 0x00 FFFF FFFF
This example produces:
* R3.L=0x1234
* A0 =0x00 7FFF FFFF

Also See
MAX

Special Applications

The Compare-Select (VIT_MAX) instruction is a key element of the
Add-Compare-Select (ACS) function for Viterbi decoders. Combine it
with a Vector Add instruction to calculate a trellis butterfly used in ACS
functions.

19-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Vector ABS

General Form

dest_reg = ABS source_reg (V)

Syntax

Dreg = ABS Dreg (V) ; /* (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Absolute Value instruction calculates the individual absolute
values of the upper and lower halves of a single 32-bit data register. The
results are placed into a 32-bit dest_reg, using the following rules.

 If the input value is positive or zero, copy it unmodified to the
destination.

* If the input value is negative, subtract it from zero and store the
result in the destination.

For example, if the source register contains the data shown in Table 19-15
the destination register receives the data shown in Table 19-16.

Table 19-15. Source Registers Contain

src_reg: x.h x.1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-15

Instruction Overview

Table 19-16. Destination Register Contains

dest_reg: | x.h| | x.1]

This instruction saturates the result.

Flags Affected
This instruction affects flags as follows.
e AZ is set if either or both result is zero; cleared if both are nonzero.
* AN is cleared.

eV is set if either or both result saturates; cleared if both are no
saturation.

e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

19-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Example
/* If r1 = OxFFFF 7FFF, then . . . */
r3 = abs rl (v) ;
/* . . . produces 0x0001 7FFF */
Also See
ABS
Special Applications
None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-17

Instruction Overview

Vector

Add / Subtract

General Form

dest
dest
dest
dest
dest_
dest_
dest_
dest_
dest_
dest_
dest_
dest_

Syntax
Dual

Dreg
Dreg
Dreg
Dreg

Quad

= src_reg_0 +|+ src_reg_1

= src_reg_0 -]+ src_reg_1

= src_reg_0 +|- src_reg_1

= src_reg_0 -|- src_reg_1

0 = src_reg_0 +|+ src_reg_1,
1 = src_reg_0 -|- src_reg_1l

0 = src_reg_0 +|- src_reg_1,
1 = src_reg_0 -|+ src_reg_l1

0 = src_reg_0 + src_reg_1,

1 = src_reg_0 - src_reg_1

0 = Al + AO, dest_1 = Al - A0
0 = A0 + Al, dest_1 = A0 - Al

16-Bit Operations

= Dreg +|+ Dreg (opt_mode_0) /* add | add (b) */

= Dreg - |+ Dreg (opt_mode_0) /* subtract | add (b) */

= Dreg +|- Dreg (opt_mode_0) /* add | subtract (b) */

= Dreg -|- Dreg (opt_mode_0) ; /* subtract | subtract (b) */

16-Bit Operations

Dreg = Dreg +|+ Dreg, Dreg = Dreg -|- Dreg (opt_mode_0,
opt_mode_2)

/* add | add, subtract | subtract; the set

of source registers

must be the same for each operation (b) */
Dreg = Dreg +|- Dreg, Dreg = Dreg -|+ Dreg (opt_mode_0,

opt_mode_2)

/* add | subtract, subtract | add; the set

of source registers

must be the same for each operation (b) */

19-18

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Dual 32-Bit Operations
Dreg = Dreg + Dreg, Dreg = Dreg - Dreg (opt_mode_1)

/* add, subtract; the set of source registers must be the same
for each operation (b) */

Dual 40-Bit Accumulator Operations

Dreg = Al + A0, Dreg = A1l - AQ (opt_mode_1) ; /* add, sub-
tract Accumulators; subtract AO from Al (b) */
Dreg = A0 + Al, Dreg = A0 - Al (opt_mode_1) ; /* add, sub-

tract Accumulators; subtract Al from AO (b) */

Syntax Terminology
Dreg: R7-0
opt_mode_0: optional (S), (C0), or (SCO)
opt_mode_1: optional (S)

opt_mode_2: optional (ASR), or (ASL)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Add / Subtract instruction simultaneously adds and/or sub-
tracts two pairs of registered numbers. It then stores the results of each
operation into a separate 32-bit data register or 16-bit half register,
according to the syntax used. The destination register for each of the quad
or dual versions must be unique.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-19

Instruction Overview

Options
The Vector Add / Subtract instruction provides three option modes.

* opt_mode_0 supports the Dual and Quad 16-Bit Operations ver-
sions of this instruction.

* opt_mode_1I supports the Dual 32-bit and 40-bit operations.

* opt_mode_2 supports the Quad 16-Bit Operations versions of this
instruction.

Table 19-17 describes the options that the three opt_modes support.

Table 19-17. Options for Opt_Mode 0

Mode Option | Description
opt_mode_0 S Saturate the results at 16 bits.
CO Cross option. Swap the order of the results in the destination regis-
ter.

SCO Saturate and cross option. Combination of (S) and (CO) options.

opt_mode_1 S Saturate the results at 16 or 32 bits, depending on the operand size.

opt_mode_2 | ASR Arithmetic shift right. Halve the result (divide by 2) before storing
in the destination register. If specified with the S (saturation) flag in
Quad 16-Bit Operand versions of this instruction, the scaling is per-
formed before saturation for the ADSP-BF533 processor, and the
scaling is performed after saturation for the ADSP-BF535 processor.

ASL Arithmetic shift left. Double the result (multiply by 2, truncated)
before storing in the destination register. If specified with the S (sat-
uration) flag in Quad 16-Bit Operand versions of this instruction,
the scaling is performed before saturation for the ADSP-BF533 pro-
cessor, and the scaling is performed after saturation for the
ADSP-BF535 processor.

The options shown for opt_mode_2 are scaling options.

19-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Flags Affected
This instruction affects the following flags.
* AZis set if any results are zero; cleared if all are nonzero.
* AN is set if any results are negative; cleared if all non-negative.

e ACO is set if the right-hand side of a dual operation generates a
carry; cleared if no carry; unaffected if a quad operation.

e ACl is set if the left-hand side of a dual operation generates a carry;
cleared if no carry; unaffected if a quad operation.

e Vis set if any results overflow; cleared if none overflows.
e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.
@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r5=r3 +|+ r4 ; /* dual 16-bit operations, add|add */
ré=r0 -|+ rl(s) ; /* same as above, subtract|add with

saturation */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-21

Instruction Overview

ro=r2 +|- rl(co) ; /* add|subtract with half-word results
crossed over in the destination register */
r7=r3 -|- ré6(sco) ; /* subtract|subtract with saturation and

half-word results crossed over in the destination register */

ro5=r3 +|+ rd4, r7=r3-|-r4 ; /* quad 16-bit operations, add|add,
subtract|subtract */

r5=r3 +|- r4, r7=r3 -|+ r4 ; /* quad 16-bit operations,
add|subtract, subtract|add */

ro=r3 +|- rd4, r7=r3 -|+ r4(asr) ; /* quad 16-bit operations,

add|subtract, subtract|add, with all results divided by 2 (right
shifted 1 place) before storing into destination register */
ro=r3 +|- rd4, r7=r3 -|+ r4(asl) ; /* quad 16-bit operations,
add|subtract, subtract|add, with all results multiplied by 2
(lTeft shifted 1 place) before storing into destination register
dual */

r2=r0+rl, r3=r0-rl ; /* 32-bit operations */

r2=r0+rl, r3=r0-rl(s) ; /* dual 32-bit operations with
saturation */

rd=al+a0, ré6=al-al0 ; /* dual 40-bit Accumulator operations, AQ
subtracted from Al */

rd=al+al, r6=al0-al(s) ; /* dual 40-bit Accumulator operations

with saturation, Al subtracted from A0 */

Also See
Add, Subtract

Special Applications

FFT butterfly routines in which each of the registers is considered a single
complex number often use the Vector Add / Subtract instruction.

