
a

ADSP-BF53x/BF56x Blackfin® Processor
Programming Reference

Revision 1.0, June 2005

Part Number
82-000556-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference iii

CONTENTS

PREFACE

Purpose of This Manual .. xxv

Intended Audience .. xxv

Manual Contents ... xxvi

What’s New in This Manual .. xxvii

Technical or Customer Support .. xxviii

Supported Processors .. xxviii

Product Information .. xxix

MyAnalog.com ... xxix

Processor Product Information ... xxx

Related Documents .. xxxi

Online Technical Documentation .. xxxii

Accessing Documentation From VisualDSP++ xxxiii

Accessing Documentation From Windows xxxiii

Accessing Documentation From the Web xxxiv

CONTENTS

iv ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Printed Manuals .. xxxiv

VisualDSP++ Documentation Set xxxiv

Hardware Tools Manuals .. xxxiv

Processor Manuals .. xxxiv

Data Sheets ... xxxv

Conventions ... xxxvi

INTRODUCTION

Core Architecture ... 1-1

Memory Architecture .. 1-4

Internal Memory ... 1-5

External Memory .. 1-6

I/O Memory Space .. 1-6

Event Handling .. 1-6

Core Event Controller (CEC) .. 1-8

System Interrupt Controller (SIC) ... 1-8

Syntax Conventions .. 1-8

Case Sensitivity ... 1-8

Free Format .. 1-9

Instruction Delimiting .. 1-9

Comments .. 1-10

Notation Conventions .. 1-10

Behavior Conventions ... 1-12

Glossary ... 1-13

Register Names ... 1-13

ADSP-BF53x/BF56x Blackfin Processor Programming Reference v

CONTENTS

Functional Units ... 1-14

Arithmetic Status Flags .. 1-15

Fractional Convention ... 1-16

Saturation ... 1-17

Rounding and Truncating .. 1-19

Automatic Circular Addressing .. 1-21

COMPUTATIONAL UNITS

Using Data Formats .. 2-4

Binary String ... 2-4

Unsigned ... 2-4

Signed Numbers: Two’s-Complement 2-5

Fractional Representation: 1.15 .. 2-5

Register Files ... 2-6

Data Register File .. 2-7

Accumulator Registers ... 2-8

Register File Instruction Summary ... 2-9

Data Types .. 2-11

Endianess .. 2-13

ALU Data Types .. 2-14

Multiplier Data Types .. 2-14

Shifter Data Types ... 2-15

Arithmetic Formats Summary .. 2-16

Using Multiplier Integer and Fractional Formats 2-17

CONTENTS

vi ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Rounding Multiplier Results ... 2-19

Unbiased Rounding .. 2-20

Biased Rounding .. 2-22

Truncation ... 2-23

Special Rounding Instructions ... 2-24

Using Computational Status ... 2-24

ASTAT Register .. 2-25

Arithmetic Logic Unit (ALU) .. 2-26

ALU Operations ... 2-26

Single 16-Bit Operations .. 2-27

Dual 16-Bit Operations .. 2-27

Quad 16-Bit Operations ... 2-28

Single 32-Bit Operations .. 2-29

Dual 32-Bit Operations .. 2-29

ALU Instruction Summary .. 2-30

ALU Division Support Features ... 2-34

Special SIMD Video ALU Operations 2-35

Multiply Accumulators (Multipliers) ... 2-35

Multiplier Operation ... 2-36

Placing Multiplier Results in Multiplier Accumulator
 Registers ... 2-37

Rounding or Saturating Multiplier Results 2-37

Saturating Multiplier Results on Overflow 2-38

Multiplier Instruction Summary .. 2-38

Multiplier Instruction Options .. 2-40

ADSP-BF53x/BF56x Blackfin Processor Programming Reference vii

CONTENTS

Multiplier Data Flow Details ... 2-42

Multiply Without Accumulate ... 2-44

Special 32-Bit Integer MAC Instruction 2-46

Dual MAC Operations .. 2-47

Barrel Shifter (Shifter) ... 2-48

Shifter Operations ... 2-48

Two-Operand Shifts .. 2-49

Immediate Shifts ... 2-49

Register Shifts ... 2-50

Three-Operand Shifts ... 2-50

Immediate Shifts ... 2-50

Register Shifts ... 2-51

Bit Test, Set, Clear, Toggle .. 2-52

Field Extract and Field Deposit ... 2-52

Shifter Instruction Summary .. 2-53

OPERATING MODES AND STATES

User Mode .. 3-3

Protected Resources and Instructions 3-4

Protected Memory ... 3-5

Entering User Mode .. 3-5

Example Code to Enter User Mode Upon Reset 3-5

Return Instructions That Invoke User Mode 3-5

CONTENTS

viii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Supervisor Mode .. 3-7

Non-OS Environments ... 3-7

Example Code for Supervisor Mode Coming Out of Reset ... 3-8

Emulation Mode .. 3-9

Idle State .. 3-9

Example Code for Transition to Idle State 3-10

Reset State .. 3-10

System Reset and Powerup .. 3-12

Hardware Reset ... 3-13

SYSCR Register .. 3-14

Software Resets and Watchdog Timer 3-14

SWRST Register ... 3-15

Core-Only Software Reset ... 3-16

Core and System Reset .. 3-16

PROGRAM SEQUENCER

Introduction ... 4-1

Sequencer Related Registers ... 4-5

Instruction Pipeline .. 4-7

Branches .. 4-10

Direct Short and Long Jumps .. 4-11

Direct Call .. 4-12

Indirect Branch and Call ... 4-12

PC-Relative Indirect Branch and Call 4-13

ADSP-BF53x/BF56x Blackfin Processor Programming Reference ix

CONTENTS

Subroutines ... 4-13

Stack Variables and Parameter Passing 4-15

Condition Code Flag ... 4-18

Conditional Branches .. 4-19

Conditional Register Move .. 4-20

Branch Prediction .. 4-20

Hardware Loops .. 4-21

Two-Dimensional Loops .. 4-24

Loop Unrolling ... 4-26

Saving and Resuming Loops .. 4-27

Example Code for Using Hardware Loops in an ISR 4-28

Events and Interrupts .. 4-29

System Interrupt Processing ... 4-31

System Peripheral Interrupts .. 4-33

SIC_IWR Register ... 4-34

SIC_ISR Register .. 4-35

SIC_IMASK Register .. 4-36

System Interrupt Assignment Registers (SIC_IARx) 4-37

Core Event Controller Registers ... 4-38

IMASK Register .. 4-38

ILAT Register ... 4-39

IPEND Register .. 4-40

Event Vector Table .. 4-41

CONTENTS

x ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Return Registers and Instructions .. 4-42

Executing RTX, RTN, or RTE in a Lower Priority Event ... 4-45

Emulation Interrupt .. 4-45

Reset Interrupt .. 4-46

NMI (Nonmaskable Interrupt) .. 4-46

Exceptions .. 4-47

Hardware Error Interrupt .. 4-47

Core Timer Interrupt .. 4-47

General-purpose Interrupts (IVG7-IVG15) 4-47

Interrupt Processing .. 4-48

Global Enabling/Disabling of Interrupts 4-48

Servicing Interrupts ... 4-48

Software Interrupts ... 4-50

Nesting of Interrupts ... 4-51

Non-nested Interrupts .. 4-51

Nested Interrupts ... 4-51

Example Prolog Code for Nested Interrupt Service
Routine ... 4-53

Example Epilog Code for Nested Interrupt Service
Routine ... 4-54

Logging of Nested Interrupt Requests 4-55

Self-Nesting of Core Interrupts ... 4-55

Additional Usability Issues .. 4-56

Allocating the System Stack .. 4-56

Latency in Servicing Events ... 4-56

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xi

CONTENTS

Hardware Errors and Exception Handling 4-58

SEQSTAT Register .. 4-59

Hardware Error Interrupt .. 4-59

Exceptions ... 4-61

Exceptions While Executing an Exception Handler 4-66

Exceptions and the Pipeline ... 4-67

Deferring Exception Processing ... 4-68

Example Code for an Exception Handler 4-68

Example Code for an Exception Routine 4-70

ADDRESS ARITHMETIC UNIT

Addressing With the AAU ... 5-5

Pointer Register File .. 5-6

Frame and Stack Pointers .. 5-6

DAG Register Set .. 5-8

Indexed Addressing With Index & Pointer Registers 5-8

Loads With Zero or Sign Extension 5-9

Indexed Addressing With Immediate Offset 5-10

Auto-increment and Auto-decrement Addressing 5-10

Pre-modify Stack Pointer Addressing 5-11

Post-modify Addressing ... 5-11

Addressing Circular Buffers ... 5-12

Addressing With Bit-reversed Addresses 5-15

Modifying DAG and Pointer Registers ... 5-15

Memory Address Alignment .. 5-16

CONTENTS

xii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

AAU Instruction Summary ... 5-19

MEMORY

Memory Architecture .. 6-2

Overview of On-Chip Level 1 (L1) Memory 6-2

Overview of Scratchpad Data SRAM 6-4

Overview of On-Chip Level 2 (L2) Memory 6-4

L1 Instruction Memory .. 6-5

IMEM_CONTROL Register .. 6-5

L1 Instruction SRAM ... 6-7

L1 Instruction Cache .. 6-10

Cache Lines .. 6-10

Cache Hits and Misses .. 6-13

Cache Line Fills .. 6-14

Line Fill Buffer ... 6-15

Cache Line Replacement ... 6-15

Instruction Cache Management .. 6-16

Instruction Cache Locking by Line 6-16

Instruction Cache Locking by Way 6-17

Instruction Cache Invalidation 6-18

Instruction Test Registers .. 6-19

ITEST_COMMAND Register .. 6-21

ITEST_DATA1 Register ... 6-22

ITEST_DATA0 Register ... 6-23

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xiii

CONTENTS

L1 Data Memory .. 6-24

DMEM_CONTROL Register ... 6-24

L1 Data SRAM ... 6-27

L1 Data Cache .. 6-29

Example of Mapping Cacheable Address Space 6-30

Data Cache Access .. 6-33

Cache Write Method ... 6-35

IPRIO Register and Write Buffer Depth 6-35

Data Cache Control Instructions 6-37

Data Cache Invalidation .. 6-38

Data Test Registers .. 6-38

DTEST_COMMAND Register ... 6-39

DTEST_DATA1 Register .. 6-41

DTEST_DATA0 Register .. 6-42

On-chip Level 2 (L2) Memory .. 6-43

On-chip L2 Bank Access .. 6-43

Latency ... 6-44

Memory Protection and Properties .. 6-45

Memory Management Unit ... 6-45

Memory Pages ... 6-48

Memory Page Attributes .. 6-48

Page Descriptor Table .. 6-50

CPLB Management ... 6-50

MMU Application ... 6-52

CONTENTS

xiv ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Examples of Protected Memory Regions 6-54

ICPLB_DATAx Registers .. 6-55

DCPLB_DATAx Registers ... 6-57

DCPLB_ADDRx Registers .. 6-59

ICPLB_ADDRx Registers ... 6-60

DCPLB_STATUS and ICPLB_STATUS Registers 6-61

DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
Registers .. 6-63

Memory Transaction Model .. 6-65

Load/Store Operation ... 6-66

Interlocked Pipeline .. 6-66

Ordering of Loads and Stores .. 6-67

Synchronizing Instructions .. 6-68

Speculative Load Execution ... 6-69

Conditional Load Behavior ... 6-70

Working With Memory .. 6-71

Alignment ... 6-71

Cache Coherency .. 6-71

Atomic Operations .. 6-72

Memory-mapped Registers .. 6-72

Core MMR Programming Code Example 6-73

Terminology ... 6-74

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xv

CONTENTS

PROGRAM FLOW CONTROL

Jump .. 7-2

IF CC JUMP .. 7-5

Call .. 7-8

RTS, RTI, RTX, RTN, RTE (Return) ... 7-10

LSETUP, LOOP ... 7-13

LOAD / STORE

Load Immediate .. 8-3

Load Pointer Register .. 8-7

Load Data Register .. 8-10

Load Half-Word – Zero-Extended ... 8-15

Load Half-Word – Sign-Extended .. 8-19

Load High Data Register Half ... 8-23

Load Low Data Register Half .. 8-27

Load Byte – Zero-Extended ... 8-31

Load Byte – Sign-Extended ... 8-34

Store Pointer Register .. 8-37

Store Data Register ... 8-40

Store High Data Register Half ... 8-45

Store Low Data Register Half .. 8-49

Store Byte ... 8-54

CONTENTS

xvi ADSP-BF53x/BF56x Blackfin Processor Programming Reference

MOVE

Move Register ... 9-2

Move Conditional .. 9-8

Move Half to Full Word – Zero-Extended 9-10

Move Half to Full Word – Sign-Extended 9-13

Move Register Half ... 9-15

Move Byte – Zero-Extended ... 9-23

Move Byte – Sign-Extended .. 9-25

STACK CONTROL

--SP (Push) ... 10-2

--SP (Push Multiple) ... 10-5

SP++ (Pop) ... 10-8

SP++ (Pop Multiple) ... 10-12

LINK, UNLINK .. 10-17

CONTROL CODE BIT MANAGEMENT

Compare Data Register ... 11-2

Compare Pointer .. 11-6

Compare Accumulator .. 11-9

Move CC ... 11-12

Negate CC ... 11-15

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xvii

CONTENTS

LOGICAL OPERATIONS

& (AND) ... 12-2

~ (NOT One’s Complement) .. 12-4

| (OR) .. 12-6

^ (Exclusive-OR) .. 12-8

BXORSHIFT, BXOR .. 12-10

BIT OPERATIONS

BITCLR ... 13-2

BITSET .. 13-4

BITTGL ... 13-6

BITTST ... 13-8

DEPOSIT .. 13-10

EXTRACT ... 13-16

BITMUX .. 13-21

ONES (One’s Population Count) .. 13-26

SHIFT/ROTATE OPERATIONS

Add with Shift .. 14-2

Shift with Add .. 14-5

Arithmetic Shift .. 14-7

Logical Shift ... 14-14

ROT (Rotate) ... 14-21

CONTENTS

xviii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ARITHMETIC OPERATIONS

ABS ... 15-3

Add .. 15-6

Add/Subtract – Prescale Down .. 15-10

Add/Subtract – Prescale Up ... 15-13

Add Immediate ... 15-16

DIVS, DIVQ (Divide Primitive) ... 15-19

EXPADJ ... 15-26

MAX .. 15-30

MIN .. 15-32

Modify – Decrement .. 15-34

Modify – Increment .. 15-37

Multiply 16-Bit Operands ... 15-43

Multiply 32-Bit Operands ... 15-51

Multiply and Multiply-Accumulate to Accumulator 15-53

Multiply and Multiply-Accumulate to Half-Register 15-58

Multiply and Multiply-Accumulate to Data Register 15-67

Negate (Two’s Complement) ... 15-73

RND (Round to Half-Word) .. 15-77

Saturate .. 15-80

SIGNBITS ... 15-83

Subtract ... 15-86

Subtract Immediate .. 15-90

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xix

CONTENTS

EXTERNAL EVENT MANAGEMENT

Idle ... 16-3

Core Synchronize .. 16-5

System Synchronize ... 16-8

EMUEXCPT (Force Emulation) ... 16-11

Disable Interrupts ... 16-13

Enable Interrupts .. 16-15

RAISE (Force Interrupt / Reset) .. 16-17

EXCPT (Force Exception) ... 16-20

Test and Set Byte (Atomic) .. 16-22

No Op .. 16-25

CACHE CONTROL

PREFETCH ... 17-3

FLUSH ... 17-5

FLUSHINV .. 17-7

IFLUSH ... 17-9

VIDEO PIXEL OPERATIONS

ALIGN8, ALIGN16, ALIGN24 .. 18-3

DISALGNEXCPT .. 18-6

BYTEOP3P (Dual 16-Bit Add / Clip) ... 18-8

Dual 16-Bit Accumulator Extraction with Addition 18-13

BYTEOP16P (Quad 8-Bit Add) .. 18-15

BYTEOP1P (Quad 8-Bit Average – Byte) 18-19

CONTENTS

xx ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BYTEOP2P (Quad 8-Bit Average – Half-Word) 18-24

BYTEPACK (Quad 8-Bit Pack) .. 18-30

BYTEOP16M (Quad 8-Bit Subtract) .. 18-32

SAA (Quad 8-Bit Subtract-Absolute-Accumulate) 18-36

BYTEUNPACK (Quad 8-Bit Unpack) 18-41

VECTOR OPERATIONS

Add on Sign ... 19-3

VIT_MAX (Compare-Select) .. 19-8

Vector ABS ... 19-15

Vector Add / Subtract ... 19-18

Vector Arithmetic Shift ... 19-23

Vector Logical Shift .. 19-28

Vector MAX ... 19-32

Vector MIN .. 19-35

Vector Multiply .. 19-38

Vector Multiply and Multiply-Accumulate 19-41

Vector Negate (Two’s Complement) .. 19-46

Vector PACK .. 19-48

Vector SEARCH ... 19-50

ISSUING PARALLEL INSTRUCTIONS

Supported Parallel Combinations .. 20-1

Parallel Issue Syntax .. 20-2

32-Bit ALU/MAC Instructions ... 20-3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxi

CONTENTS

16-Bit Instructions .. 20-6

Examples .. 20-8

DEBUG

Watchpoint Unit ... 21-1

Instruction Watchpoints .. 21-4

WPIAn Registers ... 21-5

WPIACNTn Registers ... 21-6

WPIACTL Register ... 21-7

Data Address Watchpoints ... 21-10

WPDAn Registers ... 21-10

WPDACNTn Registers ... 21-11

WPDACTL Register ... 21-12

WPSTAT Register ... 21-14

Trace Unit .. 21-15

TBUFCTL Register ... 21-16

TBUFSTAT Register ... 21-17

TBUF Register .. 21-18

Code to Recreate the Execution Trace in Memory 21-18

Performance Monitoring Unit ... 21-19

PFCNTRn Registers .. 21-20

PFCTL Register .. 21-20

Event Monitor Table ... 21-21

CONTENTS

xxii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Cycle Counter .. 21-23

CYCLES and CYCLES2 Registers 21-24

SYSCFG Register .. 21-26

Product Identification Register .. 21-27

DSPID Register .. 21-27

ADSP-BF535 CONSIDERATIONS

ADSP-BF535 Operating Modes and States A-1

ADSP-BF535 Flags ... A-2

CORE MMR ASSIGNMENTS

L1 Data Memory Controller Registers ... B-1

L1 Instruction Memory Controller Registers B-3

Interrupt Controller Registers ... B-5

Debug, MP, and Emulation Unit Registers B-7

Trace Unit Registers .. B-7

Watchpoint and Patch Registers .. B-8

Performance Monitor Registers ... B-9

INSTRUCTION OPCODES

Introduction ... C-1

Appendix Organization ... C-1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxiii

CONTENTS

Glossary ... C-2

Register Names .. C-2

Functional Units .. C-3

Notation Conventions .. C-4

Arithmetic Status Flags ... C-6

Core Register Encoding Map .. C-8

Opcode Representation ... C-8

Opcode Bit Terminology .. C-10

Undefined Opcodes .. C-10

Holes In Opcode Ranges .. C-10

Opcode Representation In Listings, Memory Dumps C-11

Program Flow Control Instructions .. C-13

Load / Store Instructions .. C-16

Move Instructions .. C-28

Stack Control Instructions ... C-37

Control Code Bit Management Instructions C-39

Logical Operations Instructions .. C-43

Bit Operations Instructions .. C-44

Shift / Rotate Operations Instructions .. C-46

Arithmetic Operations Instructions .. C-55

External Event Management Instructions C-99

Cache Control Instructions .. C-101

Video Pixel Operations Instructions ... C-102

Vector Operations Instructions ... C-107

CONTENTS

xxiv ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instructions Listed By Operation Code C-140

16-Bit Opcode Instructions ... C-140

32-Bit Opcode Instructions ... C-154

NUMERIC FORMATS

Unsigned or Signed: Two’s-complement Format D-1

Integer or Fractional .. D-1

Binary Multiplication .. D-5

Fractional Mode And Integer Mode .. D-6

Block Floating-point Format .. D-6

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxv

PREFACE

Thank you for purchasing and developing systems using an Analog
Devices Blackfin® processor.

Purpose of This Manual
The ADSP-BF53x/BF56x Blackfin Processor Programming Reference con-
tains information about the processor architecture and assembly language
for Blackfin processors. This manual is applicable to single-core and
dual-core Blackfin processors. In many ways, they are identical. The
exceptions to this are noted in Chapter 6, “Memory.”

The manual provides information on how assembly instructions execute
on the Blackfin processor’s architecture along with reference information
about processor operations.

Intended Audience
The primary audience for this manual is programmers who are familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the appropriate Blackfin architec-
ture and instruction set. Programmers who are unfamiliar with Analog
Devices processors can use this manual but should supplement it with
other texts (such as hardware reference manuals and data sheets that
describe your target architecture).

Manual Contents

xxvi ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Manual Contents
The manual consists of:

• Chapter 1, “Introduction”
This chapter provides a general description of the instruction syn-
tax and notation conventions.

• Chapter 2, “Computational Units”
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units (MACs), shifter, and the set of video ALUs. The chapter
also discusses data formats, data types, and register files.

• Chapter 3, “Operating Modes and States”
Describes the operating modes of the processor. The chapter also
describes Idle state and Reset state.

• Chapter 4, “Program Sequencer”
Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

• Chapter 5, “Address Arithmetic Unit”
Describes the Address Arithmetic Unit (AAU), including Data
Address Generators (DAGs), addressing modes, how to modify
DAG and Pointer registers, memory address alignment, and DAG
instructions.

• Chapter 6, “Memory”
Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and
memory-mapped registers (MMRs). Discusses the instruction,
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxvii

Preface

• Chapter 7–Chapter 19, “Program Flow Control”, “Load / Store”,
“Move”, “Stack Control”, “Control Code Bit Management”, “Log-
ical Operations”, “Bit Operations”, “Shift/Rotate Operations”,
“Arithmetic Operations”, “External Event Management”, “Cache
Control”, “Video Pixel Operations”, and “Vector Operations”
Provide descriptions of assembly language instructions and describe
their execution.

• Chapter 20, “Issuing Parallel Instructions”
Provides a description of parallel instruction operations and shows
how to use parallel instruction syntax.

• Appendix A, “ADSP-BF535 Considerations”
Provides a description of the status flag bits for the ADSP-BF535
processor only.

• Appendix B, “Core MMR Assignments”
Lists the core memory-mapped registers, their addresses, and
cross-references to text.

• Appendix C, “Instruction Opcodes”
Identifies operation codes (opcodes) for instructions. Use this
chapter to learn how to construct opcodes.

• Appendix D, “Numeric Formats”
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.

What’s New in This Manual
This is the first edition (Revision 1.0) of the ADSP-BF53x/BF56x Blackfin
Processor Programming Reference. In future revisions, this section will doc-
ument additions and corrections from previous revisions of the book.

Technical or Customer Support

xxviii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
dsptools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxix

Preface

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC families: ADSP-TS101 and
ADSP-TS20x.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, and
ADSP-2136x.

Blackfin (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF53x and ADSP-BF56x.

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly

http://www.analog.com
http://www.myanalog.com

Product Information

xxx ADSP-BF53x/BF56x Blackfin Processor Programming Reference

e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

http://www.myanalog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxxi

Preface

Related Documents
The following publications that describe the ADSP-BF53x/BF56x proces-
sors (and related processors) can be ordered from any Analog Devices sales
office:

• ADSP-BF533 Blackfin Processor Hardware Reference

• ADSP-BF535 Blackfin Processor Hardware Reference

• ADSP-BF561 Blackfin Processor Hardware Reference

• ADSP-BF537 Blackfin Processor Hardware Reference

• ADSP-BF538/ADSP-BF539 Blackfin Processor Hardware Reference

• ADSP-BF531/ADSP-BF532/ADSP-BF533 Blackfin Embedded
Processor Data Sheet

• ADSP-BF534 Blackfin Embedded Processor Data Sheet

• ADSP-BF535 Blackfin Embedded Processor Data Sheet

• ADSP-BF536/ADSP-BF537 Blackfin Embedded Processor Data
Sheet

• ADSP-BF538 Blackfin Embedded Processor Data Sheet

• ADSP-BF539 Blackfin Embedded Processor Data Sheet

For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ User's Guide

• VisualDSP++ C/C++ Compiler and Library Manual for Blackfin
Processors

• VisualDSP++ Assembler and Preprocessor Manual

Product Information

xxxii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• VisualDSP++ Linker and Utilities Manual

• VisualDSP++ Kernel (VDK) User's Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/technical_library

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

http://www.analog.com/processors/technical_library

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxxiii

Preface

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder, and .PDF files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

Product Information

xxxiv ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technical_library

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

http://www.analog.com/processors/technical_library
http://www.analog.com/salesdir

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxxv

Preface

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Conventions

xxxvi ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

this|that Alternative items in syntax descriptions are delimited with a vertical
bar; read the example as this or that. One or the other is required.

{this | that} Optional items in syntax descriptions appear within curly braces; read
the example as an optional this or that.

[{({S|SU})}] Optional items for some lists may appear within parenthesis. If an
option is chosen, the parenthesis must be used (for example, (S)). If
no option is chosen, omit the parenthsis.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

SWRST Software Reset
register

Register names appear in UPPERCASE and a special typeface. The
descriptive names of registers are in mixed case and regular typeface.

TMR0E, RESET Pin names appear in UPPERCASE and a special typeface.
Active low signals appear with an OVERBAR.

DRx, SIC_IMASKx,
I[3:0]
SMS[3:0]

Register, bit, and pin names in the text may refer to groups of registers
or pins:
A lowercase x in a register name (DRx) indicates a set of registers (for
example, DR2, DR1, and DR0) for those processors with more than
one register of that name. For processors with only a single register of
that name, the x can be disregarded (for example, SIC_IMASKx refers
to SIC_IMASK in the ADSP-BF533 processor, and to SIC_IMASK0
and SIC_IMASK1 in the ADSP-BF561).
A colon between numbers within brackets indicates a range of registers
or pins (for example, I[3:0] indicates I3, I2, I1, and I0; SMS[3:0] indi-
cates SMS3, SMS2, SMS1, and SMS0).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference xxxvii

Preface

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

0xFBCD CBA9 Hexadecimal numbers use the 0x prefix and are typically shown with a
space between the upper four and lower four digits.

b#1010 0101 Binary numbers use the b# prefix and are typically shown with a space
between each four digit group.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description

Conventions

xxxviii ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-1

1 INTRODUCTION

This ADSP-BF53x/BF56x Blackfin Processor Programming Reference pro-
vides details on the assembly language instructions used by the Micro
Signal Architecture (MSA) core developed jointly by Analog Devices, Inc.
and Intel Corporation. This manual is applicable to all ADSP-BF53x and
ADSP-BF56x processor derivatives. With the exception of the first-gener-
ation ADSP-BF535 processor, all devices provide an identical core
architecture and instruction set. Specifics of the ADSP-BF535 processor
are highlighted where applicable and are summarized in Appendix A.
Dual-core derivatives and derivatives with on-chip L2 memory have
slightly different system interfaces. Differences and commonalities at a
global level are discussed in Chapter 6, "Memory." For a full description
of the system architecture beyond the Blackfin core, refer to the specific
Hardware Reference Manual for your derivative. This section points out
some of the conventions used in this document.

The Blackfin processor core architecture combines a dual MAC signal
processing engine, an orthogonal RISC-like microprocessor instruction
set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and
multimedia features into a single instruction set architecture.

Core Architecture
The Blackfin processor core contains two 16-bit multipliers, two 40-bit
accumulators, two 40-bit arithmetic logic units (ALUs), four 8-bit video
ALUs, and a 40-bit shifter, shown in Figure 1-1. The computational units
process 8-, 16-, or 32-bit data from the register file.

Core Architecture

1-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates
as 16 independent 16-bit registers. All operands for compute operations
come from the multiported register file and instruction constant fields.

Figure 1-1. Processor Core Architecture

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

16 16

88 8 8

40 40

A0 A1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H

R5.H

R4.H

R3.H

R2.H

R1.H

R0.H

R7.L
R6.L

R5.L

R4.L

R3.L

R2.L

R1.H

R0.L

ASTAT

40 40

32 32

32

32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

SP
FP

P5

P4
P3

P2

P1

P0

DA1

DA0

32

32

32

PREGRAB
32

T
O

M
E

M
O

R
Y

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-3

Introduction

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as
field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of
video instructions include byte alignment and packing operations, 16-bit
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the
compare/select and vector search instructions. For some instructions, two
16-bit ALU operations can be performed simultaneously on register pairs
(a 16-bit high half and 16-bit low half of a compute register). By also
using the second ALU, quad 16-bit operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. For program flow control, the
sequencer supports PC-relative and indirect conditional jumps (with static
branch prediction) and subroutine calls. Hardware is provided to support
zero-overhead looping. The architecture is fully interlocked, meaning
there are no visible pipeline effects when executing instructions with data
dependencies.

The address arithmetic unit provides two addresses for simultaneous dual
fetches from memory. It contains a multiported register file consisting of
four sets of 32-bit Index, Modify, Length, and Base registers (for circular
buffering) and eight additional 32-bit pointer registers (for C-style
indexed stack manipulation).

Memory Architecture

1-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Blackfin processors support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically
operate at the full processor speed with little or no latency. At the L1 level,
the instruction memory holds instructions only. The two data memories
hold data, and a dedicated scratchpad data memory stores stack and local
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The Memory Management Unit
(MMU) provides memory protection for individual tasks that may be
operating on the core and may protect system registers from unintended
access.

The architecture provides three modes of operation: User, Supervisor, and
Emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The Blackfin processor instruction set is optimized so that 16-bit opcodes
represent the most frequently used instructions. Complex DSP instruc-
tions are encoded into 32-bit opcodes as multifunction instructions.
Blackfin products support a limited multi-issue capability, where a 32-bit
instruction can be issued in parallel with two 16-bit instructions. This
allows the programmer to use many of the core resources in a single
instruction cycle.

The Blackfin processor assembly language uses an algebraic syntax. The
architecture is optimized for use with the C compiler.

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses, regardless of the specific
Blackfin product. All resources, including internal memory, external
memory, and I/O control registers, occupy separate sections of this com-

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-5

Introduction

mon address space. The memory portions of this address space are
arranged in a hierarchical structure to provide a good cost/performance
balance of some very fast, low latency on-chip memory as cache or SRAM,
and larger, lower cost and lower performance off-chip memory systems.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Internal Memory
At a minimum, each Blackfin processors has three blocks of on-chip mem-
ory that provide high bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

In addition, some Blackfin processors share a low latency, high bandwidth
on-chip Level 2 (L2) memory. It forms an on-chip memory hierarchy with
L1 memory and provides much more capacity than L1 memory, but the
latency is higher. The on-chip L2 memory is SRAM and cannot be config-
ured as cache. On-chip L2 memory is capable of storing both instructions
and data and is accessible by both cores.

Event Handling

1-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

External Memory
External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,
and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 512M bytes of SDRAM (certain products have SDRAM up
to 128M bytes).

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a 1M byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in Supervisor mode. They appear as reserved space to on-chip peripherals.

Event Handling
The event controller on the Blackfin processor handles all asynchronous
and synchronous events to the processor. The processor event handling
supports both nesting and prioritization. Nesting allows multiple event
service routines to be active simultaneously. Prioritization ensures that

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-7

Introduction

servicing a higher priority event takes precedence over servicing a lower
priority event. The controller provides support for five different types of
events:

• Emulation – Causes the processor to enter Emulation mode, allow-
ing command and control of the processor via the JTAG interface.

• Reset – Resets the processor.

• Nonmaskable Interrupt (NMI) – The software watchdog timer or
the NMI input signal to the processor generates this event. The
NMI event is frequently used as a power-down indicator to initiate
an orderly shutdown of the system.

• Exceptions – Synchronous to program flow. That is, the exception
is taken before the instruction is allowed to complete. Conditions
such as data alignment violations and undefined instructions cause
exceptions.

• Interrupts – Asynchronous to program flow. These are caused by
input pins, timers, and other peripherals.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the Core Event Con-
troller (CEC) and the System Interrupt Controller (SIC). The CEC works
with the SIC to prioritize and control all system events. Conceptually,
interrupts from the peripherals arrive at the SIC and are routed directly
into the general-purpose interrupts of the CEC.

Syntax Conventions

1-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Core Event Controller (CEC)
The Core Event Controller supports nine general-purpose interrupts
(IVG15–7), in addition to the dedicated interrupt and exception events.
Of these general-purpose interrupts, the two lowest priority interrupts
(IVG15–14) are recommended to be reserved for software interrupt han-
dlers, leaving seven prioritized interrupt inputs to support peripherals.

System Interrupt Controller (SIC)
The System Interrupt Controller provides the mapping and routing of
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor
provides a default mapping, the user can alter the mappings and priorities
of interrupt events by writing the appropriate values into the Interrupt
Assignment Registers (IAR).

Syntax Conventions
The Blackfin processor instruction set supports several syntactic conven-
tions that appear throughout this document. Those conventions are given
below.

Case Sensitivity
The instruction syntax is case insensitive. Upper and lower case letters can
be used and intermixed arbitrarily.

The assembler treats register names and instruction keywords in a
case-insensitive manner. User identifiers are case sensitive. Thus, R3.l,
R3.L, r3.l, r3.L are all valid, equivalent input to the assembler.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-9

Introduction

This manual shows register names and instruction keywords in examples
using lower case. Otherwise, in explanations and descriptions, this manual
uses upper case to help the register names and keywords stand out among
text.

Free Format
Assembler input is free format, and may appear anywhere on the line. One
instruction may extend across multiple lines, or more than one instruction
may appear on the same line. White space (space, tab, comments, or new-
line) may appear anywhere between tokens. A token must not have
embedded spaces. Tokens include numbers, register names, keywords,
user identifiers, and also some multicharacter special symbols like “+=”,
“/*”, or “||”.

Instruction Delimiting
A semicolon must terminate every instruction. Several instructions can be
placed together on a single line at the programmer’s discretion, provided
each instruction ends with a semicolon.

Each complete instruction must end with a semicolon. Sometimes, a com-
plete instruction will consist of more than one operation. There are two
cases where this occurs.

• Two general operations are combined. Normally a comma sepa-
rates the different parts, as in

a0 = r3.h * r2.l , a1 = r3.l * r2.h ;

• A general instruction is combined with one or two memory refer-
ences for joint issue. The latter portions are set off by a “||” token.
For example,

a0 = r3.h * r2.l || r1 = [p3++] || r4 = [i2++] ;

Notation Conventions

1-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Comments
The assembler supports various kinds of comments, including the
following.

• End of line: A double forward slash token (“//”) indicates the
beginning of a comment that concludes at the next newline
character.

• General comment: A general comment begins with the token “/*”
and ends with “*/”. It may contain any characters and extend over
multiple lines.

Comments are not recursive; if the assembler sees a “/*” within a general
comment, it issues an assembler warning. A comment functions as white
space.

Notation Conventions
This manual and the assembler use the following conventions.

• Register names are alphabetical, followed by a number in cases
where there are more than one register in a logical group. Thus,
examples include ASTAT, FP, R3, and M2.

• Register names are reserved and may not be used as program
identifiers.

• Some operations (such as “Move Register”) require a register pair.
Register pairs are always Data Registers and are denoted using a
colon, for example, R3:2. The larger number must be written first.
Note that the hardware supports only odd-even pairs, for example,
R7:6, R5:4, R3:2, and R1:0.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-11

Introduction

• Some instructions (such as “--SP (Push Multiple)”) require a group
of adjacent registers. Adjacent registers are denoted in syntax by the
range enclosed in parentheses and separated by a colon, for exam-
ple, (R7:3). Again, the larger number appears first.

• Portions of a particular register may be individually specified. This
is written in syntax with a dot (“.”) following the register name,
then a letter denoting the desired portion. For 32-bit registers, “.H”
denotes the most-significant (“High”) portion, “.L” denotes the
least-significant portion. The subdivisions of the 40-bit registers
are described later.

Register names are reserved and may not be used as program identifiers.

This manual uses the following conventions.

• When there is a choice of any one register within a register group,
this manual shows the register set using an en-dash (“–”). For
example, “R7–0” in text means that any one of the eight data regis-
ters (R7, R6, R5, R4, R3, R2, R1, or R0) can be used in syntax.

• Immediate values are designated as “imm” with the following
modifiers.

• “imm” indicates a signed value; for example, imm7.

• The “u” prefix indicates an unsigned value; for example,
uimm4.

• The decimal number indicates how many bits the value can
include; for example, imm5 is a 5-bit value.

• Any alignment requirements are designated by an optional
“m” suffix followed by a number; for example, uimm16m2 is
an unsigned, 16-bit integer that must be an even number,
and imm7m4 is a signed, 7-bit integer that must be a multiple
of 4.

Behavior Conventions

1-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• PC-relative, signed values are designated as “pcrel” with the
following modifiers:

• the decimal number indicates how many bits the
value can include; for example, pcrel5 is a 5-bit
value.

• any alignment requirements are designated by an
optional “m” suffix followed by a number; for exam-
ple, pcrel13m2 is a 13-bit integer that must be an
even number.

• Loop PC-relative, signed values are designated as “lppcrel”
with the following modifiers:

• the decimal number indicates how many bits the
value can include; for example, lppcrel5 is a 5-bit
value.

• any alignment requirements are designated by an
optional “m” suffix followed by a number; for exam-
ple, lppcrel11m2 is an 11-bit integer that must be an
even number.

Behavior Conventions
All operations that produce a result in an Accumulator saturate to a 40-bit
quantity unless noted otherwise. See “Saturation” on page 1-17 for a
description of saturation behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-13

Introduction

Glossary
The following terms appear throughout this document. Without trying to
explain the Blackfin processor, here are the terms used with their defini-
tions. See the Blackfin Processor Hardware Reference for your specific
product for more details on the architecture.

Register Names
The architecture includes the registers shown in Table 1-1.

Table 1-1. Registers

Register Description

Accumulators The set of 40-bit registers A1 and A0 that normally contain data that is being
manipulated. Each Accumulator can be accessed in five ways: as one 40-bit regis-
ter, as one 32-bit register (designated as A1.W or A0.W), as two 16-bit registers
similar to Data Registers (designated as A1.H, A1.L, A0.H, or A0.L) and as one
8-bit register (designated A1.X or A0.X) for the bits that extend beyond bit 31.

Data
Registers

The set of 32-bit registers (R0, R1, R2, R3, R4, R5, R6, and R7) that normally
contain data for manipulation. Abbreviated D-register or Dreg. Data Registers
can be accessed as 32-bit registers, or optionally as two independent 16-bit regis-
ters. The least significant 16 bits of each register is called the “low” half and is
designated with “.L” following the register name. The most significant 16 bit is
called the “high” half and is designated with “.H” following the name. Example:
R7.L, r2.h, r4.L, R0.h.

Pointer
Registers

The set of 32-bit registers (P0, P1, P2, P3, P4, P5, including SP and FP) that
normally contain byte addresses of data structures. Accessed only as a 32-bit reg-
ister. Abbreviated P-register or Preg. Example: p2, p5, fp, sp.

Stack Pointer SP; contains the 32-bit address of the last occupied byte location in the stack.
The stack grows by decrementing the Stack Pointer. A subset of the Pointer Reg-
isters.

Frame Pointer FP; contains the 32-bit address of the previous Frame Pointer in the stack,
located at the top of a frame. A subset of the Pointer Registers.

Loop Top LT0 and LT1; contains 32-bit address of the top of a zero overhead loop.

Glossary

1-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Functional Units
The architecture includes the three processor sections shown in Table 1-2.

Loop Count LC0 and LC1; contains 32-bit counter of the zero overhead loop executions.

Loop Bottom LB0 and LB1; contains 32-bit address of the bottom of a zero overhead loop.

Index
Register

The set of 32-bit registers I0, I1, I2, I3 that normally contain byte addresses of
data structures. Abbreviated I-register or Ireg.

Modify
Registers

The set of 32-bit registers M0, M1, M2, M3 that normally contain offset values
that are added or subtracted to one of the Index Registers. Abbreviated as Mreg.

Length
Registers

The set of 32-bit registers L0, L1, L2, L3 that normally contain the length (in
bytes) of the circular buffer. Abbreviated as Lreg. Clear Lreg to disable circular
addressing for the corresponding Ireg. Example: Clear L3 to disable circular
addressing for I3.

Base
Registers

The set of 32-bit registers B0, B1, B2, B3 that normally contain the base address
(in bytes) of the circular buffer. Abbreviated as Breg.

Table 1-2. Processor Sections

Processor Description

Data Address
Generator (DAG)

Calculates the effective address for indirect and indexed memory
accesses. Consists of two sections–DAG0 and DAG1.

Multiply and
Accumulate Unit
(MAC)

Performs the arithmetic functions on data. Consists of two sections
(MAC0 and MAC1)–each associated with an Accumulator (A0 and A1,
respectively).

Arithmetic Logical
Unit (ALU)

Performs arithmetic computations and binary shifts on data. Operates
on the Data Registers and Accumulators. Consists of two units (ALU0
and ALU1), each associated with an Accumulator (A0 and A1, respec-
tively). Each ALU operates in conjunction with a Multiply and Accu-
mulate Unit.

Table 1-1. Registers (Cont’d)

Register Description

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-15

Introduction

Arithmetic Status Flags
The MSA includes 12 arithmetic status flags that indicate specific results
of a prior operation. These flags reside in the Arithmetic Status (ASTAT)
Register. A summary of the flags appears below. All flags are active high.
Instructions regarding P-registers, I-registers, L-registers, M-registers, or
B-registers do not affect flags.

See the Blackfin Processor Hardware Reference for your specific product for
more details on the architecture.

Table 1-3. Arithmetic Status Flag Summary

Flag Description

AC0 Carry (ALU0)

AC0_COPY Carry (ALU0), copy

AC1 Carry (ALU1)

AN Negative

AQ Quotient

AV0 Accumulator 0 Overflow

AVS0 Accumulator 0 Sticky Overflow
Set when AV0 is set, but remains set until explicitly cleared by user code.

AV1 Accumulator 1 Overflow

AVS1 Accumulator 1 Sticky Overflow
Set when AV1 is set, but remains set until explicitly cleared by user code.

AZ Zero

CC Control Code bit
Multipurpose flag set, cleared and tested by specific instructions.

V Overflow for Data Register results

V_COPY Overflow for Data Register results. copy

VS Sticky Overflow for Data Register results
Set when V is set, but remains set until explicitly cleared by user code.

Glossary

1-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Fractional Convention
Fractional numbers include subinteger components less than ±1. Whereas
decimal fractions appear to the right of a decimal point, binary fractions
appear to the right of a binal point.

In DSP instructions that assume placement of a binal point, for example
in computing sign bits for normalization or for alignment purposes, the
binal point convention depends on the size of the register being used as
shown in Table 1-4 and Figure 1-2 on page 1-17.

This processor does not represent fractional values in 8-bit
registers.

Table 1-4. Fractional Conventions

Registers Size Format Notation

Si
gn

B
it

E
xt

en
si

on
B

it
s

Fr
ac

ti
on

al
B

it
s

40-bit registers Signed Fractional 9.31 1 8 31

Unsigned Fractional 8.32 0 8 32

32-bit registers Signed Fractional 1.31 1 0 31

Unsigned Fractional 0.32 0 0 32

16-bit registers Signed Fractional 1.15 1 0 15

Unsigned Fractional 0.16 0 0 16

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-17

Introduction

Saturation
When the result of an arithmetic operation exceeds the range of the desti-
nation register, important information can be lost.

Saturation is a technique used to contain the quantity within the values
that the destination register can represent. When a value is computed that
exceeds the capacity of the destination register, then the value written to
the register is the largest value that the register can hold with the same sign
as the original.

• If an operation would otherwise cause a positive value to overflow
and become negative, instead, saturation limits the result to the
maximum positive value for the size register being used.

• Conversely, if an operation would otherwise cause a negative value
to overflow and become positive, saturation limits the result to the
maximum negative value for the register size.

The overflow arithmetic flag is never set by an operation that enforces
saturation.

Figure 1-2. Conventional Placement of Binal Point

binal point alignment

S

S

S 8-bit extension
40-bit accumulator

32-bit register

16-bit register half

31-bit fraction

31-bit fraction

15-bit fraction

Glossary

1-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The maximum positive value in a 16-bit register is 0x7FFF. The maxi-
mum negative value is 0x8000. For a signed two’s complement 1.15
fractional notation, the allowable range is –1 through (1–2–15).

The maximum positive value in a 32-bit register is 0x7FFF FFFF. The
maximum negative value is 0x8000 0000. For a signed two’s complement
fractional data in 1.31 format, the range of values that the register can
hold are –1 through (1–2–31).

The maximum positive value in a 40-bit register is 0x7F FFFF FFFF. The
maximum negative value is 0x80 0000 0000. For a signed two’s comple-
ment 9.31 fractional notation, the range of values that can be represented
is –256 through (256–2–31).

For example, if a 16-bit register containing 0x1000 (decimal integer
+4096) was shifted left 3 places without saturation, it would overflow to
0x8000 (decimal –32,768). With saturation, however, a left shift of 3 or
more places would always produce the largest positive 16-bit number,
0x7FFF (decimal +32,767).

Another common example is copying the lower half of a 32-bit register
into a 16-bit register. If the 32-bit register contains 0xFEED 0ACE and
the lower half of this negative number is copied into a 16-bit register with-
out saturation, the result is 0x0ACE, a positive number. But if saturation
is enforced, the 16-bit result maintains its negative sign and becomes
0x8000.

The MSA implements 40-bit saturation for all arithmetic operations that
write an Accumulator destination except as noted in the individual
instruction descriptions when an optional 32-bit saturation mode can
constrain a 40-bit Accumulator to the 32-bit register range. The MSA per-
forms 32-bit saturation for 32-bit register destinations only as noted in the
instruction descriptions.

Overflow is the alternative to saturation. The number is allowed to simply
exceed its bounds and lose its most significant bit(s); only the lowest
(least-significant) portion of the number can be retained. Overflow can

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-19

Introduction

occur when a 40-bit value is written to a 32-bit destination. If there was
any useful information in the upper 8 bits of the 40-bit value, then infor-
mation is lost in the process. Some processor instructions report overflow
conditions in the arithmetic flags, as noted in the instruction descriptions.
The arithmetic flags reside in the Arithmetic Status (ASTAT) Register. See
the Blackfin Processor Hardware Reference for your specific product for
more details on the ASTAT Register.

Rounding and Truncating
Rounding is a means of reducing the precision of a number by removing a
lower-order range of bits from that number’s representation and possibly
modifying the remaining portion of the number to more accurately repre-
sent its former value. For example, the original number will have N bits of
precision, whereas the new number will have only M bits of precision
(where N>M), so N-M bits of precision are removed from the number in
the process of rounding.

The round-to-nearest method returns the closest number to the original.
By convention, an original number lying exactly halfway between two
numbers always rounds up to the larger of the two. For example, when
rounding the 3-bit, two’s complement fraction 0.25 (binary 0.01) to the
nearest 2-bit two’s complement fraction, this method returns 0.5 (binary
0.1). The original fraction lies exactly midway between 0.5 and 0.0
(binary 0.0), so this method rounds up. Because it always rounds up, this
method is called biased rounding.

The convergent rounding method also returns the closest number to the
original. However, in cases where the original number lies exactly halfway
between two numbers, this method returns the nearest even number, the
one containing an LSB of 0. So for the example above, the result would be
0.0, since that is the even numbered choice of 0.5 and 0.0. Since it rounds
up and down based on the surrounding values, this method is called unbi-
ased rounding.

Glossary

1-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Some instructions for this processor support biased and unbiased round-
ing. The RND_MOD bit in the Arithmetic Status (ASTAT) Register determines
which mode is used. See the Blackfin Processor Hardware Reference for your
specific product for more details on the ASTAT Register.

Another common way to reduce the significant bits representing a number
is to simply mask off the N-M lower bits. This process is known as trunca-
tion and results in a relatively large bias.

Figure 1-3 shows other examples of rounding and truncation methods.

Figure 1-3. 8-Bit Number Reduced to 4 Bits of Precision

1

0 1 0

0 0

0 1

0

0

1 0 0 0

1

0

original 8-bit number (0.5625)

4-bit biased rounding (0.625)

4-bit unbiased rounding (0.5)

0 1 0 0 4-bit truncation (0.5)

1

0 1 0

0 0

0 1

0

0

1 0 1 0

1

1

original 8-bit number (0.578125)

4-bit biased rounding (0.625)

4-bit unbiased rounding (0.625)

0 1 0 0 4-bit truncation (0.5)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 1-21

Introduction

Automatic Circular Addressing
The Blackfin processor provides an optional circular (or “modulo”)
addressing feature that increments an Index Register (Ireg) through a pre-
defined address range, then automatically resets the Ireg to repeat that
range. This feature improves input/output loop performance by eliminat-
ing the need to manually reinitialize the address index pointer each time.
Circular addressing is useful, for instance, when repetitively loading or
storing a string of fixed-sized data blocks.

The circular buffer contents must meet the following conditions:

• The maximum length of a circular buffer (that is, the value held in
any L register) must be an unsigned number with magnitude less
than 231.

• The magnitude of the modifier should be less than the length of
the circular buffer.

• The initial location of the pointer I should be within the circular
buffer defined by the base B and length L.

If any of these conditions is not satisfied, then processor behavior is not
specified.

There are two elements of automatic circular addressing:

• Indexed address instructions

• Four sets of circular addressing buffer registers composed of one
each Ireg, Breg, and Lreg (i.e., I0/B0/L0, I1/B1/L1, I2/B2/L2, and
I3/B3/L3)

To qualify for circular addressing, the indexed address instruction must
explicitly modify an Index Register. Some indexed address instructions use
a Modify Register (Mreg) to increment the Ireg value. In that case, any
Mreg can be used to increment any Ireg. The Ireg used in the instruction
specifies which of the four circular buffer sets to use.

Glossary

1-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The circular buffer registers define the length (Lreg) of the data block in
bytes and the base (Breg) address to reinitialize the Ireg.

Some instructions modify an Index Register without using it for address-
ing; for example, the Add Immediate and Modify – Decrement
instructions. Such instructions are still affected by circular addressing, if
enabled.

Disable circular addressing for an Ireg by clearing the Lreg that corre-
sponds to the Ireg used in the instruction. For example, clear L2 to disable
circular addressing for register I2. Any nonzero value in an Lreg enables
circular addressing for its corresponding buffer registers.

See the Blackfin Processor Hardware Reference for your specific product for
more details on circular addressing capabilities and operation.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-1

2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a
shifter, and a set of video ALUs. These units get data from registers in the
Data Register File. Computational instructions for these units provide
fixed-point operations, and each computational instruction can execute
every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform Single Instruction,
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register
File. The syntax lets programs move data to and from these registers and
specify a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Studying the details of the computational units, register files, and data

2-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

buses leads to a better understanding of proper data flow for computa-
tions. Next, details about the processor’s advanced parallelism reveal how
to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the Data Register File and the
computational units—multipliers, ALUs, and shifter.

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that
particular operation.

Two additional registers, A0 and A1, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status and conditions for the
results of the computational operations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-3

Computational Units

Figure 2-1. Processor Core Architecture

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

16 16

88 8 8

40 40

A0 A1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H

R5.H

R4.H

R3.H

R2.H

R1.H

R0.H

R7.L
R6.L

R5.L

R4.L

R3.L

R2.L

R1.H

R0.L

ASTAT

40 40

32 32

32

32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

SP
FP

P5

P4
P3

P2

P1

P0

DA1

DA0

32

32

32

PREGRAB
32

T
O

M
E

M
O

R
Y

Using Data Formats

2-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Using Data Formats
ADSP-BF53x/56x processors are primarily 16-bit, fixed-point machines.
Most operations assume a two’s-complement number representation,
while others assume unsigned numbers or simple binary strings. Other
instructions support 32-bit integer arithmetic, with further special fea-
tures supporting 8-bit arithmetic and block floating point. For detailed
information about each number format, see Appendix D, “Numeric
Formats.”

In the ADSP-BF53x/56x processor family arithmetic, signed numbers are
always in two’s-complement format. These processors do not use
signed-magnitude, one’s-complement, binary-coded decimal (BCD), or
excess-n formats.

Binary String
The binary string format is the least complex binary notation; in it, 16 bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.

Unsigned
Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-5

Computational Units

Signed Numbers: Two’s-Complement
In ADSP-BF53x/56x processor arithmetic, the word signed refers to
two’s-complement numbers. Most ADSP-BF53x/56x processor family
operations presume or support two’s-complement arithmetic.

Fractional Representation: 1.15
ADSP-BF53x processor arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, 1 sign bit (the Most Significant Bit (MSB)) and 15 fractional bits
represent values from –1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some
examples of 1.15 numbers and their decimal equivalents.

Figure 2-2. Bit Weighting for 1.15 Numbers

-20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

1.15 NUMBER
(HEXADECIMAL)
0x0001 0.000031
0x7FFF 0.999969
0xFFFF –0.000031
0x8000 –1.000000

DECIMAL
EQUIVALENT

Register Files

2-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Register Files
The processor’s computational units have three definitive register
groups—a Data Register File, a Pointer Register File, and set of Data
Address Generation (DAG) registers.

• The Data Register File receives operands from the data buses for
the computational units and stores computational results.

• The Pointer Register File has pointers for addressing operations.

• The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information on Pointer and DAG registers, see Chapter 5,
“Address Arithmetic Unit.”

In the processor, a word is 32 bits long; H denotes the high order
16 bits of a 32-bit register; L denotes the low order 16 bits of a
32-bit register; W denotes the low order 32 bits of a 40-bit accu-
mulator register; and X denotes the high order 8 bits. For example,
A0.W contains the lower 32 bits of the 40-bit A0 register; A0.L con-
tains the lower 16 bits of A0.W, and A0.H contains the upper 16 bits
of A0.W.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-7

Computational Units

Data Register File
The Data Register File consists of eight registers, each 32 bits wide. Each
register may be viewed as a pair of independent 16-bit registers. Each is
denoted as the low half or high half. Thus the 32-bit register R0 may be
regarded as two independent register halves, R0.L and R0.H.