/* If r1 = 0x0003 0004 and r2 = 0x0001 0002, then . . . */
ro = r2 +|- rl(co) ;
/* . . . produces r0 = OxFFFE 0004 */

19-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Vector Arithmetic Shift

General Form

dest_reg = src_reg >>> shift_magnitude (V)
ASHIFT src_reg BY shift_magnitude (V)

dest_reg

Syntax

Constant Shift Magnitude

Dreg = Dreg >>> uimm4 (V) ; /* arithmetic shift right, immedi-
ate (b) */
Dreg = Dreg << uimm4 (V,S) ; /* arithmetic shift Teft, immedi-

ate with saturation (b) */
Registered Shift Magnitude

Dreg = ASHIFT Dreg BY Dreg_Tlo (V) ; /* arithmetic shift (b) */
Dreg = ASHIFT Dreg BY Dreg_lo (V, S) ; /* arithmetic shift
with saturation (b) */

Arithmetic Left Shift Immediate

There is no syntax specific to a vector arithmetic left shift immediate
instruction. Use the Vector Logical Shift syntax for vector left shifting,
which accomplishes the same function for sign-extended numbers in num-
ber-normalizing routines. See ““>>>” and “<<” Syntax” notes for caveats.

Syntax Terminology
Dreg: R7-0
Dreg_Tlo: R7-0.L

uimm4: unsigned 4-bit field, with a range of 0 through 15

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-23

Instruction Overview

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Arithmetic Shift instruction arithmetically shifts a pair of
half-word registered numbers a specified distance and direction. Though
the two half-word registers are shifted at the same time, the two numbers
are kept separate.

Arithmetic right shifts preserve the sign of the preshifted value. The sign
bit value backfills the left-most bit position vacated by the arithmetic right
shift. For positive numbers, this behavior is equivalent to the logical right
shift for unsigned numbers.

Only arithmetic right shifts are supported. Left shifts are performed as
logical left shifts that may not preserve the sign of the original number. In
the default case—without the optional saturation option—numbers can
be left shifted so far that all the sign bits overflow and are lost. However,
when the saturation option is enabled, a left shift that would otherwise
shift nonsign bits off the left side saturates to the maximum positive or
negative value instead. So, with saturation enabled, the result always keeps
the same sign as the original number.

See “Saturation” on page 1-17 for a description of saturation behavior.

“>>>” and “<<” Syntax

The two half-word registers in dest_reg are right shifted by the number of
places specified by shift_magnitude, and the result stored into dest_reg.
The data is always a pair of 16-bit half-registers. Valid shift_magnitude
values are 0 through 15.

19-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

“ASHIFT” Syntax

Both half-word registers in src_reg are shifted by the number of places
prescribed in shift_magnitude, and the result stored into dest_reg.

The sign of the shift magnitude determines the direction of the shift for
the ASHIFT versions.

* Dositive shift magnitudes without the saturation flag (-, S) pro-
duce Logical Left shifts.

* Dositive shift magnitudes with the saturation flag (-, S) produce
Arithmetic Left shifts.

* Negative shift magnitudes produce Arithmetic Right shifts.

In essence, the magnitude is the power of 2 multiplied by the src_reg
number. Positive magnitudes cause multiplication (N x 2"), whereas neg-
ative magnitudes produce division (N x 27" or N /2").

The dest_reg and src_reg are both pairs of 16-bit half registers. Satura-
tion of the result is optional.

Valid shift magnitudes for 16-bit src_reg are =16 through +15, zero
included. If a number larger than these is supplied, the instruction masks
and ignores the more significant bits.

This instruction does not implicitly modify the src_reg values. Option-
ally, dest_reg can be the same D-register as src_reg. Using the same
D-register for the dest_reg and the src_reg explicitly modifies the source
register.

Options

The ASHIFT instruction supports the (—, S) option, which saturates the
result.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-25

Instruction Overview

Flags Affected
This instruction affects flags as follows.
e AZ is set if either result is zero; cleared if both are nonzero.
e AN is set if either result is negative; cleared if both are non-negative.
eV is set if either result overflows; cleared if neither overflows.
e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

19-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Example

rd=r5>>>3 (v) ; /* arithmetic right shift immediate R5.H and
R5.L by 3 bits (divide each half-word by 8) If r5 = 0x8004 000F
then the result is r4 = 0xF0O00 0001 */

rd=r5>>>3 (v, s) ; /* same as above, but saturate the result */
r2=ashift r7 by r5.1 (v) ; /* arithmetic shift (right or left,
depending on sign of r5.1) R7.H and R7.L by magnitude of Rb.L */
r2=ashift r7 by r5.1 (v, s) ; /* same as above, but saturate
the result */

re=r5<<7 (v,s) ; /* logical left shift immediate R5.H and R5.L

by 7 bits, saturated */

Also See
Vector Logical Shift, Arithmetic Shift, Logical Shift

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-27

Instruction Overview

Vector Logical Shift

General Form

dest_reg = src_reg »>> shift_magnitude (V)
dest_reg = src_reg << shift_magnitude (V)
dest_reg = LSHIFT src_reg BY shift_magnitude (V)

Syntax

Constant Shift Magnitude

Dreg = Dreg >> uimm4 (V) ; /* logical shift right, immediate
(b) */
Dreg = Dreg << uimm4 (V) /* logical shift Teft, immediate
(b) */

Registered Shift Magnitude

Dreg = LSHIFT Dreg BY Dreg_lo (V) ; /* logical shift (b) */

Syntax Terminology
Dreg: R7-0
Dreg_Tlo: R7-0.L

uimm4: unsigned 4-bit field, with a range of 0 through 15

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Logical Shift logically shifts a pair of half-word registered
numbers a specified distance and direction. Though the two half-word
registers are shifted at the same time, the two numbers are kept separate.

19-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Logical shifts discard any bits shifted out of the register and backfill

vacated bits with zeros.

“>>” AND “<<” Syntax

The two half-word registers in dest_reg are shifted by the number of
places specified by shift_magnitude and the result stored into dest_reg.
The data is always a pair of 16-bit half-registers. Valid shift_magnitude
values are 0 through 15.

“LSHIFT” Syntax

Both half-word registers in src_reg are shifted by the number of places
prescribed in shift_magnitude, and the result is stored into dest_reg.

For the LSHIFT versions, the sign of the shift magnitude determines the
direction of the shift.

* Dositive shift magnitudes produce left shifts.
* Negative shift magnitudes produce right shifts.
The dest_reg and src_reg are both pairs of 16-bit half-registers.

Valid shift magnitudes for 16-bit src_reg are —16 through +15, zero
included. If a number larger than these is supplied, the instruction masks
and ignores the more significant bits.

This instruction does not implicitly modify the src_reg values. Option-
ally, dest_reg can be the same D-register as src_reg. Using the same
D-register for the dest_reg and the src_reg explicitly modifies the source
register at your discretion.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-29

Instruction Overview

Flags Affected
This instruction affects flags as follows.
* AZ is set if either result is zero; cleared if both are nonzero.
e AN is set if either result is negative; cleared if both are non-negative.
e Vis cleared.
e All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

19-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Example

r4=r5>>3 (v)

/* logical right shift immediate R5.H and R5.L by 3 bits */
r4=r5<<3 (v) ;

/* logical Teft shift immediate R5.H and R5.L by 3 bits */
r2=1shift r7 by r5.1 (v)

/* logically shift (right or left, depending on sign of rb5.1)
R7.H and R7.L by magnitude of R5.L */

Also See
Vector Arithmetic Shift, Arithmetic Shift, Logical Shift

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-31

Instruction Overview

Vector MAX

General Form

dest_reg = MAX (src_reg_0, src_reg_1) (V)

Syntax
Dreg = MAX (Dreg , Dreg) (V) ; /* dual 16-bit operations
(b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Maximum instruction returns the maximum value (meaning
the largest positive value, nearest to 0x7FFF) of the 16-bit half-word
source registers to the dest_reg.

The instruction compares the upper half-words of src_reg_0and
src_reg_1and returns that maximum to the upper half-word of dest_reg.
It also compares the lower half-words of src_reg_0and src_reg_1 and
returns that maximum to the lower half-word of dest_reg. The result is a
concatenation of the two 16-bit maximum values.

The Vector Maximum instruction does not implicitly modify input val-
ues. The dest_reg can be the same D-register as one of the source
registers. Doing this explicitly modifies that source register.

19-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Flags Affected
This instruction affects flags as follows.
e A7 is set if either or both result is zero; cleared if both are nonzero.

e AN is set if either or both result is negative; cleared if both are
non-negative.

e Vs cleared.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode
User & Supervisor
Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r7

max (rl, r0) (v) ;

e Assume R1 = 0x0007 0000 and RO = 0x0000 000F, then rR7 =
0x0007 000F.

e Assume R1 = 0xFFF7 8000 and R0 = 0x000A 7FFF, then R7 =
0x000A 7FFF.

e Assume R1 = 0x1234 5678 and R0 = 0x0000 000F, then R7 =
0x1234 5678.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-33

Instruction Overview

Also See
Vector SEARCH, Vector MIN, MAX, MIN

Special Applications

None

19-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Vector MIN

General Form

dest_reg = MIN (src_reg_0, src_reg_1) (V)

Syntax
Dreg = MIN (Dreg , Dreg) (V) ; /* dual 16-bit operation
(b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Minimum instruction returns the minimum value (the most
negative value or the value closest to 0x8000) of the 16-bit half-word
source registers to the dest_reg.

This instruction compares the upper half-words of src_reg_0 and
src_reg_1 and returns that minimum to the upper half-word of dest_reg.
It also compares the lower half-words of src_reg_0and src_reg_1 and
returns that minimum to the lower half-word of dest_reg. The result is a
concatenation of the two 16-bit minimum values.

The input values are not implicitly modified by this instruction. The
dest_reg can be the same D-register as one of the source registers. Doing
this explicitly modifies that source register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-35

Instruction Overview

Flags Affected

This instruction affects flags as follows.

®

AZ is set if either or both result is zero; cleared if both are nonzero.

AN is set if either or both result is negative; cleared if both are
non-negative.

V is cleared.
All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r7

min (rl, r0) (v) ;

Assume R1 = 0x0007 0000 and RO = 0x0000 000F, then R7 =
0x0000 0000.

Assume R1 = 0xFFF7 8000 and R0 = 0x000A 7FFF, then R7 =
0xFFE7 8000.

Assume R1 = 0x1234 5678 and RO = 0x0000 000F, then R7 =
0x0000 O00F.

19-36

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Also See
Vector SEARCH, Vector MAX, MAX, MIN

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-37

Instruction Overview

Vector Multiply

Simultaneous Issue and Execution

A pair of compatible, scalar (individual) Multiply 16-Bit Operands
instructions from “Multiply 16-Bit Operands” on page 15-43 can be com-
bined into a single Vector Multiply instruction. The vector instruction
executes the two scalar operations simultaneously and saves the results as a
vector couplet.

See the Arithmetic Operations “Multiply 16-Bit Operands” on
page 15-43 for the scalar instruction details.

Any MACO scalar Multiply 16-Bit Operands instruction can be combined
with a compatible MAC1 scalar Multiply 16-Bit Operands instruction
under the following conditions.

* Both scalar instructions must share the same mode option (for
example, default, IS, 1U, T). Exception: the MACI instruction can
optionally employ the mixed mode (M) that does not apply to
MACO.

* Both scalar instructions must share the same pair of source regis-
ters, but can reference different halves of those registers.

* Both scalar operations (if they are writes) must write to the same
sized destination registers, either 16 or 32 bits.

* The destination registers for both scalar operations must form a
vector couplet, as described below.

* 16-bit: store results in the upper- and lower-halves of the
same 32-bit Dreg. MACO writes to the lower half and
MACIT writes to the upper half.

* 32-bit: store results in valid Dreg pairs. MACO writes to the
pair’s lower (even-numbered) Dreg and MACI writes to the
upper (odd-numbered) Dreg.

19-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Valid Dreg pairs are R7:6, R5:4, R3:2, and R1:0.

Syntax

Separate the two compatible scalar instructions with a comma to produce
a vector instruction. Add a semicolon to the end of the combined instruc-
tion, as usual. The order of the MAC operations on the command line is
arbitrary.

Instruction Length

This instruction is 32 bits long.

Flags Affected
This instruction affects the following flags.
e Vs set if any result saturates; cleared if none saturates.
e VS is set if V is set; unaffected otherwise.
* All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1

on page A-3.

Example

r2.h=r7.1*r6.h, rZ2.1=r7.h*r6.h ;

/* simultaneous MACO and MAC1 execution, 16-bit results. Both
results are signed fractions. */

rd. I=rl1.1*r0.1, rd.h=rl.h*r0.h ;

/* same as above. MAC order is arbitrary. */

rO.h=r3.h*r2.1 (m), r0.1=r3.1*r2.1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-39

Instruction Overview

/* MAC1 multiplies a signed fraction by an unsigned fraction.
MACO multiplies two signed fractions. */

r5.h=r3.h*r2.h (m), r5.1=r3.1*r2.1 (fu)

/* MAC1 multiplies signed fraction by unsigned fraction. MACO
multiplies two unsigned fractions. */

rO.h=r3.h*r2.h, r0.1=r3.17*r2.1 (is)

/* both MACs perform signed integer multiplication. */
r3.h=r0.h*rl.h, r3.1=r0.1*rl.1 (s2rnd) ;

/* MAC1 and MACO multiply signed fractions. Both scale the result
on the way to the destination register. */

ro.1=r7.1*r6.1, rO0.h=r7.h*r6.h (iss2) ;

/* both MACs process signed integer operands and scale and round
the result on the way to the destination half-registers. */
r7=r2.1*r5.1, ré6=r2.h*r5.h ;

/* both operations produce 32-bit results and save in a Dreg
pair. */

rOo=r4.1*r7.1, rl=r4.h*r7.h (s2rnd) ;

/* same as above, but with signed fraction scaling mode. Order of
the MAC instructions makes no difference. */

19-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Vector Multiply and Multiply-Accumulate

Simultaneous Issue and Execution
A pair of compatible, scalar (individual) instructions from

e “Multiply and Multiply-Accumulate to Accumulator” on

page 15-53

e “Multiply and Multiply-Accumulate to Half-Register” on
page 15-58

e “Multiply and Multiply-Accumulate to Data Register” on
page 15-67

can be combined into a single vector instruction. The vector instruction
executes the two scalar operations simultaneously and saves the results as a
vector couplet.

See the Arithmetic Operations sections listed above for the scalar instruc-
tion details.

Any MACO scalar instruction from the list above can be combined with a
compatible MACI scalar instruction under the following conditions.

* Both scalar instructions must share the same mode option (for
example, default, IS, 1U, T). Exception: the MAC1 instruction can

optionally employ the mixed mode (M) that does not apply to
MACO.

* Both scalar instructions must share the same pair of source regis-
ters, but can reference different halves of those registers.

* Ifboth scalar operations write to destination D-registers, they must
write to the same sized destination D-registers, either 16 or 32 bits.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-41

Instruction Overview

e The destination D-registers (if applicable) for both scalar opera-
tions must form a vector couplet, as described below.

* 16-bit: store the results in the upper- and lower-halves of
the same 32-bit Dreg. MACO writes to the lower half, and
MACI1 writes to the upper half.

* 32-bit: store the results in valid Dreg pairs. MACO writes to
the pair’s lower (even-numbered) Dreg, and MACI writes to
the upper (odd-numbered) Dreg.

Valid Dreg pairs are R7:6, R5:4, R3:2, and R1:0.

Syntax

Separate the two compatible scalar instructions with a comma to produce
a vector instruction. Add a semicolon to the end of the combined instruc-
tion, as usual. The order of the MAC operations on the command line is
arbitrary.

Instruction Length

This instruction is 32 bits long.

Flags Affected

The flags reflect the results of the two scalar operations. This instruction
affects flags as follows.

* Vissetif any result extracted to a Dreg saturates; cleared if no Dregs
saturate.

e VS is set if V is set; unaffected otherwise.

e AVO is set if result in Accumulator A0 (MACO operation) saturates;
cleared if A0 result does not saturate.

* AVOS is set if AVO is set; unaffected otherwise.

19-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

e AV1is set if result in Accumulator A1 (MACI1 operation) saturates;
cleared if A1 result does not saturate.