For example, these instructions represent a 32-bit and a 16-bit operation:

R2 = R1 + R2; /* 32-bit addition */

R2.L = R1.H * R0.L; /* 16-bit multiplication */

Figure 2-3. Register Files

 Address Arithmetic Unit Registers

P0

P1

P2

P3

P4

P5

User SP
Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

 Data Address Registers
 Pointer
 Registers

Register Files

2-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Three separate buses (two load, one store) connect the Register File to the
L1 data memory, each bus being 32 bits wide. Transfers between the Data
Register File and the data memory can move up to two 32-bit words of
valid data in each cycle. Often, these represent four 16-bit words.

Accumulator Registers
In addition to the Data Register File, the processor has two dedicated,
40-bit accumulator registers, called A0 and A1. Each can be referred to as
its 16-bit low half (An.L) or high half (An.H) plus its 8-bit extension
(An.X). Each can also be referred to as a 32-bit register (An.W) consisting of
the lower 32 bits, or as a complete 40-bit result register (An).

These examples illustrate this convention:

A0 = A1; /* 40-bit move */

A1.W = R7; /* 32-bit move */

A0.H = R5.H; /* 16-bit move */

R6.H = A0.X; /* read 8-bit value and sign extend to 16 bits */

Figure 2-4. 40-Bit Accumulator Registers

A0 A1

A1.WA1.X

A1.X A1.H A1.L

A0.WA0.X

A0.X A0.H A0.L

0

0

0

0

0

0

39

39

39

39

39

39

32

32

32

32

31

31

31

31 1616 15 15

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-9

Computational Units

Register File Instruction Summary
Table 2-1 lists the register file instructions. In Table 2-1, note the mean-
ing of these symbols:

• Allreg denotes: R[7:0], P[5:0], SP, FP, I[3:0], M[3:0],
B[3:0], L[3:0], A0.X, A0.W, A1.X, A1.W, ASTAT, RETS, RETI,

RETX, RETN, RETE, LC[1:0], LT[1:0], LB[1:0], USP, SEQSTAT,
SYSCFG, CYCLES, and CYCLES2.

• An denotes either ALU Result register A0 or A1.

• Dreg denotes any Data Register File register.

• Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI,
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:0], LB[1:0], CYCLES, and
CYCLES2.

• Preg denotes any Pointer register, FP, or SP register.

• Dreg_even denotes R0,R2,R4, or R6.

• Dreg_odd denotes R1,R3,R5, or R7.

• DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• An.L denotes the lower 16 bits of Accumulator A0.W or A1.W.

• An.H denotes the upper 16 bits of Accumulator A0.W or A1.W.

• Dreg_byte denotes the low order 8 bits of each Data register.

Register Files

2-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• Option (X) denotes sign extended.

• Option (Z) denotes zero extended.

• * Indicates the flag may be set or cleared, depending on the result
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

allreg = allreg ; 1 – – – – – – –

An = An ; – – – – – – –

An = Dreg ; – – – – – – –

Dreg_even = A0 ; * * – – – – *

Dreg_odd = A1 ; * * – – – – *

Dreg_even = A0,
Dreg_odd = A1 ;

* * – – – – *

Dreg_odd = A1,
Dreg_even = A0 ;

* * – – – – *

IF CC DPreg = DPreg ; – – – – – – –

IF ! CC DPreg = DPreg ; – – – – – – –

Dreg = Dreg_lo (Z) ; * ** ** – – – **/–

Dreg = Dreg_lo (X) ; * * ** – – – **/–

An.X = Dreg_lo ; – – – – – – –

Dreg_lo = An.X ; – – – – – – –

An.L = Dreg_lo ; – – – – – – –

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-11

Computational Units

Data Types
The processor supports 32-bit words, 16-bit half words, and bytes. The
32- and 16-bit words can be integer or fractional, but bytes are always
integers. Integer data types can be signed or unsigned, but fractional data
types are always signed.

Table 2-3 illustrates the formats for data that resides in memory, in the
register file, and in the accumulators. In the table, the letter d represents
one bit, and the letter s represents one signed bit.

An.H = Dreg_hi ; – – – – – – –

Dreg_lo = A0 ; * * – – – – *

Dreg_hi = A1 ; * * – – – – *

Dreg_hi = A1 ;
Dreg_lo = A0 ;

* * – – – – *

Dreg_lo = A0 ;
Dreg_hi = A1 ;

* * – – – – *

Dreg = Dreg_byte (Z) ; * ** ** – – – **/–

Dreg = Dreg_byte (X) ; * * ** – – – **/–

1 Warning: Not all register combinations are allowed. For details, see the functional description of
the Move Register instruction in Chapter 9, “Move.”

Table 2-1. Register File Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

Data Types

2-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Some instructions manipulate data in the registers by sign-extending or
zero-extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.

In Table 2-2, note the meaning of these symbols:

• s = sign bit(s)

• d = data bit(s)

• “.” = decimal point by convention; however, a decimal point does
not literally appear in the number.

• Italics denotes data from a source other than adjacent bits.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-13

Computational Units

Endianess
Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page 6-65.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned
Word

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd
dddd

32.0 Signed
Word

sddd dddd dddd dddd dddd
dddd dddd dddd

sddd dddd dddd dddd dddd dddd dddd
dddd

16.0 Unsigned
Half Word

dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
dddd

16.0 Signed
Half Word

sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned
Byte

dddd dddd 0000 0000 0000 0000 0000 0000 dddd
dddd

8.0 Signed
Byte

sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

1.15 Signed
Fraction

s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

1.31 Signed
Fraction

s.ddd dddd dddd dddd dddd
dddd dddd dddd

s.ddd dddd dddd dddd dddd dddd dddd
dddd

Packed 8.0
Unsigned Byte

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd dddd

Packed 1.15
Signed
Fraction

s.ddd dddd dddd dddd s.ddd
dddd dddd dddd

s.ddd dddd dddd dddd s.ddd dddd dddd
dddd

Data Types

2-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ALU Data Types
Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (DIVS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by
writing directly to the ASTAT register. An additional V flag is set or cleared
depending on the transfer of the result from both accumulators to the reg-
ister file. Furthermore, the sticky VS bit is set with the V bit and remains
set until cleared.

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Signifi-
cant Bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AVn, the corresponding overflow flags. Add-
ing a negative and a positive number may result in either a negative or
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-30.

Multiplier Data Types
Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-15

Computational Units

unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign-extended across the full
40-bit width of the A0 or A1 registers.

The processor supports two modes of format adjustment: the fractional
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of
the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-5 on page 2-18.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-6 on page 2-19.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register
file. For more information, see “Multiplier Instruction Summary” on page
2-38.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude
or binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Data Types

2-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-53.

Arithmetic Formats Summary
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the
arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Binary string Same as operands

Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Addition 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 explicitly signed or
unsigned

32.0 not shifted

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-17

Computational Units

Using Multiplier Integer and Fractional Formats
For multiply-and-accumulate functions, the processor provides two
choices—fractional arithmetic for fractional numbers (1.15) and integer
arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to accu-
mulator A0 or A1. For example, bit 31 of the product lines up with bit 32
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1
of A0 (which is bit 1 of A0.W). The Least Significant Bit (LSB) is zero
filled. The fractional multiplier result format appears in Figure 2-5.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or A1. Figure 2-6 shows the integer mode result
placement.

Multiplication/Addition 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Subtraction 16.0 explicitly signed or
unsigned

32.0 not shifted

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands

Table 2-5. Multiplier Arithmetic Integer Modes Formats (Cont’d)

Operation Operand Formats Result Formats

Data Types

2-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or A1 register to produce the final
40-bit result.

Figure 2-5. Fractional Multiplier Results Format

31 31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN,
7 BITS MULTIPLIER P OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-19

Computational Units

Rounding Multiplier Results
On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N – M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

For most algorithms, unbiased rounding is preferred.

Figure 2-6. Integer Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 1 1 1 167 6 5 4 3 2 1 0

P SIGN,
8 BITS MULTIPLIER P OUTPUT

A0.X A0.W

Data Types

2-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called unbiased rounding.

Unbiased rounding uses the ALU’s capability of rounding the 40-bit result
at the boundary between bit 15 and bit 16. Rounding can be specified as
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/A1.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect
of rounding odd A0.L/A1.L values upward and even values downward,
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-7 shows a typical rounding operation for A0; the
example also applies for A1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-21

Computational Units

The compensation to avoid net bias becomes visible when all lower 15 bits
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7.

In Figure 2-8, A0 bit 16 is forced to 0. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

Figure 2-7. Typical Unbiased Multiplier Rounding

1 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 0 1X X X X X X X X

A0.X A0.W

1

0 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

Data Types

2-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.

Figure 2-8. Avoiding Net Bias in Unbiased Multiplier Rounding

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

A0.X A0.W

1

ADD 1 AND CARRY:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

ROUNDED VALUE:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 1X X X X X X X X

A0 BIT 16 = 1:

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-23

Computational Units

The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-20.

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see
Table 2-7.

Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding (for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines).

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N – M lower bits. This process is known as trun-
cation and results in a relatively large bias. Instructions that do not
support rounding revert to truncation. The RND_MOD bit in ASTAT has no
effect on truncation.

Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000

0x00 0001 8000 0x00 0002 0000 0x00 0002 0000

0x00 0000 8001 0x00 0001 0001 0x00 0001 0001

0x00 0001 8001 0x00 0002 0001 0x00 0002 0001

0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF

0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

Using Computational Status

2-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Special Rounding Instructions
The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 round at bit 12, bit 16, and bit 20, respectively,
regardless of the state of the RND_MOD bit in ASTAT.

For example:

R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.

R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12,
depositing the result in a half word.

R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20,
depositing the result in a half word.

Using Computational Status
The multiplier, ALU, and shifter update the overflow and other status
flags in the processor’s Arithmetic Status (ASTAT) register. To use status
conditions from computations in program sequencing, use conditional
instructions to test the CC flag in the ASTAT register after the instruction
executes. This method permits monitoring each instruction’s outcome.
The ASTAT register is a 32-bit register, with some bits reserved. To ensure
compatibility with future implementations, writes to this register should
write back the values read from these reserved bits.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-25

Computational Units

ASTAT Register
Figure 2-9 describes the Arithmetic Status (ASTAT) register. The processor
updates the status bits in ASTAT, indicating the status of the most recent
ALU, multiplier, or shifter operation.

Figure 2-9. Arithmetic Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0

VS (Sticky Dreg Overflow)

00 0 0 0 0 0 0 0 0 0 0 0

Arithmetic Status Register (ASTAT)

0 - Last result written to A0
has not overflowed

1 - Last result written to A0
has overflowed

AV0 (A0 Overflow)

Reset = 0x0000 0000

Sticky version of AV0

AV0S (Sticky A0 Overflow)

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

AV1 (A1 Overflow)

Sticky version of AV1
AV1S (Sticky A1 Overflow)

0 - Last result written from
ALU to Data Register File
register has not overflowed

1 - Last result has overflowed

V (Dreg Overflow)

Sticky version of V

AN (Negative Result)

AQ (Quotient)

AZ (Zero Result)

RND_MOD (Rounding Mode)

AC1 (ALU1 Carry)

0 - Operation in ALU1 does not
generate a carry

1 - Operation generates a carry

AC0 (ALU0 Carry)

0 - Unbiased rounding
1 - Biased rounding

0 - Result from last ALU0,
ALU1, or shifter operation
is not zero

1 - Result is zero

0 - Result from last ALU0,
ALU1, or shifter operation
is not negative

1 - Result is negative

Multipurpose flag, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.

Quotient bit

CC (Condition Code)

0 - Operation in ALU0 does not
generate a carry

1 - Operation generates a
carry

AC0_COPY

Identical to bit 12

V_COPY

Identical to bit 24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Arithmetic Logic Unit (ALU)

2-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results.
ALU instructions include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulation and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR, Negate

• Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations
Primary ALU operations occur on ALU0, while parallel operations occur
on ALU1, which performs a subset of ALU0 operations.

Table 2-8 describes the possible inputs and outputs of each ALU.

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

Table 2-8. Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier
with a 40-bit accumulation result

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-27

Computational Units

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALU0 is used for this operation, because it is the primary resource for
ALU operations.

For example:

R3.H = R1.H + R2.L (NS) ;

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2
low half) and deposits the result in R3.H (R3 high half) with no saturation.

Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALU0 is used for
this operation, because it is the primary resource for ALU operations.

For example:

R3 = R1 +|– R2 (S) ;

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1
high half) and deposits the result in R3.H (R3 high half) with saturation.

The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3
low half) with saturation (see Figure 2-10 on page 2-39).

Arithmetic Logic Unit (ALU)

2-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALU0 and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit
results that are deposited into two arbitrary, 32-bit destination registers.
Both ALU0 and ALU1 are used for this operation. Because there are only
two 32-bit data paths from the Data Register File to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALU0.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:

R3 = R0 +|+ R1, R2 = R0 –|– R1 (S) ;

performs four operations:

• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of R0.H (R0 high half) and deposits the result in R3.H with
saturation.

• Adds R1.L to R0.L and deposits the result in R3.L with saturation.

• Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (R0 high half) and deposits the result in R2.H
with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = R0.H + R1.H (S) ;

R3.L = R0.L + R1.L (S) ;

R2.H = R0.H – R1.H (S) ;

R2.L = R0.L – R1.L (S) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-29

Computational Units

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALU0 is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register
File, operands may be sourced and deposited into the Pointer Register
File, consisting of the eight registers P[5:0], SP, FP.

Instructions may not intermingle Pointer registers with Data
registers.

For example:

R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

R3 = R1 + R2 (S) ;

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALU0 and ALU1, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALU0 and ALU1 are used for this
operation. Because only two 32-bit data paths go from the Data Register
File to the arithmetic units, the same two 32-bit input registers are pre-
sented to ALU0 and ALU1.

Arithmetic Logic Unit (ALU)

2-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

For example:

R3 = R1 + R2, R4 = R1 – R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and A1
registers.

For example:

R3 = A0 + A1, R4 = A0 – A1 (S) ;

transfers to the result registers two 32-bit, saturated, sum and difference
values of the ALU registers.

ALU Instruction Summary
Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status flags,
see Chapter 15, “Arithmetic Operations.”

In Table 2-9, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo_hi denotes any 16-bit register half in any Data Register
File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• imm7 denotes a signed, 7-bit wide, immediate value.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-31

Computational Units

• An denotes either ALU Result register A0 or A1.

• DIVS denotes a Divide Sign primitive.

• DIVQ denotes a Divide Quotient primitive.

• MAX denotes the maximum, or most positive, value of the source
registers.

• MIN denotes the minimum value of the source registers.

• ABS denotes the absolute value of the upper and lower halves of a
single 32-bit register.

• RND denotes rounding a half word.

• RND12 denotes saturating the result of an addition or subtraction
and rounding the result on bit 12.

• RND20 denotes saturating the result of an addition or subtraction
and rounding the result on bit 20.

• SIGNBITS denotes the number of sign bits in a number, minus
one.

• EXPADJ denotes the lesser of the number of sign bits in a number
minus one, and a threshold value.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

• d indicates AQ contains the dividend MSB Exclusive-OR divisor
MSB.

Arithmetic Logic Unit (ALU)

2-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Dreg = Dreg + Dreg ; * * * – – * –

Dreg = Dreg – Dreg (S) ; * * * – – * –

Dreg = Dreg + Dreg,
Dreg = Dreg – Dreg ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi +
Dreg_lo_hi ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi –
Dreg_lo_hi (S) ;

* * * – – * –

Dreg = Dreg +|+ Dreg ; * * * – – * –

Dreg = Dreg +|– Dreg ; * * * – – * –

Dreg = Dreg –|+ Dreg ; * * * – – * –

Dreg = Dreg –|– Dreg ; * * * – – * –

Dreg = Dreg +|+Dreg,
Dreg = Dreg –|– Dreg ;

* * – – – * –

Dreg = Dreg +|– Dreg,
Dreg = Dreg –|+ Dreg ;

* * – – – * –

Dreg = An + An,
Dreg = An – An ;

* * * – – * –

Dreg += imm7 ; * * * – – * –

Dreg = (A0 += A1) ; * * * * – * –

Dreg_lo_hi = (A0 += A1) ; * * * * – * –

A0 += A1 ; * * * * – – –

A0 –= A1 ; * * * * – – –

DIVS (Dreg, Dreg) ; * * * * – – d

DIVQ (Dreg, Dreg) ; * * * * – – d

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-33

Computational Units

Dreg = MAX (Dreg, Dreg)
(V) ;

* * – – – **/– –

Dreg = MIN (Dreg, Dreg)
(V) ;

* * – – – **/– –

Dreg = ABS Dreg (V) ; * ** – – – * –

An = ABS An ; * ** – * * * –

An = ABS An,
An = ABS An ;

* ** – * * * –

An = –An ; * * * * * * –

An = –An, An =– An ; * * * * * * –

An = An (S) ; * * – * * – –

An = An (S), An = An (S) ; * * – * * – –

Dreg_lo_hi = Dreg (RND) ; * * – – – * –

Dreg_lo_hi = Dreg + Dreg
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg + Dreg
(RND20) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg
(RND20) ;

* * – – – * –

Dreg_lo = SIGNBITS Dreg ; – – – – – – –

Dreg_lo = SIGNBITS
Dreg_lo_hi ;

– – – – – – –

Dreg_lo = SIGNBITS An ; – – – – – – –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Arithmetic Logic Unit (ALU)

2-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ALU Division Support Features
The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in Chapter 15, “Arithmetic Operations.”

Dreg_lo = EXPADJ (Dreg,
Dreg_lo) (V) ;

– – – – – – –

Dreg_lo = EXPADJ
(Dreg_lo_hi, Dreg_lo);

– – – – – – –

Dreg = Dreg & Dreg ; * * ** – – **/– –

Dreg = ~ Dreg ; * * ** – – **/– –

Dreg = Dreg | Dreg ; * * ** – – **/– –

Dreg = Dreg ^ Dreg ; * * ** – – **/– –

Dreg =– Dreg ; * * * – – * –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-35

Computational Units

Special SIMD Video ALU Operations
Four 8-bit Video ALUs enable the processor to process video information
with high efficiency. Each Video ALU instruction may take from one to
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs
are presented to the Video ALUs in two 32-bit words from the Data Reg-
ister File. The possible operations include:

• Quad 8-Bit Add or Subtract

• Quad 8-Bit Average

• Quad 8-Bit Pack or Unpack

• Quad 8-Bit Subtract-Absolute-Accumulate

• Byte Align

For more information about the operation of these instructions, see Chap-
ter 18, “Video Pixel Operations.”

Multiply Accumulators (Multipliers)
The two multipliers (MAC0 and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate
operations are available with either cumulative addition or cumulative
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

Multiply Accumulators (Multipliers)

2-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

• Multiplication

• Multiply and accumulate with addition, rounding optional

• Multiply and accumulate with subtraction, rounding optional

• Dual versions of the above

Multiplier Operation
Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any Data registers in the Data Register File. Each multiplier can
accumulate results in its Accumulator register, A1 or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MAC0, both inputs are treated as
signed or unsigned. In MAC1, there is a mixed-mode option.

If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit
correction. Multiplier instruction options specify the data format of the
inputs. See “Multiplier Instruction Options” on page 2-40 for more
information.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-37

Computational Units

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-10 on page 2-42, each multiplier has a dedicated
accumulator, A0 or A1. Each Accumulator register is divided into three sec-
tions—A0.L/A1.L (bits 15:0), A0.H/A1.H (bits 31:16), and A0.X/A1.X (bits
39:32).

When the multiplier writes to its result Accumulator registers, the 32-bit
result is deposited into the lower bits of the combined Accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register
(A0.X/A1.X).

Multiplier output can be deposited not only in the A0 or A1 registers, but
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation
operations work as follows.

• Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result.

For the IH option, the rounded result is obtained by adding 0x8000
to the accumulator (for MAC) or multiply result (for mult) and
then saturating to 32-bits. For more information, see “Rounding
Multiplier Results” on page 2-19.

Multiply Accumulators (Multipliers)

2-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• If an overflow or underflow has occurred, the saturate operation
sets the specified Result register to the maximum positive or nega-
tive value. For more information, see the following section.

Saturating Multiplier Results on Overflow
The following bits in ASTAT indicate multiplier overflow status:

• Bit 16 (AV0) and bit 18 (AV1) record overflow condition (whether
the result has overflowed 32 bits) for the A0 and A1 accumulators,
respectively.

 If the bit is cleared (=0), no overflow or underflow has occurred. If
the bit is set (=1), an overflow or underflow has occurred. The AV0S
and AV1S bits are sticky bits.

• Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the
accumulator result to a register.

Multiplier Instruction Summary
Table 2-10 lists the multiplier instructions. For more information about
assembly language syntax and the effect of multiplier instructions on the
status flags, see Chapter 15, “Arithmetic Operations.”

In Table 2-10, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo_hi denotes any 16-bit register half in any Data Register
File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-39

Computational Units

• An denotes either MAC Accumulator register A0 or A1.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• – Indicates no effect.

Multiplier instruction options are described on page 2-40.

Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Flags

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg = Dreg_lo_hi * Dreg_lo_hi ; – – *

An = Dreg_lo_hi * Dreg_lo_hi ; * * –

An += Dreg_lo_hi * Dreg_lo_hi ; * * –

An –= Dreg_lo_hi * Dreg_lo_hi ; * * –

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg *= Dreg ; – – –

Multiply Accumulators (Multipliers)

2-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Chapter 15, “Arithmetic Operations.”

default No option; input data is signed fraction.

(IS) Input data operands are signed integer. No shift
correction is made.

(FU) Input data operands are unsigned fraction. No shift
correction is made.

(IU) Input data operands are unsigned integer. No shift
correction is made.

(T) Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

(TFU) Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

(ISS2) If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, Accumulator
contents are scaled (multiplied x2 by a one-place
shift-left). If scaling produces a signed value larger
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

If multiplying and accumulating to a half register:

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-41

Computational Units

When copying the lower 16 bits to the destination
half register, the Accumulator contents are scaled. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the
Accumulator are rounded, and then copied into the
destination half register.

(W32) Input data operands are signed fraction with no
extension bits in the Accumulators at 32 bits.
Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit Accu-
mulators. For this option only, this special case
applies: 0x8000 x 0x8000 = 0x7FFF.

(M) Operation uses mixed-multiply mode. Valid only
for MAC1 versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction. Operand one is signed;
operand two is unsigned. MAC0 performs an
unmixed multiply on signed fractions by default, or
another format as specified. That is, MAC0 exe-
cutes the specified signed/signed or unsigned/
unsigned multiplication. The (M) option can be
used alone or in conjunction with one other format
option.

Multiply Accumulators (Multipliers)

2-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiplier Data Flow Details
Figure 2-10 shows the Register files and ALUs, along with the multiplier/
accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with
four possible input operand combinations. The two 32-bit words can con-

Figure 2-10. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b 32b32b

32b

32b

 OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-43

Computational Units

tain the same register information, giving the options for squaring and
multiplying the high half and low half of the same register. Figure 2-11
show these possible combinations.

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the Accumulator Result
register or pass the new product directly to the Data Register File Results
register. For results, the A0 and A1 registers are 40 bits wide. Each of these
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0.X, and
A1.X.

Figure 2-11. Four Possible Combinations of MAC Operations

31 31

Rm

Rp

39 39

MAC0 MAC0

31

39

MAC0

31

39

MAC0

A0

Rm

Rp

A0

Rm

Rp

A0

Rm

Rp

A0

A B

C D

Multiply Accumulators (Multipliers)

2-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

For example:

A1 += R3.H * R4.H ;

In this instruction, the MAC1 multiplier/accumulator performs a multiply
and accumulates the result with the previous results in the A1
Accumulator.

Multiply Without Accumulate
The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
Data Register File or the Accumulator register. The destination register
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MAC0 is used; if it is a high half, then MAC1 is used. For a 32-bit desti-
nation register, either MAC0 or MAC1 is used.

If the destination register is 16 bits, then the word that is extracted from
the multiplier depends on the data type of the input.

• If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-12).

• If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the
resultant 16-bit word for the data type chosen (see Figure 2-13).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-45

Computational Units

For example, this instruction uses fractional, unsigned operands:

R0.L = R1.L * R2.L (FU) ;

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MAC0. This
instruction uses unsigned integer operands:

R0.H = R2.H * R3.H (IU) ;

The instruction deposits the lower 16 bits of the multiply answer with any
required saturation into the high half of R0, using MAC1.

R0 = R1.L * R2.L ;

Regardless of operand type, the preceding operation deposits 32 bits of the
multiplier answer with saturation into R0, using MAC0.

Figure 2-12. Multiplication of Fractional Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXXDestination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

Multiply Accumulators (Multipliers)

2-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Special 32-Bit Integer MAC Instruction
The processor supports a multicycle 32-bit MAC instruction:

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.

The instruction takes multiple cycles to execute. For more information
about the exact operation of this instruction, refer to Chapter 15, “Arith-
metic Operations.” This macro function is interruptable and does not
modify the data in either Accumulator register A0 or A1.

Figure 2-13. Multiplication of Integer Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXXDestination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-47

Computational Units

Dual MAC Operations
The processor has two 16-bit MACs. Both MACs can be used in the same
operation to double the MAC throughput. The same two 32-bit input
registers are offered to each MAC unit, providing each with four possible
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store
vectors of samples in the four input operands and perform vector
computations.

An example of a dual multiply and accumulate instruction is

A1 += R1.H * R2.L, A0 += R1.L * R2.H ;

This instruction represents two multiply and accumulate operations.

• In one operation (MAC1) the high half of R1 is multiplied by the
low half of R2 and added to the contents of the A1 Accumulator.

• In the second operation (MAC0) the low half of R1 is multiplied by
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:

R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit Accumulator is packed into a 16-bit half
register. The result from MAC1 must be transferred to a high half of a
destination register and the result from MAC0 must be transferred to the
low half of the same destination register.

Barrel Shifter (Shifter)

2-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The operand type determines the correct bits to extract from the Accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-44.

R3 = (A1 += R1.H * R2.L), R2 = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit Accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:0], R[3:2], R[5:4],
R[7:6]).

R3.H = (A1 += R1.H * R2.L), A0 += R1.L * R2.L ;

This instruction is an example of one Accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit
inputs, yielding a 16-, 32-, or 40-bit output. These functions include
arithmetic shift, logical shift, rotate, and various bit test, set, pack,
unpack, and exponent detection functions. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation.

Shifter Operations
The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT,
<<, and >> instructions represent the logical shift.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-49

Computational Units

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values (as would occur in many DSP algorithms) can
use the instructions ASHIFT and LSHIFT. These are typically three-operand
instructions.

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter related instructions, see “Shifter
Instruction Summary” on page 2-53.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.

The following example shows the input value downshifted.

R0 contains 0000 B6A3 ;

R0 >>= 0x04 ;

results in

R0 contains 0000 0B6A ;

Barrel Shifter (Shifter)

2-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R0 <<= 0x04 ;

results in

R0 contains 000B 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than or equal to 32, then the result is either 0 or –1.

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R2 contains 0000 0004 ;

R0 <<= R2 ;

results in

R0 contains 000B 6A30 ;

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the
result in a destination register.

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-51

Computational Units

The following example shows the input value downshifted.

R0 contains 0000 B6A3 ;

R1 = R0 >> 0x04 ;

results in

R1 contains 0000 0B6A ;

The following example shows the input value upshifted.

R0.L contains B6A3 ;

R1.H = R0.L << 0x04 ;

results in

R1.H contains 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. When a register
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift
value is always found in the low half of a register (Rn.L). The bottom six
bits of Rn.L are masked off and used as the shift value.