* AV1S is set if AV1 is set; unaffected otherwise.
* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Example
Result is 40-bit Accumulator

al=r2.1*r3.h, al0=r2.h*r3.h

/* both multiply signed fractions into separate Accumulators */
a0=rl.1*r0.1, al+=rl.h*r0.h

/* same as above, but sum result into Al. MAC order is arbitrary.
*/

al+=r3.h*r3.1, a0-=r3.h*r3.h

/* sum product into Al, subtract product from A0 */

al=r3.h*r2.1 (m), aO+=r3.1*r2.1 ;

/* MACI1 multiplies a signed fraction in r3.h by an unsigned frac-
tion in r2.1. MACO multiplies two signed fractions. */
al=r7.h*rd.h (m), aO+=r7.1*rd.1 (fu) ;

/* MAC1 multiplies signed fraction by unsigned fraction. MACO
multiplies and accumulates two unsigned fractions. */
al+=r3.h*r2.h, a0=r3.1*r2.1 (is) ;

/* both MACs perform signed integer multiplication */
al=r6.h*r7.h, al0+=r6.1*r7.1 (w32)

/* both MACs multiply signed fractions, sign extended, and satu-
rate both Accumulators at bit 31 */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-43

Instruction Overview

Result is 16-bit half D-register

r2.h=(al=r7.1*%r6.h), r2.1=(al0=r7.h*r6.h) ; /* simultaneous MACO
and MAC1 execution, both are signed fractions, both products load
into the Accumulators,MAC1 into half-word registers. */

r4.1=(a0=rl1.1*r0.1), rd4.h=(al+=rl.h*r0.h) ; /* same as above,
but sum result into Al. ; MAC order is arbitrary. */
r7.h=(al+=r6.h*r5.1), r7.1=(a0=r6.h*r5.h) ; /* sum into Al,
subtract into A0 */

ro.h=Cal=r7.h*r4.1) (m), r0.1=Ca0+=r7.1*rd.1) ; /* MAC1 multi-

plies a signed fraction by an unsigned fraction. MACO multiplies
two signed fractions. */

r5.h=(al=r3.h*r2.h) (m), r5.1=(a0+=r3.1*r2.1) (fu) ; /* MAC1
multiplies signed fraction by unsigned fraction. MACO multiplies
two unsigned fractions. */

ro.h=(al+=r3.h*r2.h), r0.1=(a0=r3.1*r2.1) (is) ; /* both MACs
perform signed integer multiplication. */

rb5.h=(al=r2.h*rl.h), aO+=r2.1*rl.1 ; /* both MACs multiply
signed fractions. MACO does not copy the accum result. */
r3.h=Cal=r2.h*rl.h) (m), aO=r2.1*rl.1 ; /* MAC1 multiplies
signed fraction by unsigned fraction and uses all 40 bits of Al.
MACO multiplies two signed fractions. */

r3.h=al, r3.1=(a0+=r0.1*rl.1) (s2rnd) ; /* MAC1 copies Accumu-
lator to register half. MACO multiplies signed fractions. Both
scale the result and round on the way to the destination regis-
ter. */

ro.1=(a0+=r7.1*r6.1), rO0.h=(al+=r7.h*r6.h) (iss2) ; /* both
MACs process signed integer the way to the destination half-reg-
isters. */

19-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Result is 32-bit D-register

r3=(al=r6.h*r7.h), r2=(al=r6.1*r7.1) ; /* simultaneous MACO and
MAC1 execution, both are signed fractions, both products load
into the Accumulators */

rd=(a0=r6.1*r7.1), rb5=(al+=r6.h*r7.h) ; /* same as above, but
sum result into Al. MAC order is arbitrary. */
r7=(al+=r3.h*r5.h), r6=(a0-=r3.1*rb5.1) ; /* sum into Al, sub-
tract into A0 */

rl=Cal=r7.1*r4.1) (m), rO0=(a0+=r7.h*r4.h) ; /* MACL1 multiplies

a signed fraction by an unsigned fraction. MACO multiplies two
signed fractions. */

rbo=(al=r3.h*r7.h) (m), rd4=(a0+=r3.1*r7.1) (fu) ; /* MACI multi-
plies signed fraction by unsigned fraction. MACO multiplies two
unsigned fractions. */

rl=(al+=r3.h*r2.h), r0=(al0=r3.1*r2.1) (is) ; /* both MACs per-
form signed integer multiplication */

rb=(al-=r6.h*r7.h), a0+=r6.1*r7.1 ; /* both MACs multiply
signed fractions. MACO does not copy the accum result */
r3=(al=ré6.h*r7.h) (m), a0-=r6.1*r7.1 ; /* MAC1 multiplies
signed fraction by unsigned fraction and uses all 40 bits of Al.
MACO multiplies two signed fractions. */

r3=al, r2=(a0+=r0.1*rl.1) (s2rnd) ; /* MAC1 moves Accumulator
to register. MACO multiplies signed fractions. Both scale the
result and round on the way to the destination register. */
ro=(a0+=r7.1*r6.1), rl=(al+=r7.h*r6.h) (iss2) ; /* both MACs
process signed integer operands and scale the result on the way
to the destination registers. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-45

Instruction Overview

Vector Negate (Two’s Complement)

General Form

dest_reg = - source_reg (V)
Syntax
Dreg = - Dreg (V) ; /* dual 16-bit operation (b) */

Syntax Terminology

Dreg: R7-0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Negate instruction returns the same magnitude with the
opposite arithmetic sign, saturated for each 16-bit half-word in the source.
The instruction calculates by subtracting the source from zero.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected
This instruction affects flags as follows.

e AZ is set if either or both results are zero; cleared if both are
nonzero.

e AN is set if either or both results are negative; cleared if both are
non-negative.

e V is set if either or both results saturate; cleared if neither saturates.

19-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

e VS is set if V is set; unaffected otherwise.

* ACO is set if carry occurs from either or both results; cleared if nei-
ther produces a carry.

* All other flags are unaffected.

@ The ADSP-BF535 processor has fewer ASTAT flags and some flags

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r5 =-r3 (v) ; /* R5.H becomes the negative of R3.H and R5.L
becomes the negative of R3.L If r3 = 0x0004 7FFF the result is rb
= OxFFFC 8001 */

Also See

Negate (Two’s Complement)

Special Applications
None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-47

Instruction Overview

Vector PACK

General Form

Dest_reg = PACK (src_half_0, src_half_1)
Syntax

Dreg = PACK (Dreg_lo_hi , Dreg_lo_hi) ; /* (b)) */
Syntax Terminology

Dreg: R7-0

Dreg_lo_hi: R7-0.L, R7-0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Pack instruction packs two 16-bit half-word numbers into the
halves of a 32-bit data register as shown in Table 19-18 and Table 19-19.

Table 19-18. Source Registers Contain

15, 8 T e eeaaes 0
src_half 0 half_word_0
src_half 1 half word_1
Table 19-19. Destination Register Contains
52 DU 24 23, 16 150, 8 T e ieeeeaans 0
dest_reg: half word_0 half word_1

19-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example
r3=pack(rd.1, r5.1) /* pack Tow / low half-words */
rl=pack(r6.1, r4.h) /* pack Tow / high half-words */
rO=pack(r2.h, r4.1) /* pack high / Tow half-words */
rb=pack(r7.h, r2.h) /* pack high / high half-words */
Also See

BYTEPACK (Quad 8-Bit Pack)

Special Applications
/* If r4.1 = OxDEAD and r5.1 = OxBEEF, then . . . */
r3 = pack (r4.1, r5.1)
/* . . . produces r3 = OxDEAD BEEF */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-49

Instruction Overview

Vector SEARCH

General Form

(dest_pointer_hi, dest_pointer_lo) = SEARCH src_reg (searchmode)

Syntax

(Dreg, Dreg) = SEARCH Dreg (searchmode) ; /* (b)) */

Syntax Terminology
Dreg: R7-0

searchmode: (GT), (GE), (LE), or (LT)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

This instruction is used in a loop to locate a maximum or minimum ele-
ment in an array of 16-bit packed data. Two values are tested at a time.

The Vector Search instruction compares two 16-bit, signed half-words to
values stored in the Accumulators. Then, it conditionally updates each
Accumulator and destination pointer based on the comparison.

Pointer register PO is always the implied array pointer for the elements

being searched.

More specifically, the signed high half-word of src_reg is compared in
magnitude with the 16 low-order bits in Al. If src_reg_hi meets the com-
parison criterion, then Al is updated with src_reg_hi, and the value in
pointer register PO is stored in dest_pointer_hi. The same operation is
performed for src_reg_7ow and AO.