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R2.L contains 0004 ;

R1 = R0 ASHIFT by R2.L ;

results in

R1 contains 000B 6A30 ;

Barrel Shifter (Shifter)

2-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see
“Condition Code Flag” on page 4-18.

R0 contains ABCD EF12 ;

R2.L contains 0004 ;

R1 = R0 ROT by R2.L ;

results in

R1 contains BCDE F125 ;

Note the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

The following examples show a variety of operations.

BITCLR (R0, 6) ;

BITSET (R2, 9) ;

BITTGL (R3, 2) ;

CC = BITTST (R3, 0) ;

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.
In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-53

Computational Units

Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source.

Shifter Instruction Summary
Table 2-11 lists the shifter instructions. For more information about
assembly language syntax and the effect of shifter instructions on the sta-
tus flags, see Chapter 14, “Shift/Rotate Operations.”

In Table 2-11, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• * 0 Indicates versions of the instruction that send results to Accu-
mulator A0 set or clear AV0.

• * 1 Indicates versions of the instruction that send results to Accu-
mulator A1 set or clear AV1.

• ** Indicates the flag is cleared.

• *** Indicates CC contains the latest value shifted into it.

• – Indicates no effect.

Barrel Shifter (Shifter)

2-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 2-11. Shifter Instruction Summary

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

BITCLR (Dreg, uimm5) ; * * ** – – – **/–

BITSET (Dreg, uimm5) ; ** * ** – – – **/–

BITTGL (Dreg, uimm5) ; * * ** – – – **/–

CC =
BITTST (Dreg, uimm5) ;

– – – – – * –

CC =
!BITTST (Dreg, uimm5) ;

– – – – – * –

Dreg =
DEPOSIT (Dreg, Dreg) ;

* * ** – – – **/–

Dreg =
EXTRACT (Dreg, Dreg) ;

* * ** – – – **/–

BITMUX (Dreg, Dreg, A0) ; – – – – – – –

Dreg_lo = ONES Dreg ; – – – – – – –

Dreg = PACK (Dreg_lo_hi,
Dreg_lo_hi);

– – – – – – –

Dreg >>>= uimm5 ; * * – – – – **/–

Dreg >>= uimm5 ; * * – – – – **/–

Dreg <<= uimm5 ; * * – – – – **/–

Dreg = Dreg >>> uimm5 ; * * – – – – **/–

Dreg = Dreg >> uimm5 ; * * – – – – **/–

Dreg = Dreg << uimm5 ; * * – – – – *

Dreg = Dreg >>> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg >> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg << uimm4 (V) ; * * – – – – *

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 2-55

Computational Units

An = An >>> uimm5 ; * * – ** 0/
–

** 1/– – –

An = An >> uimm5 ; * * – ** 0/
–

** 1/– – –

An = An << uimm5 ; * * – * 0 * 1 – –

Dreg_lo_hi = Dreg_lo_hi >>>
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi >>
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi <<
uimm4 ;

* * – – – – *

Dreg >>>= Dreg ; * * – – – – **/–

Dreg >>= Dreg ; * * – – – – **/–

Dreg <<= Dreg ; * * – – – – **/–

Dreg = ASHIFT Dreg BY
Dreg_lo ;

* * – – – – *

Dreg = LSHIFT Dreg BY
Dreg_lo ;

* * – – – – **/–

Dreg = ROT Dreg BY imm6 ; – – – – – *** –

Dreg = ASHIFT Dreg BY
Dreg_lo (V) ;

* * – – – – *

Dreg = LSHIFT Dreg BY
Dreg_lo (V) ;

* * – – – – **/–

Dreg_lo_hi = ASHIFT
Dreg_lo_hi BY Dreg_lo ;

* * – – – – *

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

Barrel Shifter (Shifter)

2-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Dreg_lo_hi = LSHIFT
Dreg_lo_hi BY Dreg_lo ;

* * – – – – **/–

An = An ASHIFT BY Dreg _lo ; * * – * 0 * 1 – –

An = An ROT BY imm6 ; – – – – – *** –

Dreg = (Dreg + Dreg) << 1 ; * * * – – – *

Dreg = (Dreg + Dreg) << 2 ; * * * – – – *

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-1

3 OPERATING MODES AND
STATES

The processor supports the following three processor modes:

• User mode

• Supervisor mode

• Emulation mode

Emulation and Supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and Emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, a nonmaskable interrupt (NMI), or an exception, the
processor is in Supervisor mode. When servicing an emulation event, the
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

MMRs cannot be read while the processor is in User mode.

3-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In addition, the processor supports the following two non-processing
states:

• Idle state

• Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-
tion conditions between them.

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor ≥ 0x10
but IPEND[0], IPEND[1], IPEND[2], and
IPEND[3] = 0.

Exception Supervisor ≥ 0x08
The core is processing an exception event if
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0,
IPEND[3] = 1, and IPEND[15:4] are 0’s or 1’s.

NMI Supervisor ≥ 0x04
The core is processing an NMI event if IPEND[0]
= 0, IPEND[1] = 0, IPEND[2] = 1, and
IPEND[15:2] are 0’s or 1’s.

Reset Supervisor = 0x02
As the reset state is exited, IPEND is set to 0x02,
and the reset vector runs in Supervisor mode.

Emulation Emulator = 0x01
The processor is in Emulation mode if
IPEND[0] = 1, regardless of the state of the
remaining bits IPEND[15:1].

None User = 0x00

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-3

Operating Modes and States

User Mode
The processor is in User mode when it is not in Reset or Idle state, and
when it is not servicing an interrupt, NMI, exception, or emulation event.
User mode is used to process application level code that does not require
explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. Table 3-2 lists the registers that may
be accessed in User mode.

Figure 3-1. Processor Modes and States

Interrupt
RTI,

Event

EMULATION

SUPERVISOR

IDLE

RESET

Application
Level Code

System Code,
Event Handlers

USER

Emulation

Event
Emulation

RTX, RTNException

RTE

RST Inactive

Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may
have initiated a reset. If so, exit from Reset is to Emulation.

RST
Active

IDLE
instruction

or

IDLE instruction

Wakeup

RTE

Interrupt

User Mode

3-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Protected Resources and Instructions
System resources consist of a subset of processor registers, all MMRs, and
a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFC0 0000. This region of memory is pro-
tected from User mode access. Any attempt to access MMR space in User
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue
any of the protected instructions from User mode causes an exception
event.

Table 3-2. Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES,
CYCLES2

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

RTE Return from Emulation
Causes an exception only if executed outside Emulation mode

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-5

Operating Modes and States

Protected Memory
Additional memory locations can be protected from User mode access. A
Cacheability Protection Lookaside Buffer (CPLB) entry can be created
and enabled. See “Memory Management Unit” on page 6-45 for further
information.

Entering User Mode
When coming out of reset, the processor is in Supervisor mode because it
is servicing a reset event. To enter User mode from the Reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued. The following example code
shows how to enter User mode upon reset.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from reset.

Listing 3-1. Entering User Mode from Reset

P1.L = START ; /* Point to start of user code */

P1.H = START ;

RETI = P1 ;

RTI ; /* Return from Reset Event */

START : /* Place user code here */

Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke User mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. In the

User Mode

3-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

case of an interrupt routine, if the service routine is interruptible, the
return address is stored on the stack. For this case, the address can be
found by popping the value from the stack into RETI. Once RETI has been
loaded, the RTI instruction can be issued.

Note the stack pop is optional. If the RETI register is not
pushed/popped, then the interrupt service routine becomes
non-interruptible, because the return address is not saved on the
stack.

The processor remains in User mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes Supervisor mode.

• An emulation event invokes Emulation mode.

• A reset event invokes the Reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at
Address in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt
Service Routine

RTN RETN

Emulation Service Routine RTE RETE

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-7

Operating Modes and States

Supervisor Mode
The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources, unless a CPLB has been con-
figured and enabled. See “Memory Management Unit” on page 6-45 for a
further description. Only Supervisor mode can use the register alias USP,
which references the User Stack Pointer in memory. This register alias is
necessary because in Supervisor mode, SP refers to the kernel stack pointer
rather than to the user stack pointer.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to
Supervisor mode where it remains until an emulation event or Return
instruction occurs to change the mode. Before the Return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments
For non-OS environments, application code should remain in Supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can pre-empt this activity. Therefore,
lower priority events cannot be processed.

One way of keeping the processor in Supervisor mode and still allowing
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in
“Events and Interrupts” on page 4-29. After the low priority interrupt has
been forced using the RAISE 15 instruction, RETI can be loaded with a
return address that points to user code that can execute until IVG15 is
issued. After RETI has been loaded, the RTI instruction can be issued to
return from the reset event.

Supervisor Mode

3-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The interrupt handler for IVG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

P0.L = LO(EVT15) ; /* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15) ;

P1.L = START ; /* Point to start of User code */

P1.H = START ;

[P0] = P1 ; /* Place the address of start code in IVG15 of EVT

*/

P0.L = LO(IMASK) ;

R0 = [P0] ;

R1.L = EVT_IVG15 & 0xFFFF ;

R0 = R0 | R1 ;

[P0] = R0 ; /* Set (enable) IVG15 bit in Interrupt Mask Register

*/

RAISE 15 ; /* Invoke IVG15 interrupt */

P0.L = WAIT_HERE ;

P0.H = WAIT_HERE ;

RETI = P0 ; /* RETI loaded with return address */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-9

Operating Modes and States

RTI ; /* Return from Reset Event */

WAIT_HERE : /* Wait here till IVG15 interrupt is serviced */

JUMP WAIT_HERE ;

START: /* IVG15 vectors here */

[--SP] = RETI ; /* Enables interrupts and saves return address

to stack */

Emulation Mode
The processor enters Emulation mode if Emulation mode is enabled and
either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service
routine executes an RTE instruction. If no interrupts are pending when the
RTE instruction executes, the processor switches to User mode. Otherwise,
the processor switches to Supervisor mode to service the interrupt.

Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State
Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential IDLE instruction. The
IDLE instruction notifies the processor hardware that the Idle state is
requested.

Reset State

3-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The processor remains in the Idle state until a peripheral or external
device, such as a SPORT or the Real-Time Clock (RTC), generates an
interrupt that requires servicing.

In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables
its clocks. Since interrupts are disabled, Idle state can be terminated only
by asserting a WAKEUP signal. For more information, see “SIC_IWR Regis-
ter” on page 4-34. (While not required, an interrupt could also be enabled
in conjunction with the WAKEUP signal.)

When the WAKEUP signal is asserted, the processor wakes up, and the STI
instruction enables interrupts again.

Example Code for Transition to Idle State
To transition to the Idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

Reset State
Reset state initializes the processor logic. During Reset state, application
programs and the operating system do not execute. Clocks are stopped
while in Reset state.

The processor remains in the Reset state as long as external logic asserts
the external RESET signal. Upon deassertion, the processor completes the
reset sequence and switches to Supervisor mode, where it executes code
found at the reset event vector.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-11

Operating Modes and States

Software in Supervisor or Emulation mode can invoke the Reset state
without involving the external RESET signal. This can be done by issuing
the Reset version of the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

Table 3-5. Processor State Upon Reset

Item Description of Reset State

Core

Operating Mode Supervisor mode in reset event, clocks stopped

Rounding Mode Unbiased rounding

Cycle Counters Disabled, zero

DAG Registers (I, L, B, M) Random values (must be cleared at initialization)

Data and Address Registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 Instruction Memory SRAM (cache disabled)

L1 Data Memory SRAM (cache disabled)

Cache Validity Bits Invalid

System

Booting Methods Determined by the values of BMODE pins at reset

MSEL Clock Frequency Reset value = 10

PLL Bypass Mode Disabled

VCO/Core Clock Ratio Reset value = 1

VCO/System Clock Ratio Reset value = 5

Peripheral Clocks Disabled

System Reset and Powerup

3-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

System Reset and Powerup
Table 3-6 describes the five types of resets. Note all resets, except System
Software, reset the core.

Table 3-6. Resets

Reset Source Result

Hardware Reset The RESET pin causes a
hardware reset.

Resets both the core and the peripherals,
including the Dynamic Power Management
Controller (DPMC).
Resets the No Boot on Software Reset bit in
SYSCR. For more information, see “SYSCR
Register” on page 3-14.

System Software
Reset

Writing b#111 to bits [2:0]
in the system MMR
SWRST at address 0xFFC0
0100 causes a System Soft-
ware reset.

Resets only the peripherals, excluding the RTC
(Real-Time Clock) block and most of the
DPMC. The DPMC resets only the No Boot
on Software Reset bit in SYSCR. Does not reset
the core. Does not initiate a boot sequence.

Watchdog
Timer Reset

Programming the watchdog
timer appropriately causes a
Watchdog Timer reset.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The Software Reset register (SWRST) can be
read to determine whether the reset source was
the watchdog timer.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-13

Operating Modes and States

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the Boot mode
sequence configured by the BMODE state.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either VDD or VSS. The pins and the corresponding bits
in SYSCR configure the Boot mode that is employed after hardware reset or

Core Double-
Fault Reset

If the core enters a dou-
ble-fault state, a reset can be
caused by unmasking the
Core Double Fault Reset
Mask bit in the System
Interrupt Controller Inter-
rupt Mask register
(SIC_IMASK).

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The SWRST register can be read to determine
whether the reset source was Core Double
Fault.

Core-Only Soft-
ware Reset

This reset is caused by exe-
cuting a RAISE1 instruction
or by setting the Software
Reset (SYSRST) bit in the
core Debug Control register
(DBGCTL) via emulation
software through the JTAG
port. The DBGCTL regis-
ter is not visible to the mem-
ory map.

Resets only the core.
The peripherals do not recognize this reset.

Table 3-6. Resets (Cont’d)

Reset Source Result

System Reset and Powerup

3-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

System Software reset. See “Reset Interrupt” on page 4-46, and
Table 4-11, “Events That Cause Exceptions,” on page 4-63 for further
information.

SYSCR Register
The values sensed from the BMODE pins are latched into the System Reset
Configuration register (SYSCR) upon the deassertion of the RESET pin. The
values are made available for software access and modification after the
hardware reset sequence. Software can modify only the No Boot on Soft-
ware Reset bit.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR. Refer to the Reset and Booting chapter of your
Blackfin Processor Hardware Reference for details.

Software Resets and Watchdog Timer
A software reset may be initiated in three ways:

• By the watchdog timer, if appropriately configured

• By setting the System Software Reset field in the Software Reset
register (see Figure 3-2 on page 3-16)

• By the RAISE1 instruction

The watchdog timer resets both the core and the peripherals. A System
Software reset results in a reset of the peripherals without resetting the
core and without initiating a booting sequence.

The System Software reset must be performed while executing
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the Sys-
tem Software reset sequence has been read into the cache.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-15

Operating Modes and States

After either the watchdog or System Software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by the watchdog timer, the processors transitions
into the Boot mode sequence. The Boot mode is configured by the state of
the BMODE and the No Boot on Software Reset control bits.

If the No Boot on Software Reset bit in SYSCR is cleared, the reset
sequence is determined by the BMODE control bits.

SWRST Register
A software reset can be initiated by setting the System Software Reset field
in the Software Reset register (SWRST). Bit 15 indicates whether a software
reset has occurred since the last time SWRST was read. Bit 14 and Bit 13,
respectively, indicate whether the Software Watchdog Timer or a Core
Double Fault has generated a software reset. Bits [15:13] are read-only
and cleared when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#00 and the No Boot on Software
Reset bit in SYSCR is set, the processor starts executing from the start of
on-chip L1 memory. In this configuration, the core begins fetching
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions
from address 0x2000 0000 (the beginning of ASYNC Bank 0).

System Reset and Powerup

3-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Core-Only Software Reset
A Core-Only Software reset is initiated by executing the RAISE 1 instruc-
tion or by setting the Software Reset (SYSRST) bit in the core Debug
Control register (DBGCTL) via emulation software through the JTAG port.
(DBGCTL is not visible to the memory map.)

A Core-Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,
depending on the system activity during the reset period.

Core and System Reset
To perform a system and core reset, use the code sequence shown in
Listing 3-4.

Figure 3-2. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

System Software Reset
 0x0 – 0x6 - No SW reset
 0x7 - Triggers SW reset

Software Reset
Status - RO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Core Double Fault Reset - RO
 0 - SW reset not generated by double fault
 1 - SW reset generated by double fault

Software Watchdog Timer-
Source - RO
 0 - SW reset not generated by

watchdog
 1 - SW reset generated by

watchdog

Core Double Fault Reset
Enable

0xFFC0 0100

 0 - No SW reset since last
SWRST read

 1 - SW reset occurred since
last SWRST read 0 - No reset caused by

 Core Double Fault
 1 - Reset generated upon
 Core Double Fault

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 3-17

Operating Modes and States

Listing 3-4. Core and System Reset

/* Issue soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0007 ;

W[P0] = R0 ;

SSYNC ;

/* Clear soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0000 ;

W[P0] = R0 ;

SSYNC ;

/* Core reset - forces reboot */

RAISE 1 ;

System Reset and Powerup

3-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-1

4 PROGRAM SEQUENCER

This chapter describes the Blackfin processor program sequencing and
interrupt processing modules. For information about instructions that
control program flow, see Chapter 7, “Program Flow Control.” For infor-
mation about instructions that control interrupt processing, see Chapter
16, “External Event Management.” Discussion of derivative-specific inter-
rupt sources can be found in the Hardware Reference manual for the
specific part.

Introduction
In the processor, the program sequencer controls program flow, constantly
providing the address of the next instruction to be executed by other parts
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially.

The linear flow varies occasionally when the program uses nonsequential
program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the processor to execute an instruction that is not at the
next sequential address. These structures include:

• Loops. One sequence of instructions executes several times with
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

• Jumps. Program flow transfers permanently to another part of
memory.

Introduction

4-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

• Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

Figure 4-1. Program Flow Variations

ADDRESS:N INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

LINEAR FLOW

LOOP

LOOP

N TIMES

JUMP

JUMP

…

CALL

SUBROUTINE

RTS

…

RTI

INTERRUPT

IRQ

VECTOR

IDLE

IDLE

WAITING
FOR IRQ
OR
WAKEUP

N + 1

N + 2

N + 3

N + 4

N + 5

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-3

Program Sequencer

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses
generated by the sequencer are 32-bit memory instruction addresses.

To manage events, the event controller handles interrupt and event pro-
cessing, determines whether an interrupt is masked, and generates the
appropriate event vector address.

In addition to providing data addresses, the data address generators
(DAGs) can provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Figure 4-2 shows the core Program Sequencer module and how it inter-
connects with the Core Event Controller and the System Event
Controller.

Introduction

4-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 4-2. Program Sequencing and Interrupt Processing Block Diagram

SYSTEM INTERRUPT CONTROLLER

SIC_IAR0
SIC_IAR1

SIC_IAR2

SIC_IAR3

E
V

T
15

E
V

T
14

E
V

T
13

E
V

T
12

E
V

T
11

E
V

T
10

E
V

T
9

SIC_ISR
SIC_IWR

SIC_IMASK

ILAT
IMASK

IPENDE
V

T
8

E
V

T
7

E
V

T
6

E
V

T
5

E
V

T
4

E
V

T
3

E
V

T
2

E
V

T
1

E
V

T
0

PERIPHERALS

DYNAMIC
POWER

MANAGEMENT

ADDRESS
ARITHMETIC

UNIT

L1
INSTRUCTION

MEMORY

PROGRAM
COUNTER

LOOP
COMPARATORS

FETCH
COUNTER

INSTRUCTION
DECODER

LOOP
BUFFERS

ALIGNMENT
UNIT

DEBUG
JTAG TEST

AND
EMULATION

SYSCFG
SEQSTAT

CYCLES
CYCLES2

RETS
RETI

RETX

RETN

RETE

LC0 LT0 LB0
LC1 LT1 LB1

CORE EVENT CONTROLLER

PROGRAM SEQUENCER

EMULATION
RESET

NMI

EXCEPTIONS

HARDWARE ERRORS

CORE TIMER

SCLK

CCLK

PAB 16/32

RAB 32

PREG 32

IAB 32

IDB 64

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-5

Program Sequencer

Sequencer Related Registers
Table 4-1 lists the non-memory-mapped registers within the processor
that are related to the sequencer. Except for the PC and SEQSTAT registers,
all sequencer-related registers are directly readable and writable by move
instructions, for example:

SYSCFG = R0 ;

P0 = RETI ;

Manually pushing or popping registers to or from the stack is done using
the explicit instructions:

[--SP] = Rn ; /* for push */

Rn = [SP++] ; /* for pop */

Similarly, all non-memory-mapped sequencer registers can be pushed and
popped to or from the system stack:

[--SP] = CYCLES ;

SYSCFG = [SP++] ;

However, load/store operations and immediate loads are not supported.

Introduction

4-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In addition to these central sequencer registers, there is a set of mem-
ory-mapped registers that interact closely with the program sequencer. For
information about the interrupt control registers, see “Events and Inter-
rupts” on page 4-29. Although the registers of the Core Event Controller
are memory-mapped, they still connect to the same 32-bit Register Access
Bus (RAB) and perform in the same way. Registers of the System Interrupt
Controller connect to the Peripheral Access Bus (PAB) which resides in
the SCLK domain. On some derivatives the PAB bus is 16 bits wide; on
others it is 32 bits wide. For debug and test registers see Chapter 21,
“Debug.”

Table 4-1. Non-memory-mapped Sequencer Registers

Register Name Description

SEQSTAT Sequencer Status register: See “Hardware Errors and
Exception Handling” on page 4-58.

RETX
RETN
RETI
RETE
RETS

Return Address registers: See “Events and Interrupts”
on page 4-29.
Exception Return
NMI Return
Interrupt Return
Emulation Return
Subroutine Return

LC0, LC1
LT0, LT1
LB0, LB1

Zero-Overhead Loop registers: See “Hardware Loops”
on page 4-21.:
Loop Counters
Loop Tops
Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack
Pointers” on page 5-6

SYSCFG System Configuration register: See “SYSCFG Register”
on page 21-26

CYCLES, CYCLES2 Cycle Counters: See “CYCLES and CYCLES2 Regis-
ters” on page 21-24

PC Program Counter. The PC is an embedded register. It is
not directly accessible with program instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-7

Program Sequencer

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from memory in sequential order by incrementing the look-
ahead address.

The processor has a ten-stage instruction pipeline, shown in Table 4-2.

Table 4-2. Stages of Instruction Pipeline

Pipeline Stage Description

Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of
instruction cache

Instruction Fetch 2 (IF2) Wait for instruction data

Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start compare tag of
data cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1) Read data from LD0 and LD1 bus, start multiply and video
instructions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, etc.)

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also
referred to as the “commit” stage)

Instruction Pipeline

4-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 4-3 shows a diagram of the pipeline.

The instruction fetch and branch logic generates 32-bit fetch addresses for
the Instruction Memory Unit. The Instruction Alignment Unit returns
instructions and their width information at the end of the IF3 stage.

For each instruction type (16, 32, or 64 bits), the Instruction Alignment
Unit ensures that the alignment buffers have enough valid instructions to
be able to provide an instruction every cycle. Since the instructions can be
16, 32, or 64 bits wide, the Instruction Alignment Unit may not need to
fetch an instruction from the cache every cycle. For example, for a series of
16-bit instructions, the Instruction Alignment Unit gets an instruction
from the Instruction Memory Unit once in four cycles. The alignment
logic requests the next instruction address based on the status of the align-
ment buffers. The sequencer responds by generating the next fetch address
in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. The sequencer always
increments the previous fetch address by 8 (the next 8 bytes). If a change
of flow occurs, such as a branch or an interrupt, data in the Instruction
Alignment Unit is invalidated. The sequencer decodes and distributes
instruction data to the appropriate locations such as the register file and
data memory.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs,
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit Data Register File.

Figure 4-3. Processor Pipeline

Instr
Fetch
1

Instr
Fetch
2

Instr
Decode

Addr
Calc

Ex1 WBEx2Instr
Fetch
3

Instr
Fetch
1

Instr
Fetch
2

Instr
Decode

Addr
Calc

Data
Fetch
1

Data
Fetch
2

Ex1 WBEx2Instr
Fetch
3

Data
Fetch
1

Data
Fetch
2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-9

Program Sequencer

Register file reads occur in the DF2 pipeline stage (for operands).

Register file writes occur in the WB stage (for stores). The multipliers and
the video units are active in the EX1 stage, and the ALUs and shifter are
active in the EX2 stage. The accumulators are written at the end of the
EX2 stage.

The program sequencer also controls stalling and invalidating the instruc-
tions in the pipeline. Multi-cycle instruction stalls occur between the IF3
and DEC stages. DAG and sequencer stalls occur between the DEC and
AC stages. Computation and register file stalls occur between the DF2 and
EX1 stages. Data memory stalls occur between the EX1 and EX2 stages.

The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being
issued from the decoder over several clock cycles. For example, the Push
Multiple or Pop Multiple instruction can push or pop from 1 to 14 DREGS
and/or PREGS, and the instruction remains in the decode stage for a num-
ber of clock cycles equal to the number of registers being accessed.

Multi-issue instructions are 64 bits in length and consist of one 32-bit
instruction and two 16-bit instructions. All three instructions execute in
the same amount of time as the slowest of the three.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Branches

4-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Branches
One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Chapter 7,
“Program Flow Control.” Briefly:

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically loads the return address into the RETS register.
The return address is the next sequential address after the CALL
instruction. This push makes the address available for the CALL
instruction’s matching return instruction, allowing easy return
from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored in the RETS register (for subrou-
tine returns). The types of return instructions include: return from
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from
nonmaskable interrupt (RTN). Each return type has its own register
for holding the return address.

• A JUMP instruction can be conditional, depending on the status of
the CC bit of the ASTAT register. These instructions are immediate
and may not be delayed. The program sequencer can evaluate the
CC status bit to decide whether to execute a branch. If no condition
is specified, the branch is always taken.

• Conditional JUMP instructions use static branch prediction to
reduce the branch latency caused by the length of the pipeline.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-11

Program Sequencer

Branches can be direct or indirect. A direct branch address is determined
solely by the instruction word (for example, JUMP 0x30), while an indirect
branch gets its address from the contents of a DAG register (for example,
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and
CALL can be absolute or PC-relative.

Direct Short and Long Jumps
The sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit 0 must be a 0). The 13-bit value
gives an effective dynamic range of –4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit 0 must be a 0). The 25-bit value gives
an effective dynamic range of –16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S 0xnnnn

instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L 0xnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset,
then use the instruction JUMP 0xnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP.L instruction.

Rather than hard coding jump target addresses, use symbolic addresses in
assembly source files. Symbolic addresses are called labels and are marked
by a trailing colon. See the Visual DSP++ Assembly and Preprocessor man-
ual for details.

Branches

4-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

JUMP mylabel ;

/* skip any code placed here */

mylabel:

/* continue to fetch and execute instruction here */

Direct Call
The CALL instruction is a branch instruction that copies the address of the
instruction which would have executed next (had the CALL instruction not
executed) into the RETS register. The direct CALL instruction has a 25-bit,
PC-relative offset that must be a multiple of two (bit 0 must be a 0). The
25-bit value gives an effective dynamic range of –16,777,216 to
+16,777,214 bytes. A direct CALL instruction is always a 4-byte
instruction.

Indirect Branch and Call
The indirect JUMP and CALL instructions get their destination address from
a data address generator (DAG) P-register. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next in the absence of the CALL instruction.

For example:

JUMP (P3) ;

CALL (P0) ;

To load a P-register with a symbolic target label you may use one of the
following syntax styles. The syntax may differ in various assembly tools
sets.

Modern style:

P4.H = HI(mytarget);

P4.L = LO(mytarget);

JUMP (P4);

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-13

Program Sequencer

mytarget:

/* continue here */

Legacy style:

P4.H = mytarget;

P4.L = mytarget;

JUMP (P4);

mytarget:

/* continue here */

PC-Relative Indirect Branch and Call
The PC-relative indirect JUMP and CALL instructions use the contents of a
P-register as an offset to the branch target. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next (had the CALL instruction not executed).

For example:

JUMP (PC + P3) ;

CALL (PC + P0) ;

Subroutines
Subroutines are code sequences that are invoked by a CALL instruction.
Assuming the stack pointer SP has been initialized properly, a typical sce-
nario could look like the following:

/* parent function */

R0 = 0x1234 (Z); /* pass a parameter */

CALL myfunction;

/* continue here after the call */

[P0] = R0; /* save return value */

JUMP somewhereelse;

myfunction: /* subroutine label */

Branches

4-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

[--SP] = (R7:7, P5:5); /* multiple push instruction */

P5.H = HI(myregister); /* P5 used locally */

P5.L = LO(myregister);

R7 = [P5]; /* R7 used locally */

R0 = R0 + R7; /* R0 user for parameter passing */

(R7:7, P5:5) = [SP++]; /* multiple pop instruction */

RTS; /* return from subroutine */

myfunction.end: /* closing subroutine label */

Due to the syntax of the multiple-push, multiple-pop instructions, often
the upper R- and P-registers are used for local purposes, while lower regis-
ters pass the parameters. See the “Address Arithmetic Unit” chapter for
more details on stack management.

The CALL instruction not only redirects the program flow to the myfunc-
tion routine, it also writes the return address into the RETS register. The
RETS register holds the address where program execution resumes after the
RTS instruction executes. In the example this is the location that holds the
[P0]=R0; instruction.

The return address is not passed to any stack in the background. Rather,
the RETS register functions as single-entry hardware stack. This scheme
enables “leaf functions” (subroutines that do not contain further CALL
instructions) to execute with less possible overhead, as no bus transfers
need to be performed.

If a subroutine calls other functions, it must temporarily save the content
of the RETS register explicitly. Most likely this is performed by stack oper-
ations as shown below.

/* parent function */

CALL function_a;

/* continue here after the call */

JUMP somewhereelse;

function_a: /* subroutine label */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-15

Program Sequencer

[--SP] = (R7:7, P5:5); /* optional multiple push instruction */

[--SP] = RETS; /* save RETS onto stack */

CALL function_b; /* call further subroutines */

CALL function_c;

RETS = [SP++]; /* restore RETS */

(R7:7, P5:5) = [SP++]; /* optional multiple pop instruction */

RTS; /* return from subroutine */

function_a.end: /* closing subroutine label */

function_b:

/* do something */

RTS;

function_b.end:

function_c:

/* do something else */

RTS;

function_c.end:

Stack Variables and Parameter Passing

Many subroutines require input arguments from the calling function and
need to return their results. Often, this is accomplished by project-wide
conventions, that certain core registers are used for passing arguments,
where others return the result. It is also recommended that assembly pro-
grams meet the conventions used by the C/C++ compiler. See the
VisualDSP++ C/C++ Compiler and Library Manual for details.

Extensive arguments are typically passed over the stack rather than by reg-
isters. The following example passes and returns two 32-bit arguments:

_parent:

...

R0 = 1;

R1 = 3;

[--SP] = R0;

[--SP] = R1;

Branches

4-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

CALL _sub;

R1 = [SP++]; /* R1 = 4 */

R0 = [SP++]; /* R0 = 2 */

...

_parent.end:

_sub:

[--SP] = FP; /* save frame pointer */

FP = SP; /* new frame */

[--SP] = (R7:5); /* multiple push */

R6 = [FP+4]; /* R6 = 3 */

R7 = [FP+8]; /* R7 = 1 */

R5 = R6 + R7; /* calculate anything */

R6 = R6 - R7;

[FP+4] = R5; /* R5 = 4 */

[FP+8] = R6; /* R6 = 2 */

(R7:5) = [SP++]; /* multiple pop */

FP = [SP++]; /* restore frame pointer */

RTS;

_sub.end:

Since the stack pointer SP is modified inside the subroutine for local stack
operations, the frame pointer FP is used to save the original state of SP.
Because the 32-bit frame pointer itself must be pushed onto the stack first,
the FP is four bytes off the original SP value.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-17

Program Sequencer

The Blackfin instruction set features a pair of instructions that provides
cleaner and more efficient functionality than the above example: the LINK
and UNLINK instructions. These multi-cycle instructions perform multiple
operations that can be best explained by the equivalent code sequences:

The following subroutine does the same job as the one above, but it also
saves the RETS register to enable nested subroutine calls. Therefore, the
value stored to FP is 8 bytes off the original SP value. Since no local frame
is required, the LINK instruction gets the parameter “0”.

_sub2:

LINK 0;

[--SP] = (R7:5);

R6 = [FP+8]; /* R6 = 3 */

R7 = [FP+12]; /* R7 = 1 */

R5 = R6 + R7;

R6 = R6 - R7;

[FP+8] = R5; /* R5 = 4 */

[FP+12] = R6; /* R6 = 2 */

(R7:5) = [SP++];

UNLINK;

RTS;

_sub2.end:

Table 4-3. Link and Unlink Code Sequencer

LINK n; UNLINK;

[--SP] = RETS;
[--SP] = FP;
FP = SP;
SP += -n;

SP = FP;
FP = [SP++];
RETS = [SP++];

Branches

4-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

If subroutines require local, private, and temporary variables beyond the
capabilities of core registers, it is a good idea to place these variables on the
stack as well. The LINK instruction takes a parameter that specifies the size
of the stack memory required for this local purpose. The following exam-
ple provides two local 32-bit variables and initializes them to zero when
the routine is entered:

_sub3:

LINK 8;

[--SP] = (R7:0, P5:0);

R7 = 0 (Z);

[FP-4] = R7;

[FP-8] = R7;

...

(R7:0, P5:0) = [SP++];

UNLINK;

RTS;

_sub3.end:

For more information on the LINK and UNLINK instructions, see “LINK,
UNLINK” on page 10-17.

Condition Code Flag
The processor supports a Condition Code (CC) flag bit, which is used to
resolve the direction of a branch. This flag may be accessed eight ways:

• A conditional branch is resolved by the value in CC.

• A Data register value may be copied into CC, and the value in CC
may be copied to a Data register.

• The BITTST instruction accesses the CC flag.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-19

Program Sequencer

• A status flag may be copied into CC, and the value in CC may be
copied to a status flag.

• The CC flag bit may be set to the result of a Pointer register
comparison.

• The CC flag bit may be set to the result of a Data register
comparison.

• Some shifter instructions (rotate or BXOR) use CC as a portion of the
shift operand/result.

• Test and set instructions can set and clear the CC bit.

These eight ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies
the interpretation for the value of CC. The interpretation is to “branch on
true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves a
pair of registers of the same type (for example, Data registers or Pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (–4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are
JUMP instructions whose execution branches or continues linearly, depend-
ing on the value of the CC bit. The target of the branch is a PC-relative
address from the location of the instruction, plus an offset. The

Branches

4-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

PC-relative offset is an 11-bit immediate value that must be a multiple of
two (bit 0 must be a 0). This gives an effective dynamic range of –1024 to
+1022 bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address:

IF CC JUMP dest_address ;

Take care when conditional branches are followed by load opera-
tions. For more information, see “Load/Store Operation” on
page 6-66.

Conditional Register Move

Register moves can be performed depending on whether the value of the
CC flag is true or false (1 or 0). In some cases, using this instruction instead
of a branch eliminates the cycles lost because of the branch. These condi-
tional moves can be done between any R- or P-registers (including SP and
FP).

Example code:

IF CC R0 = P0 ;

Branch Prediction
The sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the CC bit.

In the EX2 stage, the sequencer compares the actual CC bit value to the
predicted value. If the value was mispredicted, the branch is corrected, and
the correct address is available for the WB stage of the pipeline.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-21

Program Sequencer

The branch latency for conditional branches is as follows.

• If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

• If prediction was “not to take branch,” and branch was actually
taken: 8 CCLK cycles.

• If prediction was “to take branch,” and branch was actually taken:
4 CCLK cycles.

• If prediction was “to take branch,” and branch was actually not
taken: 8 CCLK cycles.

For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the Instruction Fetch Address bus at the
beginning of the DF1 stage. All unconditional branches have a latency of
4 CCLK cycles.

Consider the example in Table 4-4.

Hardware Loops
The sequencer supports a mechanism of zero-overhead looping. The
sequencer contains two loop units, each containing three registers. Each
loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (LB0,
LB1), and a Loop Count register (LC0, LC1).

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC flag, and if it is set,
jumps to a location, identified by the label, dest.
If the CC flag is set, the branch is correctly pre-
dicted and the branch latency is reduced. Other-
wise, the branch is incorrectly predicted and the
branch latency increases.

Hardware Loops

4-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom
(LB) registers.

Table 4-11 describes the 32-bit loop register sets.

When an instruction at address X is executed, and X matches the contents
of LB0, then the next instruction executed will be from the address in LT0.
In other words, when PC == LB0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count is
2. Upon reaching the first loop end, the count is decremented to 1 and the
program flow jumps back to the top of the loop (to execute a second
time). Upon reaching the end of the loop again, the count is decremented
to 0, but no loopback occurs (because the body of the loop has already
been executed twice).

The LSETUP instruction can be used to load all three registers of a loop unit
at once. Each loop register can also be loaded individually with a register
transfer, but this incurs a significant overhead if the loop count is nonzero
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions
and iterates 32 times.

Table 4-5. Loop Registers

Registers Description Function

LC0, LC1 Loop Counters Maintains a count of the remaining iterations of the loop

LT0, LT1 Loop Tops Holds the address of the first instruction within a loop

LB0, LB1 Loop Bottoms Holds the address of the last instruction of the loop

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-23

Program Sequencer

Listing 4-1. Loop Example

P5 = 0x20 ;

LSETUP (lp_start, lp_end) LCO = P5 ;

lp_start: R5 = R0 + R1(ns) || R2 = [P2++] || R3 = [I1++] ;

lp_end: R5 = R5 + R2 ;

When executing an LSETUP instruction, the program sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction, plus an
offset. In each case, the offset value is added to the location of the LSETUP
instruction.

The LC0 and LC1 registers are unsigned 32-bit registers, each supporting
232 –1 iterations through the loop.

When LCx = 0, the loop is disabled, and a single pass of the code
executes. If the loop counter is derived from a variable with a range
that may include zero, it is recommended to guard the loop against
the zero case.

P5 = [P4];

CC = P5 == 0;

IF CC JUMP lp_skip;

LSETUP (lp_start, lp_end) LC0 = P5;

lp_start: ...

lp_end: ...

lp_skip: /* first instruction outside the loop */

Hardware Loops

4-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The processor supports a four-location instruction loop buffer that
reduces instruction fetches while in loops. If the loop code contains four
or fewer instructions, then no fetches to instruction memory are necessary
for any number of loop iterations, because the instructions are stored
locally. The loop buffer effectively eliminates the instruction fetch time in
loops with more than four instructions by allowing fetches to take place
while instructions in the loop buffer are being executed.

A four-cycle latency occurs on the first loopback when the LSETUP specifies
a nonzero start offset (lp_start). Therefore, zero start offsets are pre-
ferred, that is, the lp_start label is next the LSETUP instruction.

The processor has no restrictions regarding which instructions can occur
in a loop end position. Branches and calls are allowed in that position.

Two-Dimensional Loops
The processor features two loop units. Each provides its own set of loop
registers.

• LC[1:0] – the Loop Count registers

• LT[1:0] – the Loop Top address registers

• LB[1:0] – the Loop Bottom address registers

Table 4-6. Loop Registers

First/Last Address of the
Loop

PC-Relative Offset Used to
Compute the Loop Start
Address

Effective Range of the Loop Start
Instruction

Top / First 5-bit signed immediate; must be
a multiple of 2.

0 to 30 bytes away from LSETUP
instruction.

Bottom / Last 11-bit signed immediate; must
be a multiple of 2.

0 to 2046 bytes away from
LSETUP instruction (the defined
loop can be 2046 bytes long).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-25

Program Sequencer

Therefore, two-dimensional loops are supported directly in hardware,
consisting of an outer loop and a nested inner loop.

The outer loop is always represented by loop unit 0 (LC0, LT0, LB0)
while loop unit 1 (LC1, LT1, LB1) manages the inner loop.

To enable the two nested loops to end at the same instruction (LB1 equals
LB0), loop unit 1 is assigned higher priority than loop unit 0. A loopback
caused by loop unit 1 on a particular instruction (PC==LB1, LC1>=2) will
prevent loop unit 0 from looping back on that same instruction, even if
the address matches. Loop unit 0 is allowed to loop back only after the
loop count 1 is exhausted. The following example shows a two-dimen-
sional loop.

#define M 32

#define N 1024

P4 = M (Z);

P5 = N-1 (Z);

LSETUP (lpo_start, lpo_end) LCO = P4;

lpo_start: R7 = 0;

MNOP || R2 = [I0++] || R3 = [I1++] ;

LSETUP (lpi_start, lpi_end) LC1 = P5;

lpi_start: R5 = R2 + R3 (NS) || R2 = [I0] || R3 = [I1++] ;

lpi_end: R7 = R5 + R7 (NS) || [I0++] = R5;

R5 = R2 + R3;

R7 = R5 + R7 (NS) || [I0++] = R5;

lpo_end: [I2++] = R7;

The example processes an M by N data structure. The inner loop is
unrolled and passes only N-1 times. The outer loop is not unrolled and
still provides room for optimization.

Hardware Loops

4-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Loop Unrolling
Typical DSP algorithms are coded for speed rather than for small code
size. Especially when fetching data from circular buffers, loops are often
unrolled in order to pass only N-1 times. The initial data fetch is executed
before the loop is entered. Similarly, the final calculations are done after
the loop terminates, for example:

#define N 1024

global_setup:

I0.H = 0xFF80; I0.L = 0x0000; B0 = I0; L0 = N*2 (Z);

I1.H = 0xFF90; I1.L = 0x0000; B1 = I1; L1 = N*2 (Z);

P5 = N-1 (Z);

algorithm:

A0 = 0 || R0.H = W[I0++] || R1.L = W[I1++];

LSETUP (lp,lp) LC0 = P5;

lp: A0+= R0.H * R1.L || R0.H = W[I0++] || R1.L = W[I1++];

A0+= R0.H * R1.L;

This technique has the advantage that data is fetched exactly N times and
the I-Registers have their initial value after processing. The “algorithm”
sequence can be executed multiple times without any need to initialize
DAG-Registers again.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-27

Program Sequencer

Saving and Resuming Loops
Normally, loops can process and terminate without regard to system-level
concepts. Even if interrupted by interrupts or exceptions, no special care is
needed. There are, however, a few situations that require special atten-
tion—whenever a loop is interrupted by events that require the loop
resources themselves, that is:

• If the loop is interrupted by an interrupt service routine that also
contains a hardware loop and requires the same loop unit

• If the loop is interrupted by a preemptive task switch

• If the loop contains a CALL instruction that invokes an unknown
subroutine that may have local loops

In scenarios like these, the loop environment can be saved and restored by
pushing and popping the loop registers. For example, to save Loop Unit 0
onto the system stack, use this code:

 [--SP] = LC0;

 [--SP] = LB0;

 [--SP] = LT0;

To restore Loop Unit 0 from system stack, use:

 LT0 = [SP++];

 LB0 = [SP++];

 LC0 = [SP++];

It is obvious that writes or pops to the loop registers cause some internal
side effects to re-initialize the loop hardware properly. The hardware does
not force the user to save and restore all three loop registers, as there might
be cases where saving one or two of them is sufficient. Consequently,
every pop instruction in the example above may require the loop hardware
to re-initialize again. This takes multiple cycles, as the loop buffers must
also be prefilled again.

Hardware Loops

4-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

To avoid unnecessary penalty cycles, the loop hardware follows these
rules:

• Restoring LC0 and LC1 registers always re-initializes the loop hard-
ware and causes a ten-cycle “replay” penalty.

• Restoring LT0, LT1, LB0, and LB1 performs in a single cycle if the
respective loop counter register is zero.

• If LCx is non-zero, every write to the LTx and LBx registers also
attempts to re-initialize the loop hardware and causes a ten-cycle
penalty.

In terms of performance, there is a difference depending on the order that
the loop registers are popped. For best performance, restore the LCx regis-
ters last. Furthermore, it is recommended that interrupt service routines
and global subroutines that contain hardware loops terminate their local
loops cleanly, that is, do not artificially break the loops and do not execute
return instructions within their loops. This guarantees that the LCx regis-
ters are 0 when LTx and LBx registers are popped.

Example Code for Using Hardware Loops in an ISR

The following code shows the optimal method of saving and restoring
when using hardware loops in an interrupt service routine.

Listing 4-2. Saving and Restoring With Hardware Loops

lhandler:
<Save other registers here>

[--SP] = LC0; /* save loop 0 */

[--SP] = LB0;

[--SP] = LT0;

<Handler code here>

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-29

Program Sequencer

/* If the handler uses loop 0, it is a good idea to have

it leave LC0 equal to zero at the end. Normally, this will

happen naturally as a loop is fully executed. If LC0 == 0,

then LT0 and LB0 restores will not incur additional cycles.

If LC0 != 0 when the following pops happen, each pop will

incur a ten-cycle “replay” penalty. Popping or writing LC0

always incurs the penalty. */

LT0 = [SP++];

LB0 = [SP++];

LC0 = [SP++]; /* This will cause a “replay,” that is, a

ten-cycle refetch. */

<Restore other registers here>

RTI;

Events and Interrupts
The Event Controller of the processor manages five types of activities or
events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts

Note the word event describes all five types of activities. The Event Con-
troller manages fifteen different events in all: Emulation, Reset, NMI,
Exception, and eleven Interrupts.

Events and Interrupts

4-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be
pre-empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor System Interrupt Controller (SIC) works with the Core Event
Controller (CEC) to prioritize and control all system interrupts. The SIC
provides mapping between the many peripheral interrupt sources and the
prioritized general-purpose interrupt inputs of the core. This mapping is
programmable, and individual interrupt sources can be masked in the
SIC.

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-7. It is recommended that the two lowest priority interrupts
(IVG14 and IVG15) be reserved for software interrupt handlers, leaving
seven prioritized interrupt inputs (IVG7 – IVG13) to support the system.
Refer to the product data sheet for the default system interrupt mapping.

Table 4-7. Core Event Mapping

Event Source Core Event
Name

Core Events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware Error IVHW

Core Timer IVTMR

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-31

Program Sequencer

Note the System Interrupt to Core Event mappings shown are the default
values at reset and can be changed by software.

System Interrupt Processing
Referring to Figure 4-4 on page 4-33, note when an interrupt (Interrupt
A) is generated by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If Interrupt A is not masked, the request proceeds to
Step 4.

4. The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 – IVG15),
determine the core priority of Interrupt A.

5. ILAT adds Interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to Interrupt A is not masked, the process
proceeds to Step 7.

7. The Event Vector Table (EVT) is accessed to look up the appropri-
ate vector for Interrupt A’s interrupt service routine (ISR).

Events and Interrupts

4-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for Interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-33

Program Sequencer

System Peripheral Interrupts
The processor system has numerous peripherals, which therefore require
many supporting interrupts.

The peripheral interrupt structure of the processor is flexible. By default
upon reset, multiple peripheral interrupts share a single, general-purpose
interrupt in the core, as shown in the System Interrupt Appendix of the
Blackfin Processor Hardware Reference for your part.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Figure 4-4. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASK)

ASSIGN
SYSTEM

PRIORITY
(SIC_IARx)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS

(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS

(SIC_ISR)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

Events and Interrupts

4-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

If the default assignments shown in the System Interrupt Appendix of the
Blackfin Processor Hardware Reference for your part are acceptable, then
interrupt initialization involves only:

• Initialization of the core Event Vector Table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

SIC_IWR Register
The System Interrupt Wakeup-Enable register (SIC_IWR) provides the
mapping between the peripheral interrupt source and the Dynamic Power
Management Controller (DPMC). Any of the peripherals can be config-
ured to wake up the core from its idled state to process the interrupt,
simply by enabling the appropriate bit in the System Interrupt
Wakeup-enable register (SIC_IWR, refer to the System Interrupt Appendix
of the Blackfin Processor Hardware Reference for your part). If a periph-
eral interrupt source is enabled in SIC_IWR and the core is idled, the
interrupt causes the DPMC to initiate the core wakeup sequence in order
to process the interrupt. Note this mode of operation may add latency to
interrupt processing, depending on the power control state. For further
discussion of power modes and the idled state of the core, see the
Dynamic Power Management chapter of the Blackfin Processor Hardware
Reference for your part.

By default, as shown in the System Interrupt Appendix of the Blackfin
Processor Hardware Reference for your part, all interrupts generate a
wakeup request to the core. However, for some applications it may be
desirable to disable this function for some peripherals, such as for a
SPORTx Transmit Interrupt.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-35

Program Sequencer

The SIC_IWR register has no effect unless the core is idled. The bits in this
register correspond to those of the System Interrupt Mask (SIC_IMASK)
and Interrupt Status (SIC_ISR) registers.

After reset, all valid bits of this register are set to 1, enabling the wakeup
function for all interrupts that are not masked. Before enabling interrupts,
configure this register in the reset initialization sequence. The SIC_IWR
register can be read from or written to at any time. To prevent spurious or
lost interrupt activity, this register should be written to only when all
peripheral interrupts are disabled.

Note the wakeup function is independent of the interrupt mask
function. If an interrupt source is enabled in SIC_IWR but masked
off in SIC_IMASK, the core wakes up if it is idled, but it does not
generate an interrupt.

For a listing of the default System Interrupt Wakeup-Enable register set-
tings, refer to the System Interrupt Appendix of the Blackfin Processor
Hardware Reference for your part.

SIC_ISR Register
The System Interrupt Controller (SIC) includes a read-only status regis-
ter, the System Interrupt Status register (SIC_ISR), shown in the System
Interrupt Appendix of the Blackfin Processor Hardware Reference for
your part. Each valid bit in this register corresponds to one of the periph-
eral interrupt sources. The bit is set when the SIC detects the interrupt is
asserted and cleared when the SIC detects that the peripheral interrupt
input has been deasserted. Note for some peripherals, such as programma-
ble flag asynchronous input interrupts, many cycles of latency may pass
from the time an interrupt service routine initiates the clearing of the
interrupt (usually by writing a system MMR) to the time the SIC senses
that the interrupt has been deasserted.

Events and Interrupts

4-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the System Interrupt
Mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.

SIC_IMASK Register
The System Interrupt Mask register (SIC_IMASK, shown in the System
Interrupt Appendix of the Blackfin Processor Hardware Reference for
your part) allows masking of any peripheral interrupt source at the System
Interrupt Controller (SIC), independently of whether it is enabled at the
peripheral itself.

A reset forces the contents of SIC_IMASK to all 0s to mask off all peripheral
interrupts. Writing a 1 to a bit location turns off the mask and enables the
interrupt.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-37

Program Sequencer

Although this register can be read from or written to at any time (in
Supervisor mode), it should be configured in the reset initialization
sequence before enabling interrupts.

System Interrupt Assignment Registers (SIC_IARx)
The relative priority of peripheral interrupts can be set by mapping the
peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the System Interrupt Assignment
register settings, as detailed in the System Interrupt Appendix of the
Blackfin Processor Hardware Reference for your part. If more than one
interrupt source is mapped to the same interrupt, they are logically ORed,
with no hardware prioritization. Software can prioritize the interrupt pro-
cessing as required for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

These registers can be read from or written to at any time in Supervisor
mode. It is advisable, however, to configure them in the Reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Events and Interrupts

4-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Core Event Controller Registers
The Event Controller uses three MMRs to coordinate pending event
requests. In each of these MMRs, the 16 lower bits correspond to the 16
event levels (for example, bit 0 corresponds to “Emulator mode”). The
registers are:

• IMASK - interrupt mask

• ILAT - interrupt latch

• IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.

IMASK Register

The Core Interrupt Mask register (IMASK) indicates which interrupt levels
are allowed to be taken. The IMASK register may be read and written in
Supervisor mode. Bits [15:5] have significance; bits [4:0] are hard-coded
to 1 and events of these levels are always enabled. If IMASK[N] == 1 and
ILAT[N] == 1, then interrupt N will be taken if a higher priority is not
already recognized. If IMASK[N] == 0, and ILAT[N] gets set by interrupt N,
the interrupt will not be taken, and ILAT[N] will remain set.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-39

Program Sequencer

ILAT Register

Each bit in the Core Interrupt Latch register (ILAT) indicates that the cor-
responding event is latched, but not yet accepted into the processor (see
Figure 4-6). The bit is reset before the first instruction in the correspond-
ing ISR is executed. At the point the interrupt is accepted, ILAT[N] will be
cleared and IPEND[N] will be set simultaneously. The ILAT register can be
read in Supervisor mode. Writes to ILAT are used to clear bits only (in
Supervisor mode). To clear bit N from ILAT, first make sure that
IMASK[N] == 0, and then write ILAT[N] = 1. This write functionality to
ILAT is provided for cases where latched interrupt requests need to be
cleared (cancelled) instead of serviced.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and
also ILAT[2] or ILAT[1].

Only the JTAG TRST pin can clear ILAT[0].

Figure 4-5. Core Interrupt Mask Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Core Interrupt Mask Register (IMASK)

IVHW (Hardware Error)
IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10

IVG9

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

Reset = 0x0000 001F0xFFE0 2104

Events and Interrupts

4-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

IPEND Register

The Core Interrupt Pending register (IPEND) keeps track of all currently
nested interrupts (see Figure 4-7). Each bit in IPEND indicates that the cor-
responding interrupt is currently active or nested at some level. It may be
read in Supervisor mode, but not written. The IPEND[4] bit is used by the
Event Controller to temporarily disable interrupts on entry and exit to an
interrupt service routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.

Figure 4-6. Core Interrupt Latch Register

Core Interrupt Latch Register (ILAT)

RST (Reset) - RO
NMI (Nonmaskable Interrupt) - RO

EMU (Emulation) - RO

IVHW (Hardware Error)
EVX (Exception) - RO

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 000X0xFFE0 210C

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-41

Program Sequencer

Event Vector Table
The Event Vector Table (EVT) is a hardware table with sixteen entries
that are each 32 bits wide. The EVT contains an entry for each possible
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt
service routine. When an event occurs, instruction fetch starts at the
address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into
each of the interrupt vectors; that is, interrupt vectors are not determined
by a fixed offset from an interrupt vector table base address. This approach
minimizes latency by not requiring a long jump from the vector table to
the actual ISR code.