19-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

Based on the search mode specified in the syntax, the instruction tests for
maximum or minimum signed values.

Values are sign extended when copied into the Accumulator(s).

See “Example” for one way to implement the search loop. After the vector
search loop concludes, A1 and A0 hold the two surviving elements, and

dest_pointer_hiand dest_pointer_lo contain their respective addresses.
The next step is to select the final value from these two surviving elements.

Modes

The four supported compare modes are specified by the mandatory
searchmode flag.

Table 19-20. Compare Modes

Mode | Description

(GT) Greater than. Find the location of the first maximum number in an array.

(GE) Greater than or equal. Find the location of the last maximum number in an array.

(LT) Less than. Find the location of the first minimum number in an array.

(LE) Less than or equal. Find the location of the last minimum number in an array.
Summary

Assumed Pointer PO

src_reg_hi Compared to least significant 16 bits of Al. If com-

pare condition is met, overwrites lower 16 bits of Al
and copies PO into dest_pointer_hi.

src_reg_lo Compared to least significant 16 bits of A0. If com-

pare condition is met, overwrites lower 16 bits of A0
and copies PO into dest_pointer_To.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-51

Instruction Overview

Flags Affected
None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with the combination of one
16-bit length load instruction to the PO register and one 16-bit NOP. No
other instructions can be issued in parallel with the Vector Search instruc-
tion. Note the following legal and illegal forms.

(rl, r0)

search r2 (LT) || r2

[pO0++p3]1; /* ILLEGAL */

(rl, r0)

search r2 (LT) || r2

[pO++1; /* LEGAL */

(rl, r0) = search r2 (LT) || r2 = [p0+]; /* LEGAL */

Example

/* Initialize Accumulators with appropriate value for the type of
search. */

ro.1=0x7fff ;

r0.h=0 ;

al=r0 ; /* max positive 16-bit value */

al=r0 ; /* max positive 16-bit value */
/* Initialize R2. */

r2=[p0++]

/* Assume P1 is initialized to the size of the vector length. */

19-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Operations

LSETUP (loop_, Toop_) LCO=PI1>>1 ; /* set up the Toop */
Toop_: (rl,r0) = SEARCH R2 (LE) || R2=[PO++];
/* search for the last minimum in all but the
last element of the array */
(rl,r0) = SEARCH R2 (LE);
/* finally, search the last element */
/* The lower 16 bits of Al and A0 contain the Tast minimums of the
array. R1 contains the value of PO corresponding to the value in
Al. RO contains the value of PO corresponding to the value in AO.
Next, compare Al and AO together and R1 and RO together to find
the single, Tast minimum in the array.
Note: In this example, the resulting pointers are past the actual
surviving array element due to the post-increment operation. */
cc = a0 <= al ;
ro += -4
rl += -2
if lcc r0 = rl ; /* the pointer to the survivor is in r0 */

Also See
Vector MAX, Vector MIN, MAX, MIN

Special Applications

This instruction is used in a loop to locate an element in a vector accord-
ing to the element’s value.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-53

Instruction Overview

19-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

20 ISSUING PARALLEL
INSTRUCTIONS

This chapter discusses the instructions that can be issued in parallel. It
identifies supported combinations for parallel issue, parallel issue syntax,
32-bit ALU/MAC instructions, 16-bit instructions, and examples.

The Blackfin processor is not superscalar; it does not execute multiple
instructions at once. However, it does permit up to three instructions to
be issued in parallel with some limitations. A multi-issue instruction is
64-bits in length and consists of one 32-bit instruction and two 16-bit
instructions. All three instructions execute in the same amount of time as
the slowest of the three.

Sections in this chapter
e “Supported Parallel Combinations” on page 20-1
e “Parallel Issue Syntax” on page 20-2
e “32-Bit ALU/MAC Instructions” on page 20-3
e “16-Bit Instructions” on page 20-6

e “Examples” on page 20-8

Supported Parallel Combinations

The diagram in Table 20-1 illustrates the combinations for parallel issue
that the Blackfin processor supports.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-1

Parallel Issue Syntax

Table 20-1. Parallel Issue Combinations

32-bit ALU/MAC instruction 16-bit Instruction 16-bit Instruction

Parallel Issue Syntax

The syntax of a parallel issue instruction is as follows.

A 32-bit ALU/MAC instruction || A 16-bit instruction
|| A 16-bit instruction ;

The vertical bar (] |) indicates the following instruction is to be
issued in parallel with the previous instruction. Note the terminat-
ing semicolon appears only at the end of the parallel issue
instruction.

It is possible to issue a 32-bit ALU/MAC instruction in parallel
with only one 16-bit instruction using the following syntax. The
result is still a 64-bit instruction with a 16-bit NOP automatically
inserted into the unused 16-bit slot.

A 32-bit ALU/MAC instruction || A 16-bit instruction ;

Alternately, it is also possible to issue two 16-bit instructions in
parallel with one another without an active 32-bit ALU/MAC
instruction by using the MNOP instruction, shown below. Again, the
result is still a 64-bit instruction.

MNOP || A 16-bit instruction || A 16-bit instruction ;

See the MNOP (32-bit NOP) instruction description in “No Op” on
page 16-25. The MNOP instruction does not have to be explicitly
included by the programmer; the software tools prepend it auto-
matically. The MNOP instruction will appear in disassembled parallel
16-bit instructions.

20-2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Issuing Parallel Instructions

32-Bit ALU/MAC Instructions

The list of 32-bit instructions that can be in a parallel instruction are
shown in Table 20-2.

Table 20-2. 32-Bit DSP Instructions

Instruction Name Notes

Arithmetic Operations

ABS (Absolute Value)

Add Only the versions that support
optional saturation.

Add/Subtract — Prescale Up

Add/Subtract — Prescale Down

EXPAD] (Exponent Detection)

MAX (Maximum)

MIN (Minimum)

Modify — Decrement (for Accumulators, only)

Modify — Increment (for Accumulators, only) Accumulator versions only.

Negate (Two’s Complement) Accumulator versions only.

RND (Round to Half-Word)

Saturate

SIGNBITS

Subtract Saturating versions only.
Load Store

Load Immediate Accumulator versions only.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-3

32-Bit ALU/MAC Instructions

Table 20-2. 32-Bit DSP Instructions (Contd)

Instruction Name

| Notes

Bit Operations

DEPOSIT (Bit Field Deposit)

EXTRACT (Bit Field Extract)

BITMUX (Bit Multiplex)

ONES (One’s Population Count)

Logical Operations

A (Exclusive-OR) (Bit-Wise XOR)

Move

Move Register

40-bit Accumulator versions only.

Move Register Half

Shift / Rotate Operations

Arithmetic Shift

Saturating and Accumulator ver-
sions only.

Logical Shift

32-bit instruction size versions
only.

ROT (Rotate)

External Event Management

No Op

32-bit MNOP only

20-4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Issuing Parallel Instructions

Table 20-2. 32-Bit DSP Instructions (Contd)

Instruction Name | Notes

Vector Operations

VIT_MAX (Compare-Select)

Add on Sign

Multiply and Multiply-Accumulate to Accumulator

Multiply and Multiply-Accumulate to Half-Register

Multiply and Multiply-Accumulate to Data Register

Vector ABS (Vector Absolute Value)

Vector Add / Subtract

Vector Arithmetic Shift

Vector Logical Shift

Vector MAX (Vector Maximum)

Vector MIN (Vector Minimum)

Multiply 16-Bit Operands

Vector Negate (Two’s Complement)

Vector PACK

Vector SEARCH

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-5

16-Bit Instructions

Table 20-2. 32-Bit DSP Instructions (Contd)

Instruction Name | Notes

Video Pixel Operations

ALIGNS, ALIGN16, ALIGN24 (Byte Align)

DISALGNEXCPT (Disable Alignment Exception for
Load)

SAA (Quad 8-Bit Subtract-Absolute-Accumulate)

Dual 16-Bit Accumulator Extraction with Addition

BYTEOP16P (Quad 8-Bit Add)

BYTEOP16M (Quad 8-Bit Subtract)

BYTEOPI1P (Quad 8-Bit Average — Byte)

BYTEOP2P (Quad 8-Bit Average — Half-Word)

BYTEOP3P (Dual 16-Bit Add / Clip)

BYTEPACK (Quad 8-Bit Pack)

BYTEUNPACK (Quad 8-Bit Unpack)

16-Bit Instructions

The two 16-bit instructions in a multi-issue instruction must each be from
Groupl and Group2 instructions shown in Table 20-3 and Table 20-4.