Figure 4-7. Core Interrupt Pending Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Core Interrupt Pending Register (IPEND)

RST (Reset)
NMI (Nonmaskable Interrupt)

EMU (Emulation)

IVHW (Hardware Error)

EVX (Exception)

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active

Global Interrupt Disable
0 - Interrupts globally enabled
1 - Interrupts globally disabled
Set and cleared by Event Con-
troller only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 00100xFFE0 2108

Events and Interrupts

4-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 4-8 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

Return Registers and Instructions
Similarly to the RETS register controlled by CALL and RTS instructions,
interrupts and exceptions also use single-entry hardware stack registers. If
an interrupt is serviced, the program sequencer saves the return address

Table 4-8. Core Event Vector Table

Name Event Class Event Vector
Register

MMR Location Notes

EMU Emulation EVT0 0xFFE0 2000 Highest priority. Vec-
tor address is provided
by JTAG.

RST Reset EVT1 0xFFE0 2004

NMI NMI EVT2 0xFFE0 2008

EVX Exception EVT3 0xFFE0 200C

Reserved Reserved EVT4 0xFFE0 2010 Reserved vector

IVHW Hardware Error EVT5 0xFFE0 2014

IVTMR Core Timer EVT6 0xFFE0 2018

IVG7 Interrupt 7 EVT7 0xFFE0 201C System interrupt

IVG8 Interrupt 8 EVT8 0xFFE0 2020 System interrupt

IVG9 Interrupt 9 EVT9 0xFFE0 2024 System interrupt

IVG10 Interrupt 10 EVT10 0xFFE0 2028 System interrupt

IVG11 Interrupt 11 EVT11 0xFFE0 202C System interrupt

IVG12 Interrupt 12 EVT12 0xFFE0 2030 System interrupt

IVG13 Interrupt 13 EVT13 0xFFE0 2034 System interrupt

IVG14 Interrupt 14 EVT14 0xFFE0 2038 System interrupt

IVG15 Interrupt 15 EVT15 0xFFE0 203C Software interrupt

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-43

Program Sequencer

into the RETI register prior to jumping to the event vector. A typical inter-
rupt service routine terminates with an RTI instruction that instructs the
sequencer to reload the Program Counter, PC, from the RETI register. The
following example shows a simple interrupt service routine.

isr:

[--SP] = (R7:0, P5:0); /* push core registers */

[--SP] = ASTAT; /* push arithmetic status */

/* place core of service routine here */

ASTAT = [SP++]; /* pop arithmetic status */

(R7:0, P5:0) = [SP++]; /* pop core registers */

RTI; /* return from interrupt */

isr.end:

There is no need to manage the RETI register when interrupt nesting is not
enabled. If however, nesting is enabled and the respective service routine
must be interruptible by an interrupt of higher priority, the RETI register
must be saved, most likely onto the stack.

Instructions that access the RETI register do have an implicit site effect—
reading the RETI register enables interrupt nesting. Writing to it disables
nesting again. This enables the service routine to break itself down into
interruptible and non-interruptible sections, for example:

isr:

[--SP] = (R7:0, P5:0); /* push core registers */

[--SP] = ASTAT; /* push arithmetic status */

/* place critical or atomic code here */

[--SP] = RETI; /* enable nesting */

/* place core of service routine here */

RETI = [SP++]; /* disable nesting */

/* more critical or atomic instructions */

ASTAT = [SP++]; /* pop arithmetic status */

(R7:0, P5:0) = [SP++]; /* pop core registers */

RTI; /* return from interrupt */

isr.end:

Events and Interrupts

4-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

If there isn’t any need for non-interruptible code inside the service rou-
tine, it is good programming practice to enable nesting immediately. This
avoids unnecessary delay to high priority interrupt routines, for example:

isr:

[--SP] = RETI; /* enable nesting */

[--SP] = (R7:0, P5:0); /* push core registers */

[--SP] = ASTAT; /* push arithmetic status */

/* place core of service routine here */

ASTAT = [SP++]; /* pop arithmetic status */

(R7:0, P5:0) = [SP++]; /* pop core registers */

RETI = [SP++]; /* disable nesting */

RTI; /* return from interrupt */

isr.end:

See “Nesting of Interrupts” on page 4-51 for more details on interrupt
nesting.

Emulation Events, NMI, and Exceptions use a technique similar to “nor-
mal” interrupts. However, they have their own return register and return
instruction counterparts. Table 4-9provides an overview.

Table 4-9. Return Registers and Instructions

Name Event Class Return Register Return
Instruction

EMU Emulation RETE RTE

RST Reset RETI RTI

NMI NMI RETN RTN

EVX Exception RETX RTX

Reserved Reserved - -

IVHW Hardware Error RETI RTI

IVTMR Core Timer RETI RTI

IVG7 Interrupt 7 RETI RTI

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-45

Program Sequencer

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction may produce unintended results.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the
highest priority interrupt in IPEND is cleared.

Emulation Interrupt
An emulation event causes the processor to enter Emulation mode, where
instructions are read from the JTAG interface. It is the highest priority
interrupt to the core.

For detailed information about emulation, see the Blackfin Processor
Debug chapter of the Blackfin Processor Hardware Reference for your
part.

IVG8 Interrupt 8 RETI RTI

IVG9 Interrupt 9 RETI RTI

IVG10 Interrupt 10 RETI RTI

IVG11 Interrupt 11 RETI RTI

IVG12 Interrupt 12 RETI RTI

IVG13 Interrupt 13 RETI RTI

IVG14 Interrupt 14 RETI RTI

IVG15 Interrupt 15 RETI RTI

Table 4-9. Return Registers and Instructions (Cont’d)

Name Event Class Return Register Return
Instruction

Events and Interrupts

4-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Reset Interrupt
The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the watchdog timer. This location differs from that of other
interrupts in that its content is read-only. Writes to this address change
the register but do not change where the processor vectors upon reset. The
processor always vectors to the reset vector address upon reset. For more
information, see “Reset State” on page 3-10.

The core has an output that indicates that a double fault has occurred.
This is a nonrecoverable state. The system (via the SWRST register) can be
programmed to send a reset request if a double fault condition is detected.
Subsequently, the reset request forces a system reset for core and
peripherals.

The reset vector is determined by the processor system. It points to the
start of the on-chip boot ROM, or to the start of external asynchronous
memory, depending on the state of the BMODE pins.

NMI (Nonmaskable Interrupt)
The NMI entry is reserved for a nonmaskable interrupt, which can be gen-
erated by the Watchdog timer or by the NMI input signal to the
processor. An example of an event that requires immediate processor
attention, and thus is appropriate as an NMI, is a powerdown warning.

If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

If unused, the NMI pin should always be pulled to its deasserted state. On
some derivatives, the NMI input is active high and on some it is active low.
Please refer to the specific data sheet for your processor.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-47

Program Sequencer

Exceptions
Exceptions are discussed in “Hardware Errors and Exception Handling”
on page 4-58.

Hardware Error Interrupt
Hardware Errors are discussed in “Hardware Errors and Exception Han-
dling” on page 4-58.

Core Timer Interrupt
The Core Timer Interrupt (IVTMR) is triggered when the core timer value
reaches zero. For more information about the core timer, see the Hard-
ware Reference Manual for your processor.

General-purpose Interrupts (IVG7-IVG15)
General-purpose interrupts are used for any event that requires processor
attention. For instance, a DMA controller may use them to signal the end
of a data transmission, or a serial communications device may use them to
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction forces events for interrupts IVG15-IVG7,
IVTMR, IVHW, NMI, and RST, but not for exceptions and emulation (EVX and
EMU, respectively).

It is recommended to reserve the two lowest priority interrupts
(IVG15 and IVG14) for software interrupt handlers.

For system interrupts available on specific Blackfin processors, see the
Hardware Reference Manual for that processor.

Interrupt Processing

4-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Interrupt Processing
The following sections describe interrupt processing.

Global Enabling/Disabling of Interrupts
General-purpose interrupts can be globally disabled with the CLI Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state.

 CLI R5; /* save IMASK to R5 and mask all */

 /* place critical instructions here */

 STI R5; /* restore IMASK from R5 again */

See “Enable Interrupts” and “Disable Interrupts” in Chapter 16, “External
Event Management.”

When multiple instructions need to be atomic or are too time-critical to
be delayed by an interrupt, disable the general-purpose interrupts, but be
sure to re-enable them at the conclusion of the code sequence.

Servicing Interrupts
The Core Event Controller (CEC) has a single interrupt queueing element
per event—a bit in the ILAT register. The appropriate ILAT bit is set when
an interrupt rising edge is detected (which takes two core clock cycles) and
cleared when the respective IPEND register bit is set. The IPEND bit indi-
cates that the event vector has entered the core pipeline. At this point, the
CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition
of the general-purpose interrupt to the IPEND output assertion is three core
clock cycles. However, the latency can be much higher, depending on the
core’s activity level and state.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-49

Program Sequencer

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.

Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the
next fetch address.

On an interrupt, most instructions currently in the pipeline are
aborted. On a service exception, all instructions after the excepting
instruction are aborted. On an error exception, the excepting
instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register.

The return register is RETI for interrupts, RETX for exceptions, RETN
for NMIs, and RETE for debug emulation. The return address is the
address of the instruction after the last instruction executed from
normal program flow.

3. Processor mode is set to the level of the event taken.

If the event is an NMI, exception, or interrupt, the processor mode
is Supervisor. If the event is an emulation exception, the processor
mode is Emulation.

4. Before the first instruction starts execution, the corresponding
interrupt bit in ILAT is cleared and the corresponding bit in IPEND
is set.

Bit IPEND[4] is also set to disable all interrupts until the return
address in RETI is saved.

Interrupt Processing

4-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Software Interrupts
Software cannot set bits of the ILAT register directly, as writes to ILAT
cause write-1-to-clear (W1C) operation. Instead, use the RAISE instruction
to set individual ILAT bits by software. It safely sets any of the ILAT bits
without affecting the rest of the register.

 RAISE 1; /* fire reset interrupt request */

The RAISE instruction must not be used to fire emulation events or excep-
tions, which are managed by the related EMUEXCPT and EXCPT instructions.
For details, see Chapter 16, “External Event Management.”

Often, the RAISE instruction is executed in interrupt service routines to
degrade the interrupt priority. This enables less urgent parts of the service
routine to be interrupted even by low priority interrupts.

isr7: /* service routine for IVG7 */

...

/* execute high priority instructions here */

/* handshake with signalling peripheral */

 RAISE 14;

 RTI;

isr7.end:

isr14: /* service routine for IVG14 */

 ...

 /* further process event initiated by IVG7 */

RTI;

isr14.end:

The example above may read data from any receiving interface, post it to a
queue, and let the lower priority service routine process the queue after
the isr7 routine returns. Since IVG15 is used for normal program execu-
tion in non-multi-tasking system, IVG14 is often dedicated to software
interrupt purposes.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-51

Program Sequencer

“Example Code for an Exception Handler” on page 4-68 uses the same
principle to handle an exception with normal interrupt priority level.

Nesting of Interrupts
Interrupts are handled either with or without nesting, individually. For
more information, see “Return Registers and Instructions” on page 4-42.

Non-nested Interrupts

If interrupts do not require nesting, all interrupts are disabled during the
interrupt service routine. Note, however, that emulation, NMI, and
exceptions are still accepted by the system.

When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
Supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Figure 4-8 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.

Nested Interrupts

If interrupts require nesting, the return address to the interrupted point in
the original interrupt service routine must be explicitly saved and subse-
quently restored when execution of the nested interrupt service routine
has completed. The first instruction in an interrupt service routine that
supports nesting must save the return address currently held in RETI by
pushing it onto the Supervisor stack ([--SP] = RETI). This clears the glo-
bal interrupt disable bit IPEND[4], enabling interrupts. Next, all registers
that are modified by the interrupt service routine are saved onto the

Interrupt Processing

4-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Supervisor stack. Processor state is stored in the Supervisor stack, not in
the User stack. Hence, the instructions to push RETI ([--SP] = RETI) and
pop RETI (RETI = [SP++]) use the Supervisor stack.

Figure 4-8. Non-nested Interrupt Handling

IF 1

IF 2

IF 3

DEC

AC

DF1

DF2

EX1

EX2

WB

A8

1 2CYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A1 0

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

I0 I2I1

I0 I1

I0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

In

In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.
CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE DF1 STAGE, INSTRUCTION A3 IS
FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.
CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

m m+1 m+2 m+3 m+46543

In-1

In-1

In-1 InIn-2

In-2

In-3

RTI

RTI

RTI

RTI

RTI

P
IP

E
L

IN
E

S
T

A
G

E

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-53

Program Sequencer

Figure 4-9 illustrates that by pushing RETI onto the stack, interrupts can
be re-enabled during an interrupt service routine, resulting in a short
duration where interrupts are globally disabled.

Example Prolog Code for Nested Interrupt Service Routine

Listing 4-3. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine.

Push return address in RETI into Supervisor stack, ensuring that

interrupts are back on. Until now, interrupts have been

suspended.*/

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to

stack */

[--SP] = ASTAT ;

Figure 4-9. Nested Interrupt Handling

IF 1

IF 2

IF 3

DEC

AC

DF1

DF2

EX1

EX2

WB

A8

1

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING
ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUSH RETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES DF2 STAGE, INTERRUPTS ARE RE-ENABLED.
CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE DF2 STAGE, INTERRUPTS ARE DISABLED.
CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

2 3 4 5 6 7 8 9 10 mCYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

PUSH I2I1

I1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

I3 I5 I6

m+1 m+2 m+3 m+4 m+5

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

RT I

In
I

I

I n-3

n-2

n-1

I

I n-2

n-1

I n-1 In

PUSH

PUSH

I2

I1

PUSH

I3

I2

I1

PUSH

I4

I3

I2

I1

PUSH

I4 I5

I3

I2

I1

PUSH

I4

POP

POP

POP

POP

POP

RTI

RTI

RTI

RTI

RTI

In
In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

INTERRUPTS DISABLED
DURING THIS INTERVAL.

P
IP

E
L

IN
E

S
T

A
G

E

Interrupt Processing

4-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

[--SP] = FP ;

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note none of the processor resources

(accumulators, DAGs, loop counters and bounds) have been saved.

It is assumed this interrupt service routine does not use the

processor resources. */

Example Epilog Code for Nested Interrupt Service Routine

Listing 4-4. Epilog Code for Nested ISR

/* Epilog code for nested interrupt service routine.

Restore ASTAT, Data and Pointer registers. Popping RETI from

Supervisor stack ensures that interrupts are suspended between

load of return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP = [SP++] ;

ASTAT = [SP++] ;

RETI = [SP++] ;

/* Execute RTI, which jumps to return address, re-enables inter-

rupts, and switches to User mode if this is the last nested

interrupt in service. */

RTI;

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables interrupts by clearing IPEND[4].

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-55

Program Sequencer

Logging of Nested Interrupt Requests

The System Interrupt Controller (SIC) detects level-sensitive interrupt
requests from the peripherals. The Core Event Controller (CEC) provides
edge-sensitive detection for its general-purpose interrupts (IVG7-IVG15).
Consequently, the SIC generates a synchronous interrupt pulse to the
CEC and then waits for interrupt acknowledgement from the CEC. When
the interrupt has been acknowledged by the core (via assertion of the
appropriate IPEND output), the SIC generates another synchronous inter-
rupt pulse to the CEC if the peripheral interrupt is still asserted. This way,
the system does not lose peripheral interrupt requests that occur during
servicing of another interrupt.

Multiple interrupt sources can map to a single core processor general-pur-
pose interrupt. Because of this, multiple pulse assertions from the SIC can
occur simultaneously, before, or during interrupt processing for an inter-
rupt event that is already detected on this interrupt input. For a shared
interrupt, the IPEND interrupt acknowledge mechanism described above
re-enables all shared interrupts. If any of the shared interrupt sources are
still asserted, at least one pulse is again generated by the SIC. The Inter-
rupt Status registers indicate the current state of the shared interrupt
sources.

Self-Nesting of Core Interrupts

Interrupts that are “self-nested” can be interrupted by events at the same
priority level. When the SNEN bit of the SYSCFG register is set, self-nesting
of core interrupts is supported. Self-nesting is supported for any interrupt
level generated with the RAISE instruction, as well as for core level
interrupts.

As an example, assume that the SNEN bit is set and the processor is servic-
ing an interrupt generated by the RAISE 14; instruction. Once the RETI
register has been saved to the stack within the service routine, a second
RAISE 14; instruction would allow the processor to service the second
interrupt.

Interrupt Processing

4-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Self-nesting is not supported for system level peripheral interrupts such as
the SPORT or SPI.

The SYSCFG register is discussed in “SYSCFG Register” on page 21-26.

Additional Usability Issues

The following sections describe additional usability issues.

Allocating the System Stack

The software stack model for processing exceptions implies that the
Supervisor stack must never generate an exception while the exception
handler is saving its state. However, if the Supervisor stack grows past a
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events
In some processor architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine may be held off for around 30
instruction clock cycles. When cache line fill operations are taken into
account, the interrupt service routine could be held off for many hundreds
of cycles.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-57

Program Sequencer

In order for high priority interrupts to be serviced with the least latency
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an interrupt service routine executes from
L1 memory. See Figure 4-10.

If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is
not held off until the fill has completed. Instead, the processor executes
the interrupt service routine in its new context, and the cache fill opera-
tion completes in the background.

Figure 4-10. Minimizing Latency in Servicing an ISR

CLOCK

FETCH

INSTRUCTION
DATA

SERVICED
HERE

FETCH

INSTRUCTION
DATA

INTERRUPT
OCCURRING
HERE

SERVICED
HERE

OTHER PROCESSORS

BLACKFIN PROCESSOR

INTERRUPT
OCCURRING
HERE

Hardware Errors and Exception Handling

4-58 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Note the interrupt service routine must reside in L1 cache or SRAM mem-
ory and must not generate a cache miss, an L2 memory access, or a
peripheral access, as the processor is already busy completing the original
cache line fill operation. If a load or store operation is executed in the
interrupt service routine requiring one of these accesses, then the interrupt
service routine is held off while the original external access is completed,
before initiating the new load or store.

If the interrupt service routine finishes execution before the load operation
has completed, then the processor continues to stall, waiting for the fill to
complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, see Chapter
6, “Memory.”

Hardware Errors and Exception Handling
The following sections describe hardware errors and exception handling.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-59

Program Sequencer

SEQSTAT Register
The Sequencer Status register (SEQSTAT) contains information about the
current state of the sequencer as well as diagnostic information from the
last event. SEQSTAT is a read-only register and is accessible only in Supervi-
sor mode.

Hardware Error Interrupt
The Hardware Error Interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the Hardware Error Interrupt (interrupt IVHW in the Event Vector
Table (EVT) and ILAT, IMASK, and IPEND registers). The Hardware Error

Figure 4-11. Sequencer Status Register

Sequencer Status Register (SEQSTAT)

EXCAUSE[5:0]
Holds information about
the last executed excep-
tion. See Table 4-11.

Reset = 0x0000 0000

HWERRCAUSE[1:0]
Holds cause of last hard-
ware error generated by
the core. Hardware errors
trigger interrupt number 5
(IVHW). See Table 4-10.

SFTRESET
0 - Last core reset was not a

reset triggered by software
1 - Last core reset was a reset

triggered by software, rather
than a hardware powerup reset

HWERRCAUSE[4:2]
See description under
bits[1:0], below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RO

Hardware Errors and Exception Handling

4-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the Sequencer Status register
(SEQSTAT) and respond accordingly.

The Hardware Error Interrupt is generated by:

• Bus parity errors

• Internal error conditions within the core, such as Performance
Monitor overflow

• Peripheral errors

• Bus timeout errors

The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-10. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
Hardware Error Interrupt remains active as long as any of the error condi-
tions remain active.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-61

Program Sequencer

Exceptions
Exceptions are synchronous to the instruction stream. In other words, a
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is
given when a misaligned access is attempted, or when a cacheability pro-
tection lookaside buffer (CPLB) miss or protection violation occurs.
Exceptions are also given when illegal instructions or illegal combinations
of registers are executed.

Table 4-10. Hardware Conditions Causing Hardware Error Interrupts

Hardware
Condition

HWERRCAUSE
(Binary)

HWERRCAUSE
(Hexadecimal)

Notes / Examples

System MMR
Error

0b00010 0x02 An error can occur if an invalid Sys-
tem MMR location is accessed, if a
32-bit register is accessed with a
16-bit instruction, or if a 16-bit
register is accessed with a 32-bit
instruction.

External Memory
Addressing Error

0b00011 0x03

Performance
Monitor
Overflow

0b10010 0x12

RAISE 5
instruction

0b11000 0x18 Software issued a RAISE 5 instruc-
tion to invoke the Hardware Error
Interrupt (IVHW).

Reserved All other bit
combinations.

All other values.

Hardware Errors and Exception Handling

4-62 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

An excepting instruction may or may not commit before the exception
event is taken, depending on if it is a service type or an error type
exception.

An instruction causing a service type event will commit, and the address
written to the RETX register will be the next instruction after the excepting
one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

Usually the RETX register contains the correct address to return to.
To skip over an excepting instruction, take care in case the next
address is not simply the next linear address. This could happen
when the excepting instruction is a loop end. In that case, the
proper next address would be the loop top.

The EXCAUSE[5:0] field in the Sequencer Status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler
which type of exception occurred. Refer to Table 4-11 for a list of events
that cause exceptions.

If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-63

Program Sequencer

Table 4-11. Events That Cause Exceptions

Exception EXCAUSE
[5:0]

Type:
(E) Error
(S) Service
See note 1.

Notes/Examples

Force Exception
instruction EXCPT
with 4-bit m field

m field S Instruction provides 4 bits of EXCAUSE.

Single step 0x10 S When the processor is in single step mode,
every instruction generates an exception.
Primarily used for debugging.

Exception caused by a
trace buffer full condi-
tion

0x11 S The processor takes this exception when
the trace buffer overflows (only when
enabled by the Trace Unit Control regis-
ter).

Undefined instruction 0x21 E May be used to emulate instructions that
are not defined for a particular processor
implementation.

Illegal instruction
combination

0x22 E See section for multi-issue rules in the
ADSP-BF53x Blackfin Processor Instruction
Set Reference.

Data access CPLB
protection violation

0x23 E Attempted read or write to Supervisor
resource, or illegal data memory access.
Supervisor resources are registers and
instructions that are reserved for Supervi-
sor use: Supervisor only registers, all
MMRs, and Supervisor only instructions.
(A simultaneous, dual access to two
MMRs using the data address generators
generates this type of exception.) In addi-
tion, this entry is used to signal a protec-
tion violation caused by disallowed
memory access, and it is defined by the
Memory Management Unit (MMU)
cacheability protection lookaside buffer
(CPLB).

Hardware Errors and Exception Handling

4-64 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Data access mis-
aligned address viola-
tion

0x24 E Attempted misaligned data memory or
data cache access.

Unrecoverable event 0x25 E For example, an exception generated while
processing a previous exception.

Data access CPLB
miss

0x26 E Used by the MMU to signal a CPLB miss
on a data access.

Data access multiple
CPLB hits

0x27 E More than one CPLB entry matches data
fetch address.

Exception caused by
an emulation watch-
point match

0x28 E There is a watchpoint match, and one of
the EMUSW bits in the Watchpoint
Instruction Address Control register
(WPIACTL) is set.

Instruction fetch mis-
aligned address viola-
tion

0x2A E Attempted misaligned instruction cache
fetch. On a misaligned instruction fetch
exception, the return address provided in
RETX is the destination address which is
misaligned, rather than the address of the
offending instruction. For example, if an
indirect branch to a misaligned address
held in P0 is attempted, the return address
in RETX is equal to P0, rather than to the
address of the branch instruction. (Note
this exception can never be generated
from PC-relative branches, only from
indirect branches.)

Instruction fetch
CPLB protection vio-
lation

0x2B E Illegal instruction fetch access (memory
protection violation).

Instruction fetch
CPLB miss

0x2C E CPLB miss on an instruction fetch.

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) Error
(S) Service
See note 1.

Notes/Examples

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-65

Program Sequencer

Note 1: For services (S), the return address is the address of the instruction
that follows the exception. For errors (E), the return address is the address
of the excepting instruction.

If an instruction causes multiple exceptions, only the exception with the
highest priority is taken. The following table ranks exceptions by descend-
ing priority.

Instruction fetch mul-
tiple CPLB hits

0x2D E More than one CPLB entry matches
instruction fetch address.

Illegal use of supervi-
sor resource

0x2E E Attempted to use a Supervisor register or
instruction from User mode. Supervisor
resources are registers and instructions
that are reserved for Supervisor use:
Supervisor only registers, all MMRs, and
Supervisor only instructions.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A

4 I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

7 Watchpoint Match 0x28

8 Undefined Instruction 0x21

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) Error
(S) Service
See note 1.

Notes/Examples

Hardware Errors and Exception Handling

4-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Exceptions While Executing an Exception Handler

While executing the exception handler, avoid issuing an instruction that
generates another exception. If an exception is caused while executing
code within the exception handler, the NMI handler, the reset vector, or
in emulator mode:

• The excepting instruction is not committed. All writebacks from
the instruction are prevented.

• The generated exception is not taken.

9 Illegal Combination 0x22

10 Illegal Use of Protected Resource 0x2E

11 DAG0 Multiple CPLB Hits 0x27

12 DAG0 Misaligned Access 0x24

13 DAG0 Protection Violation 0x23

14 DAG0 CPLB Miss 0x26

15 DAG1 Multiple CPLB Hits 0x27

16 DAG1 Misaligned Access 0x24

17 DAG1 Protection Violation 0x23

18 DAG1 CPLB Miss 0x26

19 EXCPT Instruction m field

20 Single Step 0x10

21 Trace Buffer 0x11

Table 4-12. Exceptions by Descending Priority (Cont’d)

Priority Exception EXCAUSE

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-67

Program Sequencer

• The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

• The address of the offending instruction is saved in RETX. Note if
the processor were executing, for example, the NMI handler, the
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.

To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler for the
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most
recent instruction to cause an exception. This mechanism is not intended
for recovery, but rather for detection.

Exceptions and the Pipeline

Interrupts and exceptions treat instructions in the pipeline differently.

• When an interrupt occurs, all instructions in the pipeline are
aborted.

• When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the PUSH
and POP instructions for exceptions, NMIs, and emulation events do not
affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the Least Significant Bit (LSB) currently set in IPEND.

Hardware Errors and Exception Handling

4-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
Interrupt / Reset instruction (RAISE).

When deferring the processing of an exception to lower priority
interrupt IVGx, the system must guarantee that IVGx is entered
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler

The following code is for an exception routine handler with deferred
processing.

Listing 4-5. Exception Routine Handler With Deferred Processing

/* Determine exception cause by examining EXCAUSE field in

SEQSTAT (first save contents of R0, P0, P1 and ASTAT in Supervi-

sor SP) */

[--SP] = R0 ;

[--SP] = P0 ;

[--SP] = P1 ;

[--SP] = ASTAT ;

R0 = SEQSTAT ;

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */

R0 <<= 26 ;

R0 >>= 26 ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 4-69

Program Sequencer

/* Using jump table EVTABLE, jump to the event pointed to by R0

*/

P0 = R0 ;

P1 = _EVTABLE ;

P0 = P1 + (P0 << 1) ;

R0 = W [P0] (Z) ;

P1 = R0 ;

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing

is deferred to low priority interrupt IVG15. Also, parameter

passing would typically be done here. */

_EVENT1:

RAISE 15 ;

JUMP.S _EXIT ;

/* Entry for event at IVG14 */

_EVENT2:

RAISE 14 ;

JUMP.S _EXIT ;

/* Comments for other events */

/* At the end of handler, restore R0, P0, P1 and ASTAT, and

return. */

_EXIT:

ASTAT = [SP++] ;

P1 = [SP++] ;

P0 = [SP++] ;

R0 = [SP++] ;

RTX ;

_EVTABLE:

.byte2 addr_event1;

.byte2 addr_event2;

...