The following additional restrictions also apply to the 16-bit instructions
of the multi-issue instruction.

* Only one of the 16-bit instructions can be a store instruction.

e If the two 16-bit instructions are memory access instructions, then
both cannot use P-registers as address registers. In this case, at least
one memory access instruction must be an I-register version.

20-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Issuing Parallel Instructions

Table 20-3. Groupl Compatible 16-Bit Instructions

Instruction Name Notes

Arithmetic Operations

Add Immediate Ireg versions only.
Modify — Decrement Ireg versions only.
Modify — Increment Ireg versions only.
Subtract Immediate Ireg versions only.
Load / Store

Load Pointer Register

Load Data Register

Load Half-Word — Zero-Extended

Load Half-Word — Sign-Extended

Load High Data Register Half

Load Low Data Register Half

Load Byte — Zero-Extended

Load Byte — Sign-Extended

Store Pointer Register

Store Data Register

Store High Data Register Half

Store Low Data Register Half

Store Byte

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-7

Examples

Table 20-4. Group2 Compatible 16-Bit Instructions

Instruction Name Notes

Load / Store

Load Data Register Ireg versions only.

Load High Data Register Half Ireg versions only.

Load Low Data Register Half Ireg versions only.

Store Data Register Ireg versions only.

Store High Data Register Half Ireg versions only.

Store Low Data Register Half Ireg versions only.

External Event Management

No Op 16-bit NOP only.
Examples

Two Parallel Memory Access Instructions

/* Subtract-Absolute-Accumulate issued in parallel with the mem-
ory access instructions that fetch the data for the next SAA
instruction. This sequence is executed in a Toop to flip-flop
back and forth between the data in R1 and R3, then the data in RO
and R2. */

saa (rl:0, r3:2) || rO0=[i0++] || r2=[il++]

saa (rl:0, r3:2)(r) || rl=[i0++] || r3=[il++] ;

mnop || rl = [10++] || r3 = [i1++]

20-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Issuing Parallel Instructions

One Ireg and One Memory Access Instruction in Parallel

/* Add on Sign while incrementing an Ireg and loading a data reg-
ister based on the previous value of the Ireg. */
r7.h=r7.1=sign(r2.h)*r3.h + sign(r2.1)*r3.1 || 10+=m3 |

r0=Ci0]

/* Add/subtract two vector values while incrementing an Ireg and
loading a data register. */

R2 = R2 +|+ R4, R4 = R2 -|- R4 (ASR) || IO += MO (BREV) || Rl =
[10]

/* Multiply and accumulate to Accumulator while loading a data
register and storing a data register using an Ireg pointer. */
Al1=R2.L*R1.L, AO=R2.H*R1.H || R2.H=W[I2++] || [I3++1=R3

/* Multiply and accumulate while loading two data registers. QOne
load uses an Ireg pointer. */

Al+=R0O.L*R2.H,A0+=R0O.L*R2.L || R2.L=W[I2++] || RO=[I1--]
R3.H=(A1+=RO.L*R1.H), R3.L=(A0+=RO.L*R1.L) || RO=[PO++] |
R1I=[101]

/* Pack two vector values while storing a data register using an
Ireg pointer and loading another data register. */
R1=PACK(RL.H,RO.H) || [I0++]=R0O || R2.L=W[I2++]

One Ireg Instruction in Parallel

/* Multiply-Accumulate to a Data register while incrementing an
Ireg. */
ré=(a0+=r3.h*r2.h)(fu) || 12-=m0
/* which the assembler expands into:
ré6=(a0+=r3.h*r2.h)(fu) || i2-=m0 || nop ; */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-9

Examples

20-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

21 DEBUG

The Blackfin processor’s debug functionality is used for software debug-
ging. It also complements some services often found in an operating
system (OS) kernel. The functionality is implemented in the processor
hardware and is grouped into multiple levels.

A summary of available debug features is shown in Table 21-1.

Table 21-1. Blackfin Debug Features

Debug Feature Description

Watchpoints Specify address ranges and conditions that halt the processor
when satisfied.

Trace History Stores the last 16 discontinuous values of the Program Counter in
an on-chip trace buffer.

Cycle Count Provides functionality for all code profiling functions.
Performance Allows internal resources to be monitored and measured
Monitoring non-intrusively.

Watchpoint Unit

By monitoring the addresses on both the instruction bus and the data bus,
the Watchpoint Unit provides several mechanisms for examining program
behavior. After counting the number of times a particular address is
matched, the unit schedules an event based on this count.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-1

Watchpoint Unit

In addition, information that the Watchpoint Unit provides helps in the
optimization of code. The unit also makes it easier to maintain executables

through code patching.

The Watchpoint Unit contains these memory-mapped registers (MMRs),
which are accessible in Supervisor and Emulator modes:

The Watchpoint Status register (WPSTAT)
Six Instruction Watchpoint Address registers (WPIA[5:01)

Six Instruction Watchpoint Address Count registers
(WPTACNT[5:07)

The Instruction Watchpoint Address Control register (WPIACTL)
Two Data Watchpoint Address registers (WPDA[1:01)
Two Data Watchpoint Address Count registers (WPDACNT[1:07)

The Data Watchpoint Address Control register (WPDACTL)

Two operations implement instruction watchpoints:

The values in the six Instruction Watchpoint Address registers,
WPIAL5:0], are compared to the address on the instruction bus.

Corresponding count values in the Instruction Watchpoint
Address Count registers, WPIACNT[5:0], are decremented on each
match.

The six Instruction Watchpoint Address registers may be further grouped
into three ranges of instruction-address-range watchpoints. The ranges are
identified by the addresses in WPIAO to WPIAL, WPIA2 to WPIA3, and WPIA4
to WPIAD.

21-2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

The address ranges stored in WPIAO, WPTAL, WPIA2, WPIA3, WPIA4,
and WPIA5 must satisfy these conditions:

WPIAO <= WPIAL
WPIAZ <= WPIA3
WPIA4 <= WPIAS
Two operations implement data watchpoints:

e The values in the two Data Watchpoint Address registers,
WPDAL1:0], are compared to the address on the data buses.

* Corresponding count values in the Data Watchpoint Address
Count registers, WPDACNT[1:01, are decremented on each match.

The two Data Watchpoint Address registers may be further grouped
together into one data-address-range watchpoint, WPDA[1:0].

The instruction and data count value registers must be loaded with the
number of times the watchpoint must match minus one. After the count
value reaches zero, the subsequent watchpoint match results in an excep-
tion or emulation event.

Note count values must be reinitialized after the event has
occurred.

An event can also be triggered on a combination of the instruction and
data watchpoints. If the WPAND bit in the WPTACTL register is set, then an
event is triggered only when both an instruction address watchpoint
matches and a data address watchpoint matches. If the WPAND bit is 0, then
an event is triggered when any of the enabled watchpoints or watchpoint
ranges match.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-3

Watchpoint Unit

To enable the Watchpoint Unit, the WPPUR bit in the WPTACTL register
must be set. If WPPWR = 1, then the individual watchpoints and watch-
point ranges may be enabled using the specific enable bits in the WPTACTL
and WPDACTL MMRs. If WPPWR = 0, then all watchpoint activity is disabled.

Instruction Watchpoints

Each instruction watchpoint is controlled by three bits in the WPIACTL reg-
ister, as shown in Table 21-2.

Table 21-2. WPIACTL Control Bits

Bit Name Description

EMUSWx Determines whether an instruction-address match causes either an
emulation event or an exception event.

WPICNTENx Enables the 16-bit counter that counts the number of address
matches. If the counter is disabled, then every match causes an
event.

WPIAENx Enables the address watchpoint activity.

When two watchpoints are associated to form a range, two additional bits
are used, as shown in Table 21-3.

Table 21-3. WPIACTL Watchpoint Range Control Bits

Bit Name Description

WPIRENxy Indicates the two watchpoints that are to be associated to form a
range.