.byte2 addr_eventN;

Hardware Errors and Exception Handling

4-70 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

/* The jump table EVTABLE holds 16-bit address offsets for each

event. With offsets, this code is position independent and the

table is small.

+--------------+

| addr_event1 | _EVTABLE

+--------------+

| addr_event2 | _EVTABLE + 2

+--------------+

| . . . |

+--------------+

| addr_eventN | _EVTABLE + 2N

+--------------+

*/

Example Code for an Exception Routine

The following code provides an example framework for an interrupt rou-
tine jumped to from an exception handler such as that described above.

Listing 4-6. Interrupt Routine for Handling Exception

[--SP] = RETI ; /* Push return address on stack. */

/* Put body of routine here.*/

RETI = [SP++] ; /* To return, pop return address and jump. */

RTI ; /* Return from interrupt. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-1

5 ADDRESS ARITHMETIC UNIT

Like most DSP and RISC platforms, the Blackfin processors have a
load/store architecture. Computation operands and results are always rep-
resented by core registers. Prior to computation, data is loaded from
memory into core registers and results are stored back by explicit move
operations. The Address Arithmetic Unit (AAU) provides all the required
support to keep data transport between memory and core registers effi-
cient and seamless. Having a separate arithmetic unit for address
calculations prevents the data computation block from being burdened by
address operations. Not only can the load and store operations occur in
parallel to data computations, but memory addresses can also be calcu-
lated at the same time.

The AAU uses Data Address Generators (DAGs) to generate addresses for
data moves to and from memory. By generating addresses, the DAGs let
programs refer to addresses indirectly, using a DAG register instead of an
absolute address. Figure 5-1 shows the AAU block diagram.

5-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The AAU architecture supports several functions that minimize overhead
in data access routines. These functions include:

• Supply address – Provides an address during a data access

• Supply address and post-modify – Provides an address during a
data move and auto-increments/decrements the stored address for
the next move

• Supply address with offset – Provides an address from a base with
an offset without incrementing the original address pointer

• Modify address – Increments or decrements the stored address
without performing a data move

• Bit-reversed carry address – Provides a bit-reversed carry address
during a data move without reversing the stored address

Figure 5-1. AAU Block Diagram

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

SP
FP

P5

P4
P3

P2

P1

P0

TO L1 DATA MEMORY TO SEQUENCER

DA1 DA0
32

32 32

PREG

RAB
32

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-3

Address Arithmetic Unit

The AAU comprises two DAGs, nine Pointer registers, four Index regis-
ters and four complete sets of related Modify, Base, and Length registers.
These registers, shown in Figure 5-2 on page 5-4, hold the values that the
DAGs use to generate addresses. The types of registers are:

• Index registers, I[3:0]. Unsigned 32-bit Index registers hold an
address pointer to memory. For example, the instruction R3 = [I0]
loads the data value found at the memory location pointed to by
the register I0. Index registers can be used for 16- and 32-bit mem-
ory accesses.

• Modify registers, M[3:0]. Signed 32-bit Modify registers provide
the increment or step size by which an Index register is post-modi-
fied during a register move. For example, the R0 = [I0 ++ M1]
instruction directs the DAG to:

– Output the address in register I0
– Load the contents of the memory location pointed to by I0 into
R0

– Modify the contents of I0 by the value contained in the M1
register

• Base and Length registers, B[3:0] and L[3:0]. Unsigned 32-bit
Base and Length registers set up the range of addresses and the
starting address of a circular buffer. Each B, L pair is always coupled
with a corresponding I-register, for example, I3, B3, L3. For more
information on circular buffers, see “Addressing Circular Buffers”
on page 5-12.

• Pointer registers, P[5:0], FP, USP, and SP. 32-bit Pointer registers
hold an address pointer to memory. The P[5:0] field, FP (Frame
Pointer) and SP/USP (Stack Pointer/User Stack Pointer) can be
manipulated and used in various instructions. For example, the
instruction R3 = [P0] loads the register R3 with the data value
found at the memory location pointed to by the register P0. The
Pointer registers have no effect on circular buffer addressing. They

5-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

can be used for 8-, 16-, and 32-bit memory accesses. For added
mode protection, SP is accessible only in Supervisor mode, while
USP is accessible in User mode.

Do not assume the L-registers are automatically initialized to zero
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

Note all data address registers must be initialized individually. Ini-
tializing a B-register does not automatically initialize the I-register.

Figure 5-2. Address Arithmetic Unit

 Address Arithmetic Unit Registers

P0

P1

P2

P3

P4

P5

User SP
Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

 Data Address Registers
 Pointer
 Registers

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-5

Address Arithmetic Unit

Addressing With the AAU
The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the
I-register.

In indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an
8-bit store can be aligned to any byte. Depending on the type of data
used, increments and decrements to the address registers can be by 1, 2, or
4 to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:

R0 = [P3++];

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in R0. It then post-increments P3 by four, maintaining alignment
with the 32-bit access.

R0.L = W [I3++];

This instruction fetches a 16-bit word, pointed to by the value in I3, and
places it in the low half of the destination register, R0.L. It then
post-increments I3 by two, maintaining alignment with the 16-bit access.

R0 = B [P3++] (Z) ;

This instruction fetches an 8-bit word, pointed to by the value in P3, and
places it in the destination register, R0. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be zero
extended (as shown) or sign extended into the 32-bit data register.

Addressing With the AAU

5-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instructions using Index registers use an M-register or a small immediate
value (+/– 2 or 4) as the modifier. Instructions using Pointer registers use
a small immediate value or another P-register as the modifier. For details,
see Table 5-3, “AAU Instruction Summary,” on page 5-20.

Pointer Register File
The general-purpose Address Pointer registers, also called P-registers, are
organized as:

• 6-entry, P-register file P[5:0]

• Frame Pointer (FP) used to point to the current procedure’s activa-
tion record

• Stack Pointer (SP) used to point to the last used location on the
runtime stack.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations; for instance, to maintain
counters. However, unlike the Data registers, P-register arithmetic does
not affect the Arithmetic Status (ASTAT) register status flags.

Frame and Stack Pointers

In many respects, the Frame and Stack Pointer registers perform like the
other P-registers, P[5:0]. They can act as general pointers in any of the
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The Stack Pointer registers include:

• a User Stack Pointer (USP in Supervisor mode, SP in User mode)

• a Supervisor Stack Pointer (SP in Supervisor mode)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-7

Address Arithmetic Unit

The User Stack Pointer register and the Supervisor Stack Pointer register
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as
SP:

• In User mode, any reference to SP (for example, stack pop
R0 = [SP++] ;) implicitly uses the USP as the effective address.

• In Supervisor mode, the same reference to SP (for example,
R0 = [SP++] ;) implicitly uses the Supervisor Stack Pointer as
the effective address.

To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a
register move from USP (for example, R0 = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be
used in Supervisor mode.

Some load/store instructions use FP and SP implicitly:

• FP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

• Stack push/pop instructions, including those for pushing and pop-
ping multiple registers

• Link/unlink instructions, which control stack frame space and
manage the Frame Pointer register (FP) for that space

Addressing With the AAU

5-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

DAG Register Set
DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The data address register set consists of these
registers:

• I[3:0] contain index addresses

• M[3:0] contain modify values

• B[3:0] contain base addresses

• L[3:0] contain length values

All data address registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of
8-bit bytes in memory. The Index registers contain an effective address.
The M (Modify) registers contain an offset value that is added to one of
the Index registers or subtracted from it.

The B and L (Length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length
in bytes. Each L and B register pair is associated with the corresponding I
register. For example, L0 and B0 are always associated with I0. However,
any M register may be associated with any I register. For example, I0 may
be modified by M3.

Indexed Addressing With Index & Pointer Registers
Indexed addressing uses the value in the Index or Pointer register as an
effective address. This instruction can load or store 16- or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W
designator is used to preface the load or store.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-9

Address Arithmetic Unit

For example:

R0 = [I2] ;

loads a 32-bit value from an address pointed to by I2 and stores it in the
destination register R0.

R0.H = W [I2] ;

loads a 16-bit value from an address pointed to by I2 and stores it in the
16-bit destination register R0.H.

[P1] = R0 ;

is an example of a 32-bit store operation.

Pointer registers can be used for 8-bit loads and stores.

For example:

B [P1++] = R0 ;

stores the 8-bit value from the R0 register in the address pointed to by the
P1 register, then increments the P1 register.

Loads With Zero or Sign Extension

When a 32-bit register is loaded by an 8-bit or 16-bit memory read, the
value can be extended to the full register width. A trailing Z character in
parenthesis is used to zero-extend the loaded value. An X character forces
sign extension. The following examples assume that P1 points to a mem-
ory location that contains a value of 0x8080.

R0 = W[P1] (Z) ; /* R0 = 0x0000 8080 */

R1 = W[P1] (X) ; /* R1 = 0xFFFF 8080 */

R2 = B[P1] (Z) ; /* R2 = 0x0000 0080 */

R3 = B[P1] (X) ; /* R3 = 0xFFFF FF80 */

Addressing With the AAU

5-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Indexed Addressing With Immediate Offset

Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The Pointer register is modified by
the immediate field and then used as the effective address. The value of
the Pointer register is not updated.

Alignment exceptions are triggered when a final address is
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to
[0x24], which is aligned for all accesses.

Auto-increment and Auto-decrement Addressing
Auto-increment addressing updates the Pointer and Index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the Pointer by 4. A 16-bit word
access updates the Pointer by 2, and an access of an 8-bit word updates the
Pointer by 1. Both 8- and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index
registers may be used only for 16- and 32-bit accesses.

For example:

R0 = W [P1++] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 Pointer register. The Pointer is then incremented by
2 and the word is zero extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-11

Address Arithmetic Unit

For example:

R0 = [I2--] ;

loads a 32-bit value into the destination register and decrements the Index
register by 4.

Pre-modify Stack Pointer Addressing
The only pre-modify instruction in the processor uses the Stack Pointer
register, SP. The address in SP is decremented by 4 and then used as an
effective address for the store. The instruction [--SP] = R0 ; is used for
stack push operations and can support only a 32-bit word transfer.

Post-modify Addressing
Post-modify addressing uses the value in the Index or Pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other Pointer registers. Index
registers are modified by Modify registers. Post-modify addressing does
not support the Pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:

R5 = [P1++P2] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.

The value in the P2 register is then added to the value in the P1 register.

Addressing With the AAU

5-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

For example:

R2 = W [P4++P5] (Z) ;

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32 bits. The value of the pointer P4 is incremented by
the value of the pointer P5.

For example:

R2 = [I2++M1] ;

loads a 32-bit word into the destination register R2. The value in the Index
register, I2, is updated by the value in the Modify register, M1.

Addressing Circular Buffers
The DAGs support addressing circular buffers. Circular buffers are a range
of addresses containing data that the DAG steps through repeatedly,
wrapping around to repeat stepping through the same range of addresses
in a circular pattern.

The DAGs use four types of data address registers for addressing circular
buffers. For circular buffering, the registers operate this way:

• The Index (I) register contains the value that the DAG outputs on
the address bus.

• The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access.

Any M-register can be used with any I-register. The modify value
can also be an immediate value instead of an M-register. The size of
the modify value must be less than or equal to the length (L-regis-
ter) of the circular buffer.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-13

Address Arithmetic Unit

• The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register.

L is positive and cannot have a value greater than 232 – 1. If an
L-register’s value is zero, its circular buffer operation is disabled.

• The Base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the Index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

If the Index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the
buffer to the value, wrapping the Index pointer back to a point inside the
buffer.

The starting address that the DAG wraps around is called the buffer’s base
address (B-register). There are no restrictions on the value of the base
address for circular buffers that contains 8-bit data. Circular buffers that
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,
respectively. Exceptions can be made for video operations. For more infor-
mation, see “Memory Address Alignment” on page 5-16. Circular
buffering uses post-modify addressing.

Addressing With the AAU

5-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

As seen in Figure 5-3, on the first post-modify access to the buffer, the
DAG outputs the I-register value on the address bus, then modifies the
address by adding the modify value.

• If the updated index value is within the buffer length, the DAG
writes the value to the I-register.

• If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value
to the I-register.

Figure 5-3. Circular Data Buffers

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

1

2

3

4

5

6

7

8

9

10

11

LENGTH = 11
BASE ADDRESS = 0X0
MODIFIER = 4

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-15

Address Arithmetic Unit

In equation form, these post-modify and wraparound operations work as
follows, shown for “I+M” operations.

• If M is positive:

Inew = Iold + M
if Iold + M < buffer base + length (end of buffer)

Inew = Iold + M – L
if Iold + M ≥ buffer base + length (end of buffer)

• If M is negative:

Inew = Iold + M
if Iold + M ≥ buffer base (start of buffer)

Inew = Iold + M + L
if Iold + M < buffer base (start of buffer)

Addressing With Bit-reversed Addresses
To obtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see “Modify – Increment” on
page 15-37.

Modifying DAG and Pointer Registers
The DAGs support operations that modify an address value in an Index
register without outputting an address. The operation, address-modify, is
useful for maintaining pointers.

Memory Address Alignment

5-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The address-modify operation modifies addresses in any Index and
Pointer register (I[3:0], P[5:0], FP, SP) without accessing memory. If the
Index register’s corresponding B- and L-registers are set up for circular
buffering, the address-modify operation performs the specified buffer
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For Pointer registers,
another P-register is used as the modifier.

Consider the example, I1 += M2 ;

This instruction adds M2 to I1 and updates I1 with the new value.

Memory Address Alignment
The processor requires proper memory alignment to be maintained for the
data size being accessed. Unless exceptions are disabled, violations of
memory alignment cause an alignment exception. Some instructions—for
example, many of the Video ALU instructions—automatically disable
alignment exceptions because the data may not be properly aligned when
stored in memory. Alignment exceptions may be disabled by issuing the
DISALGNEXCPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

• 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

• 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-17

Address Arithmetic Unit

Table 5-1 summarizes the types of transfers and transfer sizes supported
by the addressing modes.

Be careful when using the DISALGNEXCPT instruction, because it dis-
ables automatic detection of memory alignment errors. The
DISALGNEXCPT instruction only affects misaligned loads that use
I-register indirect addressing. Misaligned loads using P-register
addressing will still cause an exception.

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from Data
Registers

LOADS:
32-bit word
16-bit, zero extended half word
16-bit, sign extended half word
8-bit, zero extended byte
8-bit, sign extended byte
STORES:
32-bit word
16-bit half word
8-bit byte

To and from Pointer
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment To and from Data
Registers

LOADS:
32-bit word
16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero extended half word
16-bit, sign extended half word
STORES:
32-bit word
16-bit half word from Data Register high half
16-bit half word from Data Register low half

Memory Address Alignment

5-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-bit
word

16-bit
half-
word

8-bit
byte

Sign/zero
extend

Data
Register

Pointer
register

Data
Register
Half

P Auto-inc
[P0++]

* * * * * *

P Auto-dec
[P0--]

* * * * * *

P Indirect
[P0]

* * * * * * *

P Indexed
[P0+im]

* * * * * *

FP indexed
[FP+im]

* * *

P Post-inc
[P0++P1]

* * * * *

I Auto-inc
[I0++]

* * * *

I Auto-dec
[I0--]

* * * *

I Indirect
[I0]

* * * *

I Post-inc
[I0++M0]

* *

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-19

Address Arithmetic Unit

AAU Instruction Summary
Table 5-3 lists the AAU instructions. In Table 5-3, note the meaning of
these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• Preg denotes any Pointer register, FP, or SP register.

• Ireg denotes any Index register.

• Mreg denotes any Modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bits wide, immediate value.

• uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

AAU Instruction Summary

5-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

AAU instructions do not affect the ASTAT Status flags.

Table 5-3. AAU Instruction Summary

Instruction

Preg = [Preg] ;

Preg = [Preg ++] ;

Preg = [Preg --] ;

Preg = [Preg + uimm6m4] ;

Preg = [Preg + uimm17m4] ;

Preg = [Preg – uimm17m4] ;

Preg = [FP – uimm7m4] ;

Dreg = [Preg] ;

Dreg = [Preg ++] ;

Dreg = [Preg --] ;

Dreg = [Preg + uimm6m4] ;

Dreg = [Preg + uimm17m4] ;

Dreg = [Preg – uimm17m4] ;

Dreg = [Preg ++ Preg] ;

Dreg = [FP – uimm7m4] ;

Dreg = [Ireg] ;

Dreg = [Ireg ++] ;

Dreg = [Ireg --] ;

Dreg = [Ireg ++ Mreg] ;

Dreg =W [Preg] (Z) ;

Dreg =W [Preg ++] (Z) ;

Dreg =W [Preg --] (Z) ;

Dreg =W [Preg + uimm5m2] (Z) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-21

Address Arithmetic Unit

Dreg =W [Preg + uimm16m2] (Z) ;

Dreg =W [Preg – uimm16m2] (Z) ;

Dreg =W [Preg ++ Preg] (Z) ;

Dreg = W [Preg] (X) ;

Dreg = W [Preg ++] (X) ;

Dreg = W [Preg --] (X) ;

Dreg =W [Preg + uimm5m2] (X) ;

Dreg =W [Preg + uimm16m2] (X) ;

Dreg =W [Preg – uimm16m2] (X) ;

Dreg =W [Preg ++ Preg] (X) ;

Dreg_hi = W [Ireg] ;

Dreg_hi = W [Ireg ++] ;

Dreg_hi = W [Ireg --] ;

Dreg_hi = W [Preg] ;

Dreg_hi = W [Preg ++ Preg] ;

Dreg_lo = W [Ireg] ;

Dreg_lo = W [Ireg ++] ;

Dreg_lo = W [Ireg --] ;

Dreg_lo = W [Preg] ;

Dreg_lo = W [Preg ++ Preg] ;

Dreg = B [Preg] (Z) ;

Dreg = B [Preg ++] (Z) ;

Dreg = B [Preg --] (Z) ;

Dreg = B [Preg + uimm15] (Z) ;

Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

AAU Instruction Summary

5-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Dreg = B [Preg – uimm15] (Z) ;

Dreg = B [Preg] (X) ;

Dreg = B [Preg ++] (X) ;

Dreg = B [Preg --] (X) ;

Dreg = B [Preg + uimm15] (X) ;

Dreg = B [Preg – uimm15] (X) ;

[Preg] = Preg ;

[Preg ++] = Preg ;

[Preg --] = Preg ;

[Preg + uimm6m4] = Preg ;

[Preg + uimm17m4] = Preg ;

[Preg – uimm17m4] = Preg ;

[FP – uimm7m4] = Preg ;

[Preg] = Dreg ;

[Preg ++] = Dreg ;

[Preg --] = Dreg ;

[Preg + uimm6m4] = Dreg ;

[Preg + uimm17m4] = Dreg ;

[Preg – uimm17m4] = Dreg ;

[Preg ++ Preg] = Dreg ;

[FP – uimm7m4] = Dreg ;

[Ireg] = Dreg ;

[Ireg ++] = Dreg ;

[Ireg --] = Dreg ;

Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 5-23

Address Arithmetic Unit

[Ireg ++ Mreg] = Dreg ;

W [Ireg] = Dreg_hi ;

W [Ireg ++] = Dreg_hi ;

W [Ireg --] = Dreg_hi ;

W [Preg] = Dreg_hi ;

W [Preg ++ Preg] = Dreg_hi ;

W [Ireg] = Dreg_lo ;

W [Ireg ++] = Dreg_lo ;

W [Ireg --] = Dreg_lo ;

W [Preg] = Dreg_lo ;

W [Preg] = Dreg ;

W [Preg ++] = Dreg ;

W [Preg --] = Dreg ;

W [Preg + uimm5m2] = Dreg ;

W [Preg + uimm16m2] = Dreg ;

W [Preg – uimm16m2] = Dreg ;

W [Preg ++ Preg] = Dreg_lo ;

B [Preg] = Dreg ;

B [Preg ++] = Dreg ;

B [Preg --] = Dreg ;

B [Preg + uimm15] = Dreg ;

B [Preg – uimm15] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

AAU Instruction Summary

5-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Many of the AAU instructions can be part of multi-issue opera-
tions. Data can be loaded and stored in parallel to arithmetical
operations. For details, see Chapter 20, “Issuing Parallel
Instructions.”

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg >> 2 ;

Preg = Preg >> 1 ;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;

Preg –= Preg ;

Ireg –= Mreg ;

Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-1

6 MEMORY

Blackfin processors support a hierarchical memory model with different
performance and size parameters, depending on the memory location
within the hierarchy. Level 1 (L1) memories interconnect closely and effi-
cient with the Blackfin core for best performance. Separate blocks of L1
memory can be accessed simultaneously through multiple bus systems.
Instruction memory is separated from data memory, but unlike classical
Harvard architectures, all L1 memory blocks are accessed by one unified
addressing scheme. Portions of L1 memory can be configured to function
as cache memory. Some Blackfin derivatives also feature on-chip Level 2
(L2) memories. Based on a Von-Neumann architecture, L2 memories
have a unified purpose and can freely store instructions and data.
Although L2 memories still reside inside the CCLK clock domain, they take
multiple CCLK cycles to access. The processors also provide support of an
external memory space that includes asynchronous memory space for
static RAM devices and synchronous memory space for dynamic RAM
such as SDRAM devices.

This chapter discusses the architecture and principles of on-chip memories
as well as memory protection and caching mechanisms. For memory size,
population, and off-chip memory interfaces, refer to the specific Blackfin
Processor Hardware Reference manual for your derivative.

Memory Architecture

6-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory Architecture
Blackfin processors have a unified 4G byte address range that spans a com-
bination of on-chip and off-chip memory and memory-mapped I/O
resources. Of this range, some of the address space is dedicated to internal,
on-chip resources. The processor populates portions of this internal mem-
ory space with:

• L1 Static Random Access Memories (SRAM)

• L2 Static Random Access Memories (SRAM)

• A set of memory-mapped registers (MMRs)

• A boot Read-Only Memory (ROM)

Figure 6-1 on page 6-3 shows a processor memory architecture typical of
most Blackfin processors.

Overview of On-Chip Level 1 (L1) Memory
The L1 memory system performance provides high bandwidth and low
latency. Because SRAMs provide deterministic access time and very high
throughput, DSP systems have traditionally achieved performance
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of L1 memories. Code can be ported to or developed for the
processor quickly without requiring performance optimization for the
memory organization.

Figure 6-1 shows the typical bus architecture of single-core Blackfin
devices that do not feature L2 memories on-chip. The bus widths on the
system side may vary.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-3

Memory

The L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses

• SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

Figure 6-1. Processor Memory Architecture

NON-DMA PERIPHERALS

EBIU

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR

INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

DMA PERIPHERALS

PERIPHERAL
ACCESS
BUS (PAB)

16

R
O

M 16

16

16

16

16

Memory Architecture

6-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• Instruction and data cache options for microcontroller code, excel-
lent High Level Language (HLL) support, and ease of
programming cache control instructions, such as PREFETCH and
FLUSH

• Memory protection

The L1 memories operate at the core clock frequency (CCLK).

Overview of Scratchpad Data SRAM
The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the User and Supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt
handling.

The scratchpad data SRAM, like the other L1 blocks, operates at
core clock frequency (CCLK). It can be accessed by the core at full
performance. However, it cannot be accessed by the DMA
controller.

Overview of On-Chip Level 2 (L2) Memory
Some Blackfin derivatives feature a Level 2 (L2) memory on chip. The L2
memory provides low latency, high-bandwidth capacity. This memory sys-
tem is referred to as on-chip L2 because it forms an on-chip memory
hierarchy with L1 memory. On-chip L2 memory provides more capacity
than L1 memory, but the latency is higher. The on-chip L2 memory is
SRAM and can not be configured as cache. It is capable of storing both
instructions and data. The L1 caches can be configured to cache instruc-
tions and data located in the on-chip L2 memory. On-chip L2 memory
operates at CCLK frequency.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-5

Memory

L1 Instruction Memory
L1 Instruction Memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four subbanks of the L1 Instruction
Memory as:

• A simple SRAM

• A 4-Way, set associative instruction cache

• A cache with as many as four locked Ways

L1 Instruction Memory can be used only to store instructions.

IMEM_CONTROL Register
The Instruction Memory Control register (IMEM_CONTROL) contains con-
trol bits for the L1 Instruction Memory. By default after reset, cache and
Cacheability Protection Lookaside Buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 6-10).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB_DATAx Registers” on page 6-55) are cleared. This
simultaneously forces all cached lines to be of equal (low) importance.
Cache replacement policy is based first on line importance indicated by
the cached states of the CPLB_LRUPRIO bits, and then on LRU (least
recently used). See “Instruction Cache Locking by Line” on page 6-16 for
complete details. This bit must be 0 to allow the state of the CPLB_LRUPRIO
bits to be stored when new lines are cached.

The ILOC[3:0] bits provide a useful feature only after code has been man-
ually loaded into cache. See “Instruction Cache Locking by Way” on page
6-17. These bits specify which Ways to remove from the cache replace-
ment policy. This has the effect of locking code present in

L1 Instruction Memory

6-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

nonparticipating Ways. Code in nonparticipating Ways can still be
removed from the cache using an IFLUSH instruction. If an ILOC[3:0] bit
is 0, the corresponding Way is not locked and that Way participates in
cache replacement policy. If an ILOC[3:0] bit is 1, the corresponding Way
is locked and does not participate in cache replacement policy.

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache.
Note reserving memory to serve as cache will not alone enable L2 memory
accesses to be cached. CPLBs must also be enabled using the EN_ICPLB bit
and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx registers) must
specify desired memory pages as cache-enabled.

Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

• Reserved (nonpopulated) L1 instruction memory space

• L1 data memory space

• MMR space

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 6-67), disabling of
CPLBs should be proceeded by a CSYNC.

When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a SSYNC to ensure proper behavior.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-7

Memory

L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and
one 32-bit instruction, or one 64-bit instruction).

The pointer registers and index registers, which are described in Chapter
5, cannot access L1 Instruction Memory directly. A direct access to an
address in instruction memory SRAM space generates an exception.

Figure 6-2. L1 Instruction Memory Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

L1 Instruction Memory Control Register (IMEM_CONTROL)

Reset = 0x0000 0001

ENICPLB (Instruction CPLB
Enable)LRUPRIORST (LRU

Priority Reset)
0 - LRU priority functionality is enabled
1 - All cached LRU priority bits (LRUPRIO)

are cleared

0 - CPLBs disabled, minimal
address checking only

1 - CPLBs enabled

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ILOC[3:0] (Cache Way Lock)
0000 - All Ways not locked
0001 - Way0 locked, Way1, Way2, and
Way3 not locked
...
1111 - All Ways locked

IMC (L1 Instruction Memory
Configuration)
0 - Upper 16K byte of LI

instruction memory
configured as SRAM,
also invalidates all cache
lines if previously
configured as cache

1 - Upper 16K byte of L1
instruction memory
configured as cache

0xFFE0 1004

L1 Instruction Memory

6-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Write access to the L1 Instruction SRAM Memory must be made through
the 64-bit wide system DMA port. Because the SRAM is implemented as a
collection of single ported subbanks, the instruction memory is effectively
dual ported.