WPIRINVxy Determines whether an event is caused by an address within the
range identified or outside of the range identified.

21-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

Code patching allows software to replace sections of existing code with
new code. The watchpoint registers are used to trigger an exception at the
start addresses of the earlier code. The exception routine then vectors to
the location in memory that contains the new code.

On the processor, code patching can be achieved by writing the start
address of the earlier code to one of the WPIAn registers and setting the cor-
responding EMUSHWx bit to trigger an exception. In the exception service
routine, the WPSTAT register is read to determine which watchpoint trig-
gered the exception. Next, the code writes the start address of the new
code in the RETX register, and then returns from the exception to the new
code. Because the exception mechanism is used for code patching, event
service routines of the same or higher priority (exception, NMI, and reset
routines) cannot be patched.

A write to the WPSTAT MMR clears all the sticky status bits. The data value
written is ignored.

WPIAN Registers

When the Watchpoint Unit is enabled, the values in the Instruction
Watchpoint Address registers (WPIAn) are compared to the address on the
instruction bus. Corresponding count values in the Instruction Watch-
point Address Count registers (WPIACNTn) are decremented on each match.

Figure 21-1 shows the Instruction Watchpoint Address registers,
WPTA[5:01].

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-5

Watchpoint Unit

Instruction Watchpoint Address Registers (WPIAn)

For Memory-mapped 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
_?_dglres;ei,see IX |X |X |X IX |X |X |X IX |X |X |X IX |X |X |X| Reset = Undefined
able 21-4.

WPIA (Instruction Address)[30:15] —I

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
x P Pex e P e e x e x x x|
|

WPIA (Instruction Address)[14:0] —I

Figure 21-1. Instruction Watchpoint Address Registers

Table 21-4. Instruction Watchpoint Register Memory-mapped
Addresses

Register Name Memory-mapped Address
WPIAO 0xFFEQ 7040
WPIA1 O0xFFEO 7044
WPIA2 0xFFEQ 7048
WPIA3 0xFFEO 704C
WPIA4 0xFFEO0 7050
WPIA5 0xFFEO 7054

WPIACNTN Registers

When the Watchpoint Unit is enabled, the count values in the Instruction
Watchpoint Address Count registers (WPIACNTL5:01]) are decremented
each time the address or the address bus matches a value in the WPIAn reg-
isters. Load the WPTACNTn register with a value that is one less than the
number of times the watchpoint must match before triggering an event
(see Figure 21-2). The WPIACNTn register will decrement to 0x0000 when
the programmed count expires.

21-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

Instruction Watchpoint Address Count Registers (WPIACNTn)

For Memory-mapped 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
_T_dglreszsss,see IX |X |X |X IX |X |X |X IX |X |X |X Ix |X |X |X I Reset = Undefined
able 21-5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x P P e P e e x e x|

WPIACNT (Count Value)[15:0] !

Figure 21-2. Instruction Watchpoint Address Count Registers

Table 21-5. Instruction Watchpoint Address Count Register
Memory-mapped Addresses

Register Name Memory-mapped Address
WPIACNTO 0xFFEO 7080
WPIACNT1 O0xFFEO 7084
WPIACNT2 0xFFEO 7088
WPIACNT3 0xFFEO 708C
WPIACNT4 0xFFEO0 7090
WPIACNTS5 0xFFEO 7094

WPIACTL Register

Three bits in the Instruction Watchpoint Address Control register
(WPIACTL) control each instruction watchpoint. Figure 21-3 describes the
upper half of the register. Figure 21-4 on page 21-9 describes the lower
half of the register. For more information about the bits in this register,
see “Instruction Watchpoints” on page 21-4.

The bits in the WPIACTL register have no effect unless the WPPWR bit
1s set.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-7

Watchpoint Unit

Instruction Watchpoint Address Control Register (WPIACTL)

In range comparisons, |A = instruction address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFEO 7000 |x |x |x |x |x |x |x |x |x|x |x |o |o |x |o |x| Reset = Undefined

WPAND |
0 - Any enabled watchpoint triggers
an exception or emulation event
1 - Any enabled instruction address
watchpoint AND any enabled
data address watchpoint trigger
an exception or emulation event

EMUSW5

0 - Match on WPIA5 causes an
exception event

1 - Match on WPIA5 causes an
emulation event

EMUSW4
0 - Match on WPIA4 (or range 45)
causes an exception event
1 - Match on WPIA4 (or range 45)
causes an emulation event

WPICNTENS
0 - Disable watchpoint instruction address counter 5
1 - Enable watchpoint instruction address counter 5

WPICNTEN4

If range comparison is enabled, this bit enables the
counter for range 45

0 - Disable watchpoint instruction address counter 4
1 - Enable watchpoint instruction address counter 4

|_ EMUSW3

0 - Match on WPIA3 causes an
exception event

1 - Match on WPIAS3 causes an
emulation event

WPIREN45

0 - Disable range comparison

1 - Enable range comparison:
(Start address = WPIA4,
End address = WPIAS5)

WPIRINV45

Valid when WPIREN45 = 1

0 - Inclusive range comparison:
WPIA4 <IA <= WPIA5

1 - Exclusive range comparison:
IA <= WPIA4 | IA > WPIA5

WPIAEN4

Valid when WPIREN45 = 0

0 - Disable instruction address
watchpoint, WPIA4

1 - Enable instruction address
watchpoint, WPIA4

WPIAEN5

Valid when WPIREN45 = 0

0 - Disable instruction address
watchpoint, WPIA5

1 - Enable instruction address
watchpoint, WPIA5

Figure 21-3. Instruction Watchpoint Address Control Register

(WPIACTL)[31:16]

21-8

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

Instruction Watchpoint Address Control Register (WPIACTL)
In range comparisons, IA = instruction address

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
O0xFFEO 7000 |x |x |x |o |o |x |o |x|x|x |x |o |o |x |o |o| Reset = Undefined

|— WPPWR

0 - Watchpoint Unit disabled
1 - Watchpoint Unit enabled

EMUSW2

0 - Match on WPIA2 (or
range 23) causes
an exception event

1 - Match on WPIA2 (or WPIBEN01 _
range 23) causes 0 - Disable range comparison
an emulation event 1 - Enable range comparison:

WPICNTEN3 (Start address = WPIAO,

0 - Disable watchpoint End address = WPIA1)
instruction address counter 3 — WPIRINVO1

1 - Enable watchpoint Valid whe_n WPIRENO1 = 1_
instruction address counter 3 0 - Inclusive range comparison:

WPICNTEN2 —M8M—— WPIAO'< IA <= WPIA1)

If range comparison is enabled, 1 - Exclusive range comparison:

this bit enables counter for range 23 IA <= WPIAQ Il 1A > WPIA1

0 - Disable watchpoint —— WPIAENO
instruction address counter 2 Valid whenWPIRENO1 = 0

1 - Enable watchpoint 0 - Disable instruction address
instruction address counter 2 watchpoint, WPIAO

WPIAEN3 1 - Enable instruction address

Valid when WPIREN23 = 0 watchpoint, WPIAQ

0 - Disable instruction address ——— WPIAEN1
watchpoint, WPIA3 Valid when WPIRENO1 = 0

1- Enable |pstruct|on address 0 - Disable instruction address
watchpoint, WPIA3 watchpoint, WPIA1

WPIAEN2 1 - Enable instruction address

Valid when WPIREN23 = 0 watchpoint, WPIA1

0 - Disable instruction address L \WPICNTENO

watchpoint, WPIA2
1 - Enable instruction address
watchpoint, WPIA2

If range comparison is enabled,
this bit enables counter for

WPIRINV23 range 01 _

Valid when WPIREN23 = 1 0 - Disable watchpoint

0 - Inclusive range comparison: instruction address counter 0
WPIA2 < IA <= WPIA3 1 - Enable watchpoint

1 - Exclusive range comparison: instruction address counter 0
IA <= WPIA2 Il IA > WPIA3 WPICNTEN1

WPIREN23 0 - Disable watchpoint

0 - Disable range comparison instruction address counter 1

1 - Enable range comparison 1 - Enable watchpoint
(Start address = WPIA2, instruction address counter 1
End address = WPIA3) EMUSWO

EMUSW1 0 - Match on WPIAO (or range 01)

0 - Match on WPIA1 causes an causes an
exception event exception event

1 - Match on WPIA1 causes an 1 - Match on WPIAO (or range 01)
emulation event causes an

emulation event

Figure 21-4. Instruction Watchpoint Address Control Register
(WPIACTL)[15:0]

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-9

Watchpoint Unit

Data Address Watchpoints

Each data watchpoint is controlled by four bits in the WPDACTL register, as
shown in Table 21-6.

Table 21-6. Data Address Watchpoints

Bit Name Description
WPDACCn Determines whether the match should be on a read or write access.
WPDSRCn Determines which DAG the unit should monitor.

WPDCNTENn | Enables the counter that counts the number of address matches. If the
counter is disabled, then every match causes an event.

WPDAENn Enables the data watchpoint activity.

When the two watchpoints are associated to form a range, two additional
bits are used. See Table 21-7.

Table 21-7. WPDACTL Watchpoint Control Bits

Bit Name Description

WPDRENO1 Indicates the two watchpoints associated to form a range.

WPDRINVO01 Determines whether an event is caused by an address within the range identi-
fied or outside the range.

@ Note data address watchpoints always trigger emulation events.

WPDAN Registers

When the Watchpoint Unit is enabled, the values in the Data Watchpoint
Address registers (WPDAn) are compared to the address on the data buses.
Corresponding count values in the Data Watchpoint Address Count regis-
ters (WPDACNTn) are decremented on each match.

21-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

Figure 21-5 shows the Data Watchpoint Address registers, WPDAL1:0].

Data Watchpoint Address Registers (WPDAR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
wpDAO: 0xFFE0 7140 I X Tx X Ix Tx [x XX x Tx [x X [x [x x| Reset = undefined
WPDA1: OXFFE0 7144 | |

WPDA (Data Address)[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ENESENEN ENENENES ENENEREY ENERENER
| |

WPDA (Data Address)[15:0] |

Figure 21-5. Data Watchpoint Address Registers

WPDACNTN Registers

When the Watchpoint Unit is enabled, the count values in the Data
Watchpoint Address Count Value registers (WPDACNTn) are decremented
each time the address or the address bus matches a value in the WPDAN reg-
isters. Load this WPDACNTn register with a value that is one less than the
number of times the watchpoint must match before triggering an event.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-11

Watchpoint Unit

The WPDACNTN register will decrement to 0x0000 when the programmed
count expires. Figure 21-6 shows the Data Watchpoint Address Count
Value registers, WPDACNT[1:0].

Data Watchpoint Address Count Value Registers (WPDACNTnN)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
WPDACNTO: DX DT XX T XX X Tx [x] Reset = undefined
OXFFEO 7180
WPDACNT1:

OxFFEOQ 7184

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
3 K3 ENES ENES ENES ESEN ENES ENESENEY

WPDACNT (Count Value)[15:0] |

Figure 21-6. Data Watchpoint Address Count Value Registers

WPDACTL Register

For more information about the bits in the Data Watchpoint Address

Control register (WPDACTL), see “Data Address Watchpoints” on page
21-10.

21-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

Data Watchpoint Address Control Register (WPDACTL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 7100 |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D D e P fx e [x [xfo o [x o |
I

|
WPDACC1[1:0] ———]
00 - Reserved
01 - Match on write access only
on WPDA1
10 - Match on read access only
on WPDA1
11 - Match on either read or
write accesses on WPDA1

WPDSRC1[1:0]
00 - Reserved
01 - Watch addresses on DAGO
on WPDA1
10 - Watch addresses on DAG1
on WPDA1
11 - Watch addresses on either
DAGO or DAG1 on WPDA1
WPDACCO0[1:0]
00 - Reserved
01 - Match on write access only on WPDAO
or on the WPDAO to WPDAT1 range
10 - Match on read access only on WPDAO
or on the WPDAO to WPDA1 range
11 - Match on either read or write accesses
on WPDAO or on the WPDAO to WPDA1 range

WPDSRCO[1:0]
00 - Reserved
01 - Watch addresses on DAGO on WPDAO

or on the WPDAO to WPDAT1 range
10 - Watch addresses on DAG1 on WPDAO

or on the WPDAO to WPDA1 range
11 - Watch addresses on either DAGO or DAG1

on WPDAO or on the WPDAO to WPDA1 range

L WPDRENO1

0 - Disable range comparison

1 - Enable range comparison:
(Start address = WPDADO,
End address = WPDA1)

WPDRINVO1

0 - Inclusive range comparison:
inside the WPDAO to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDAO to WPDA1 range

WPDAENO

Valid when WPDRENO1 =0

0 - Disable data address
watchpoint, WPDAO

1 - Enable data address
watchpoint, WPDAO

WPDAEN1

Valid when WPDRENO1 =0

0 - Disable data address
watchpoint, WPDA1

1 - Enable data address
watchpoint, WPDA1

WPDCNTENO

If range comparison is enabled,

this bit enables the counter for

range 01

0 - Disable watchpoint
data address counter 0

1 - Enable watchpoint
data address counter 0

WPDCNTENT1

0 - Disable watchpoint
data address counter 1

1 - Enable watchpoint
data address counter 1

Figure 21-7. Data Watchpoint Address Control Register

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-13

Watchpoint Unit

WPSTAT Register

The Watchpoint Status register (WPSTAT) monitors the status of the watch-
points. It may be read and written in Supervisor or Emulator modes only.
When a watchpoint or watchpoint range matches, this register reflects the
source of the watchpoint. The status bits in the WPSTAT register are sticky,
and all of them are cleared when any write, regardless of the value, is per-
formed to the register.

Figure 21-8 shows the Watchpoint Status register.

Watchpoint Status Register (WPSTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

oxFFE0 7200 | x [x [x [x [x [x [x [x Ix [x [x [x x| x[x[x] Reset=undefined
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D D P e fx [x [x o fo fo JofoJofo o]

STATDA1 | L_ sTATIAO

0 - WPDA1 not matched
1 - WPDA1 matched
STATDAO

0 - Neither WPDAO nor the
WPDAO to WPDAT1 range
matched

1 - WPDAO matched or the
WPDAO to WPDAT1 range
matched

STATIAS

0 - WPIA5 not matched
1 - WPIA5 matched

STATIA4

0 - Neither WPIA4 nor the
WPIA4 to WPIA5 range
matched

1 - WPIA4 matched or the
WPIA4 to WPIA5 range
matched

Figure 21-8. Watchpoint Status Register

0 - Neither WPIAO nor the
WPIAO to WPIA1 range
matched

1 - WPIAO matched or the
WPIAO to WPIA1 range
matched

STATIA1

0 - WPIA1 not matched

1 - WPIA1 matched

STATIA2

0 - Neither WPIA2 nor the
WPIA2 to WPIA3 range
matched

1 - WPIA2 matched or the
WPIA2 to WPIA3 range
matched

STATIA3

0 - WPIA3 not matched
1 - WPIA3 matched

21-14

ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Debug

Trace Unit

The Trace Unit stores a history of the last 16 changes in program flow
taken by the program sequencer. The history allows the user to recreate
the program sequencer’s recent path.

The trace buffer can be enabled to cause an exception when full. The
exception service routine associated with the exception saves trace buffer
entries to memory. Thus, the complete path of the program sequencer
since the trace buffer was enabled can be recreated.

Changes in program flow because of zero-overhead loops are not stored in
the trace buffer. For debugging code that is halted within a zero-overhead
loop, the iteration count is available in the Loop Count registers, LC0 and
LCI.

The trace buffer can be configured to omit the recording of changes in
program flow that match either the last entry or one of the last two
entries. Omitting one of these entries from the record prevents the trace
buffer from overflowing because of loops in the program. Because
zero-overhead loops are not recorded in the trace buffer, this feature can
be used to prevent trace overflow from loops that are nested four deep.

When read, the Trace Buffer register (TBUF) returns the top value from the
Trace Unit stack, which contains as many as 16 entries. Each entry con-
tains a pair of branch source and branch target addresses. A read of TBUF
returns the newest entry first, starting with the branch destination. The
next read provides the branch source address.

ADSP-BF53x/BF56x Blackfin Processor Programmi