Figure 6-3 on page 6-9 describes the bank architecture of the L1 Instruc-
tion Memory. As the figure shows, each 16K byte bank is made up of four
4K byte subbanks. In the figure, dotted lines indicate features that exist
only on some Blackfin processors. Please refer to the hardware reference
manual for your particular processor for more details.

While on some processors the EAB and DCB buses shown in Figure 6-3
connect directly to the EBIU and DMA controllers, on derivatives that
feature multiple cores or on-chip L2 memories they must cross additional
arbitration units. Also, these buses are wider than 16 bits on some parts.
For details, refer to the specific Blackfin Processor Hardware Reference man-
ual for your derivative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-9

Memory

Figure 6-3. L1 Instruction Memory Bank Architecture

TO DMA CONTROLLER

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

DMA
BUFFER

EXTERNAL ACCESS BUS (EAB)

4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

ON LARGER MEMORY
DERIVATIVES

ONLY

DMA CORE BUS (DCB)

INSTRUCTION DATA BUS (IDB)

REGISTER ACCESS BUS (RAB)

TO
PROCESSOR
CORE

IN
S

T
R

U
C

T
IO

N
B

A
N

K
A

IN
S

T
R

U
C

T
IO

N
B

A
N

K
B

IN
S

T
R

U
C

T
IO

N
B

A
N

K
C

U
P

T
O

32
K

B
S

R
A

M
(S

E
E

P
R

O
C

E
S

S
O

R
H

R
M

T
O

S
E

E
IF

T
H

IS
B

A
N

K
IS

P
R

E
S

E
N

T
)

U
P

T
O

32
K

B
S

R
A

M
16

K
B

C
A

C
H

E
O

R
S

R
A

M

ON LARGER MEMORY
DERIVATIVES

ONLY

CACHE CONTROL &
MEMORY MANAGEMENT

64

64

64

64

64

32

16

16
TO EBIU (AND L2)

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

L1 Instruction Memory

6-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

L1 Instruction Cache
For information about cache terminology, see “Terminology” on page
6-74.

The L1 Instruction Memory may also be configured to contain a, 4-Way
set associative instruction 16K byte cache. To improve the average access
latency for critical code sections, each Way or line of the cache can be
locked independently. When the memory is configured as cache, it cannot
be accessed directly.

When cache is enabled, only memory pages further specified as cacheable
by the CPLBs will be cached. When CPLBs are enabled, any memory
location that is accessed must have an associated page definition available,
or a CPLB exception is generated. CPLBs are described in “Memory Pro-
tection and Properties” on page 6-45.

Figure 6-4 on page 6-12 shows the overall Blackfin processor instruction
cache organization.

Cache Lines

As shown in Figure 6-4, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component.

• The tag component incorporates a 20-bit address tag, least recently
used (LRU) bits, a Valid bit, and a Line Lock bit.

• The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag and data
memory arrays, respectively.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-11

Memory

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4K byte memory
subbank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

The Valid bit indicates the state of a cache line. A cache line is always
valid or invalid.

• Invalid cache lines have their Valid bit cleared, indicating the line
will be ignored during an address-tag compare operation.

• Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

The tag and data components of a cache line are illustrated in Figure 6-5.
Each 4K byte subbank provides the same structure.

L1 Instruction Memory

6-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 6-4. Instruction Cache Organization Per Subbank

32-BIT IAB ADDRESS
FOR LOOKUP

4:1 MUX

64-BIT
IDB DATA

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 31

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 30

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 3

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 31

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 30

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 2

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 31

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 30

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 1

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 31

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 30

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID LRU ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 0

31 14 13 12 11 10 9 5 04

SUBBANK
SELECT

BYTE
SELECT

ADDRESS TAG

LINE
SELECT

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-13

Memory

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tags of valid lines currently stored
in a cache set. The cache set (cache line across ways) is selected, using bits
9 through 5 of the instruction fetch address. If the address-tag compare
operation results in a match in any of the four ways and the respective
cache line is valid, a cache hit occurs. If the address-tag compare operation
does not result in a match in any of the four ways or the respective line is
not valid, a cache miss occurs.

When a cache miss occurs, the instruction memory unit generates a cache
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address
of the target instruction word. When a cache miss occurs, the core halts
until the target instruction word is returned from external memory.

Figure 6-5. Cache Line – Tag and Data Portions

TAG

LRUPRIO

LRU V

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

TAG - 20-BIT ADDRESS TAG
LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE
V - VALID BIT

L1 Instruction Memory

6-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer on its external read-data port. This is a burst of four 64-bit
words of data from the line fill buffer. The line fill buffer translates then
to the bus width of the External Access Bus (EAB).

The address for the read transfer is the address of the target instruction
word. When responding to a line-read request from the instruction mem-
ory unit, the external memory returns the target instruction word first.
After it has returned the target instruction word, the next three words are
fetched in sequential address order. This fetch wraps around if necessary,
as shown in Table 6-1.

Once the line fill has completed, the four 64-bit words have fixed order in
the cache as shown in Figure 6-4. This avoids the need to save the lower 5
bits (byte select) of the address word along with the cache entry.

Table 6-1. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-15

Memory

Line Fill Buffer

As the new cache line is retrieved from external memory, each 64-bit word
is buffered in a four-entry line fill buffer before it is written to a 4K byte
memory bank within L1 memory. The line fill buffer allows the core to
access the data from the new cache line as the line is being retrieved from
external memory, rather than having to wait until the line has been writ-
ten into the cache. While the L1 port of the fill buffer is always 64 bits
wide, the width of port to external or L2 memory varies between
derivatives.

Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the Valid and LRU bits for the selected
set are examined by a cache line replacement unit to determine the entry
to use for the new cache line, that is, whether to use Way0, Way1, Way2,
or Way3. See Figure 6-4, “Instruction Cache Organization Per Subbank,”
on page 6-12.

The cache line replacement unit first checks for invalid entries (that is,
entries having its Valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

L1 Instruction Memory

6-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for
the new cache line.

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is
selected for the new cache line.

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

Instruction Cache Management

The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRs, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,
and debug.

The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

See “Instruction Cache Invalidation” on page 6-18.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAx registers (see “Memory Protec-
tion and Properties” on page 6-45) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
Way is victimized when all cache Ways are occupied when a new

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-17

Memory

cacheable line is fetched. This bit indicates that a line is of either “low” or
“high” importance. In a modified LRU policy, a high can replace a low,
but a low cannot replace a high. If all Ways are occupied by highs, an oth-
erwise cacheable low will still be fetched for the core, but will not be
cached. Fetched highs seek to replace unoccupied Ways first, then least
recently used lows next, and finally other highs using the LRU policy.
Lows can only replace unoccupied Ways or other lows, and do so using
the LRU policy. If all previously cached highs ever become less important,
they may be simultaneously transformed into lows by writing to the LRU-
PRIRST bit in the IMEM_CONTROL register (see page 6-5).

Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four Ways of the instruction cache. When the cache is
enabled, L1 Instruction Memory has four Ways available. Setting the lock
bit for a specific Way prevents that Way from participating in the LRU
replacement policy. Thus, a cached instruction with its Way locked can
only be removed using an IFLUSH instruction, or a “back door” MMR
assisted manipulation of the tag array.

An example sequence is provided below to demonstrate how to lock down
Way0:

• If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Invalidation” on page 6-18).

• Disable interrupts, if required, to prevent interrupt service routines
(ISRs) from potentially corrupting the locked cache.

• Set the locks for the other Ways of the cache by setting ILOC[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

L1 Instruction Memory

6-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1] and set ILOC[0].
The critical code (and the instructions which set ILOC[0]) is now
locked into Way0.

• Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the
cache is prevented.

Instruction Cache Invalidation

The instruction cache can be invalidated by address, cache line, or com-
plete cache. The IFLUSH instruction can explicitly invalidate cache lines
based on their line addresses. The target address of the instruction is gen-
erated from the P-registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated, and not
“flushed.”

In the following example, the P2 register contains the address of a valid
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:

iflush [p2] ; /* Invalidate cache line containing address

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the memory map and its corresponding cache-line, it is most useful when
the buffer being invalidated is less than the cache size. For more informa-
tion about the IFLUSH instruction, see Chapter 17, “Cache Control.” A
second technique can be used to invalidate larger portions of the cache
directly. This second technique directly invalidates Valid bits by setting

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-19

Memory

the Invalid bit of each cache line to the invalid state. To implement this
technique, additional MMRs (ITEST_COMMAND and ITEST_DATA[1:0]) are
available to allow arbitrary read/write of all the cache entries directly. This
method is explained in the next section.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 6-2,
“L1 Instruction Memory Control Register,” on page 6-7), all Valid bits in
the instruction cache are set to the invalid state. A second write to the
IMEM_CONTROL register to set the IMC bit configures the instruction memory
as cache again. An SSYNC instruction should be run before invalidating the
cache and a CSYNC instruction should be inserted after each of these
operations.

Instruction Test Registers
The Instruction Test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used,
the L1 cache data or tag arrays are accessed, and data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:0]). The
ITEST_DATAx registers contain either the 64-bit data that the access is to
write to or the 64-bit data that was read during the access. The lower 32
bits are stored in the ITEST_DATA[0] register, and the upper 32 bits are
stored in the ITEST_DATA[1] register. When the tag arrays are accessed,
ITEST_DATA[0] is used. Graphical representations of the ITEST registers
begin with Figure 6-6 on page 6-21.

Instruction Test Registers

6-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The following figures describe the ITEST registers:

• Figure 6-6, “Instruction Test Command Register,” on page 6-21

• Figure 6-7, “Instruction Test Data 1 Register,” on page 6-22

• Figure 6-8, “Instruction Test Data 0 Register,” on page 6-23

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAx registers.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-21

Memory

ITEST_COMMAND Register
When the Instruction Test Command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:0]).

Figure 6-6. Instruction Test Command Register

00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

000

Instruction Test Command Register (ITEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3
(Address bits [13:12] in
SRAM)

SBNK[1:0] (Subbank
Access)

Reset = 0x0000 0000

RW (Read/Write Access)

WAYSEL[1:0] (Access Way)
00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3
(Address bits [11:10] in SRAM)

0 - Read access
1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array

DW[1:0] (Double Word
Index)

Selects one of four 64-bit
double words in a 256-bit
line (Address bits [4:3] in
SRAM)

SET[4:0] (Set Index)
Selects one of 32 sets
(Address bits [9:5] in SRAM)

0

0xFFE0 1300

Instruction Test Registers

6-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ITEST_DATA1 Register
Instruction Test Data registers (ITEST_DATA[1:0]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The Instruction
Test Data 1 register (ITEST_DATA1) stores the upper 32 bits.

Figure 6-7. Instruction Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 6-10.

0xFFE0 1404

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-23

Memory

ITEST_DATA0 Register
The Instruction Test Data 0 register (ITEST_DATA0) stores the lower 32
bits of the 64-bit data to be written to or read from by the access. The
ITEST_DATA0 register is also used to access tag arrays. This register also
contains the Valid and Dirty bits, which indicate the state of the cache
line.

Figure 6-8. Instruction Test Data 0 Register

X X XX X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Instruction Test Data 0 Register (ITEST_DATA0)

Reset = UndefinedX

Tag[19:4]

Tag[3:2]

Tag[1:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-10.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 6-10.

Physical address

Physical address

Physical address

Reset = Undefined

Valid
0 - Cache line is not valid
1 - Cache line contains valid
data
LRUPRIO
0 - LRUPRIO is cleared for
this entry
1 - LRUPRIO is set for this
entry. See “ICPLB_DATAx
Registers” on page 6-55 and
“IMEM_CONTROL Register”
on page 6-5.

0xFFE0 1400

L1 Data Memory

6-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

L1 Data Memory
The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multi-ported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

• Two 32-bit data loads

• One pipelined 32-bit data store

• One DMA I/O, up to 64 bits

• One 64-bit cache fill/victim access

L1 Data Memory can be used only to store data.

DMEM_CONTROL Register
The Data Memory Control register (DMEM_CONTROL) contains control bits
for the L1 Data Memory.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-25

Memory

Figure 6-9. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC[1:0] (L1 Data Memory
Configure)

DCBS (L1 Data Cache Bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11. Determines
whether Address bit A[14] or A[23] is used to
select the L1 data cache bank.
0 - Address bit 14 is used to select Bank A or B

for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

See “Example of Mapping Cacheable Address
Space” on page 6-30.

See the Blackfin Processor
Hardware Reference for infor-
mation specific to your part

0xFFE0 0004

L1 Data Memory

6-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The PORT_PREF0 bit selects the data port used to process DAG0
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

For optimal performance with dual DAG reads, DAG0 and DAG1
should be configured for different ports. For example, if
PORT_PREF0 is configured as 1, then PORT_PREF1 should be pro-
grammed to 0.

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both Data Bank A and Data Bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 Cacheability Protection
Lookaside Buffers (CPLBs) used for data (see “L1 Data Cache” on page
6-29). Data CPLBs are disabled by default after reset. When disabled,
only minimal address checking is performed by the L1 memory interface.
This minimal checking generates an exception when the processor:

• Addresses nonexistent (reserved) L1 memory space

• Attempts to perform a nonaligned memory access

• Attempts to access MMR space either using DAG1 or when in
User mode

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 6-67), disabling
CPLBs should be preceded by a CSYNC instruction.

When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-27

Memory

By default after reset, all L1 Data Memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable L2 memory
accesses to be cached. To do this, CPLBs must also be enabled (using the
ENDCPLB bit) and CPLB descriptors (registers DCPLB_DATAx and
DCPLB_ADDRx) must specify chosen memory pages as cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Data SRAM
Accesses to SRAM do not collide unless all of the following are true: the
accesses are to the same 32-bit word polarity (address bits 2 match), the
same 4K byte subbank (address bits 13 and 12 match), the same 16K byte
half bank (address bits 16 match), and the same bank (address bits 21 and
20 match). When an address collision is detected, access is nominally
granted first to the DAGs, then to the store buffer, and finally to the
DMA and cache fill/victim traffic. To ensure adequate DMA bandwidth,
DMA is given highest priority if it has been blocked for more than 16
sequential core clock cycles, or if a second DMA I/O is queued before the
first DMA I/O is processed.

Figure 6-10 shows the L1 Data Memory architecture. In the figure, dotted
lines indicate features that exist only on some Blackfin processors. Please
refer to the hardware reference manual for your particular processor for
more details. While on some processors the EAB and DCB buses shown in
Figure 6-10 connect directly to EBIU and DMA controllers, on deriva-
tives that feature multiple cores or on-chip L2 memories they have to cross
additional arbitration units. Also, these buses are wider than 16 bits on
some parts. For details, refer to the specific Blackfin Processor Hardware
Reference manual for your derivative.

L1 Data Memory

6-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 6-10. L1 Data Memory Architecture

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB 4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

VICTIM
BUFFER

8 X 32 BIT

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

VICTIM
BUFFER

8 X 32 BIT

LOW PRIORITY
WRITE

BUFFER
2 TO 8 X 32 BIT

4 KB

STORE BUFFER
6 X 32 BIT

TO
PROCESSOR
CORE

TO DMA CONTROLLER

TO EBIU (AND L2)

DMA

DCB

DMA

READ

READ

WRITE

WRITE

EAB

32 BIT

32 BIT

32 BIT

64 BIT

32 BIT

32 BIT

32 BIT

64 BIT

LD1 32 BIT

LD0 32 BIT

SD 32 BIT

SRAM SRAM OR CACHE I/O BUFFERS

32
B

IT

32
B

IT

32
B

IT

P
O

R
T

A
P

O
R

T
B

D
A

TA
B

A
N

K
A

H
R

M
TO

S
E

E
IF

TH
IS

B
A

N
K

IS
P

R
E

S
E

N
T)

D
A

TA
B

A
N

K
B

(S
E

E
S

P
E

C
IF

IC
P

R
O

C
E

S
S

O
R

S
C

R
A

TC
H

P
A

D

ON LARGER MEMORY
DERIVATIVES

ONLY

16 BIT

16 BIT

CACHE CONTROL &
MEMORY MANAGEMENT

TO RAB

HIGH PRIORITY
WRITE

BUFFER
4 X 32 BIT

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-29

Memory

L1 Data Cache
For definitions of cache terminology, see “Terminology” on page 6-74.

Unlike instruction cache, which is 4-Way set associative, data cache is
2-Way set associative. When two banks are available and enabled as cache,
additional sets rather than Ways are created. When both Data Bank A and
Data Bank B have memory serving as cache, the DCBS bit in the
DMEM_CONTROL register may be used to control which half of all address
space is handled by which bank of cache memory. The DCBS bit selects
either address bit 14 or 23 to steer traffic between the cache banks. This
provides some control over which addresses alias into the same set. It may
therefore be used to affect which addresses tend to remain resident in
cache by avoiding victimization of repetitively used sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank, the same half bank, and to the same bank. Cache has less apparent
multi-ported behavior than SRAM due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available.

• Write-through with cache line allocation only on reads

• Write-through with cache line allocation on both reads and writes

• Write-back which allocates cache lines on both reads and writes

Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 6-45). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory
page independently.

L1 Data Memory

6-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs will be cached. The default behavior when data CPLBs are dis-
abled is for nothing to be cached.

Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address Space

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache they operate as two indepen-
dent, 16K byte, 2-Way set associative caches that can be independently
mapped into the Blackfin processor address space.

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates Address bit A[14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by
Data Bank A or the cache implemented by Data Bank B.

• If DCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use Data Bank B. All addresses in
which A[14] = 1 use Data Bank A.

In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-31

Memory

• If DCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use Data Bank B. All addresses where
A[23] = 1 use Data Bank A.

In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects Data Bank A instead of Data Bank B.

Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.
Consequently:

Any data in the first 16K byte of memory could be stored
only in Data Bank B.

Any data in the next address range (16K byte through 32K
byte) – 1 could be stored only in Data Bank A.

Any data in the next range (32K byte through 48K byte) – 1
would be stored in Data Bank B.

Alternate mapping would continue.

As a result, the cache operates as if it were a single, contiguous,
2-Way set associative 32K byte cache. Each Way is 16K byte long,
and all data elements with the same first 14 bits of address index to
a unique set in which up to two elements can be stored (one in each
Way).

L1 Data Memory

6-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• If DCBS = 1, A[23] selects Data Bank A instead of Data Bank B.

With DCBS = 1, the system functions more like two independent
caches, each a 2-Way set associative 16K byte cache. Each Bank
serves an alternating set of 8M byte blocks of memory.

For example, Data Bank B caches all data accesses for the first 8M
byte of memory address range. That is, every 8M byte of range vies
for the two line entries (rather than every 16K byte repeat). Like-
wise, Data Bank A caches data located above 8M byte and below
16M byte.

For example, if the application is working from a data set that is
1M byte long and located entirely in the first 8M byte of memory,
it is effectively served by only half the cache, that is, by Data Bank
B (a 2-Way set associative 16K byte cache). In this instance, the
application never derives any benefit from Data Bank A.

For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8M byte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAG0’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

• DAG0 gets its data from Data Bank A for all of its accesses and

• DAG1 gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-33

Memory

Figure 6-11 shows an example of how mapping is performed when
DCBS = 1.

The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

Data Cache Access

The Cache Controller tests the address from the DAGs against the tag
bits. If the logical address is present in L1 cache, a cache hit occurs, and
the data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
via the system interface. The line index and replacement policy for the
Cache Controller determines the cache tag and data space that are allo-
cated for the data coming back from external memory.

Figure 6-11. Data Cache Mapping When DCBS = 1

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

DATA BANK B

DATA BANK B

L1 Data Memory

6-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data
write over the old line.

• If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data.

If the line is dirty, the current contents of the cache are copied back
to external memory before the new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to external memory. The data cache
performs the line fill request to the system as critical (or requested) word
first, and forwards that data to the waiting DAG as it updates the cache
line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a 4-cycle stall. Furthermore, a subsequent
load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
Data Memory cache and generates a high latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “Exceptions” on page 4-47.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-35

Memory

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

• For each store operation, write-through caches initiate a write to
external memory immediately upon the write to cache.

If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to external memory.

• A write-back cache does not write to external memory until the line
is replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on
each data bank. In addition, a two-entry write buffer in the L1 Data
Memory accepts all stores with cache inhibited or store-through protec-
tion. An SSYNC instruction flushes the write buffer.

IPRIO Register and Write Buffer Depth

The Interrupt Priority register (IPRIO) can be used to control the size of
the write buffer on Port A (see “L1 Data Memory Architecture” on page
6-28).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the write buffer increases from two to eight
32-bit words deep. This allows the interrupt service routine to run and
post writes without an initial stall, in the case where the write buffer was
already filled in the low priority interrupt routine. This is most useful

L1 Data Memory

6-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

when posted writes are to a slow external memory device. When returning
from a high priority interrupt service routine to a low priority interrupt
service routine or user mode, the core stalls until the write buffer has com-
pleted the necessary writes to return to a two-deep state. By default, the
write buffer is a fixed two-deep FIFO.

Figure 6-12. Interrupt Priority Register

0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Interrupt Priority Register (IPRIO)

Reset = 0x0000 0000

IPRIO_MARK[0:3] (Priority
Watermark)
0000 - Default, all interrupts

are low priority
0001 - Interrupts 15 through 1

are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority,
interrupts 1 and 0 are
considered high priority

...
1110 - Interrupts 15 and 14

are low priority,
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low
priority, all others are
considered high priority

0xFFE0 2110

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-37

Memory

Data Cache Control Instructions

The processor defines three data cache control instructions that are acces-
sible in User and Supervisor modes. The instructions are PREFETCH, FLUSH,
and FLUSHINV. Examples of each of these instructions can be found in
Chapter 17, “Cache Control.”

• PREFETCH (Data Cache Prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions like a
NOP. It can be used to begin a data fetch prior to when the processor
needs the data, to improve performance.

• FLUSH (Data Cache Flush) causes the data cache to synchronize the
specified cache line with external memory. If the cached data line is
dirty, the instruction writes the line out and marks the line clean in
the data cache. If the specified data cache line is already clean or
does not exist, FLUSH functions like a NOP.

• FLUSHINV (Data Cache Line Flush and Invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to external memory.
The Valid bit in the cache line is then cleared. If the line is not in
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Test Registers

6-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two
additional methods are available to invalidate the data cache when flush-
ing is not required. The first technique directly invalidates Valid bits by
setting the Invalid bit of each cache line to the invalid state. To implement
this technique, additional MMRs (DTEST_COMMAND and DTEST_DATA[1:0])
are available to allow arbitrary reads/writes of all the cache entries directly.
This method is explained in the next section.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 6-9,
“L1 Data Memory Control Register,” on page 6-25), all Valid bits in the
data cache are set to the invalid state. A second write to the DMEM_CONTROL
register to set the DMC[1:0] bits to their previous state then configures the
data memory back to its previous cache/SRAM configuration. An SSYNC
instruction should be run before invalidating the cache and a CSYNC
instruction should be inserted after each of these operations.

Data Test Registers
Like L1 Instruction Memory, L1 Data Memory contains additional
MMRs to allow arbitrary reads/writes of all cache entries directly. The reg-
isters provide a mechanism for data cache test, initialization, and debug.

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
Data Test Data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination
for the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are being accessed, then the DTEST_DATA[0] register is
used.

A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-39

Memory

These figures describe the DTEST registers.

• Figure 6-13, “Data Test Command Register,” on page 6-40

• Figure 6-14, “Data Test Data 1 Register,” on page 6-41

• Figure 6-15, “Data Test Data 0 Register,” on page 6-42

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.

DTEST_COMMAND Register
When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the Data Test Data registers (DTEST DATA[1:0]).

The Data/Instruction Access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Data Test Registers

6-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 6-13. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

Subbank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved/Instruction bit 14 = 0
1 - Select Data Cache Bank/Instruction bit 14 = 1

See the Blackfin Processor
Hardware Reference for infor-
mation specific to your part

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-41

Memory

DTEST_DATA1 Register
Data Test Data registers (DTEST_DATA[1:0]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The Data
Test Data 1 register (DTEST_DATA1) stores the upper 32 bits.

Figure 6-14. Data Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404

Data Test Registers

6-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

DTEST_DATA0 Register
The Data Test Data 0 register (DTEST_DATA0) stores the lower 32 bits of
the 64-bit data to be written, or it contains the lower 32 bits of the desti-
nation for the 64-bit data read. The DTEST_DATA0 register is also used to
access the tag arrays and contains the Valid and Dirty bits, which indicate
the state of the cache line.

Figure 6-15. Data Test Data 0 Register

X XX X X X X X

10 9 8 7 6 5 4 3 2

X X X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 1 0

X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag

Dirty
0 - Cache line unmodified

since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 6-10.

Physical address

Physical address

Physical address
LRU
0 - Way0 is the least
recently used
1 - Way1 is the least
recently used

Reset = Undefined0xFFE0 0400

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-43

Memory

On-chip Level 2 (L2) Memory
Some Blackfin processors provide additional low-latency and high-band-
width SRAM on chip, called Level 2 (L2) memory. L2 memory runs at
CCLK clock rate, but takes multiple CCLK cycles to access.

Simultaneous access to the multibanked, on-chip L2 memory architecture
from the core(s) and system DMA can occur in parallel, provided that
they access different banks. A fixed-priority arbitration scheme resolves
conflicts. The on-chip system DMA controllers share a dedicated 32-bit
data path into the L2 memory system. This interface operates at the SCLK
frequency. Dedicated L2 access from the processor core is also supported.

Derivatives with on-chip L2 memory provide not only the plain memory
itself. They also provide proper bus and DMA infrastructure. Wide buses
between L1 and L2 memory guarantee high data throughput. A dedicated
DMA controller, called IMDMA, supports data exchange between inter-
nal memories.

The cores and IMDMA share a dedicated, low latency, 64-bit data path
into the L2 SRAM memory. At a core clock frequency of 600 MHz, the
peak data transfer rate across this interface is 4.8 GB/second.

On-chip L2 Bank Access
Two L2 access ports, a processor core port and a system port, are provided
to allow concurrent access to the L2 memory, provided that the two ports
access different memory sub-banks. If simultaneous access to the same
memory sub-bank is attempted, collision detection logic in the L2 pro-
vides arbitration. This is a fixed priority arbiter; the DMA port always has
the highest priority, unless the core is granted access to the sub-bank for a
burst transfer. In this case, the L2 finishes the burst transfer before the sys-
tem bus is granted access.

On-chip Level 2 (L2) Memory

6-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Latency
When cache is enabled, the bus between the core and L2 memory is fully
pipelined for contiguous burst transfers. The cache line fill from on-chip
memory behaves the same for instruction and data fetches. Operations
that miss the cache trigger a cache line replacement. This replacement fills
one 256-bit (32-byte) line with four 64-bit reads. Under this condition,
the L1 cache line fills from the L2 SRAM in 9+2+2+2=15 core cycles. In
other words, after nine core cycles, the first 64-bit (8-byte) fill is available
for the processor. Figure 6-16 on page 6-44 shows an example of L2
latency with cache on.

In this example, at the end of 15 core cycles, 32 bytes of instructions or
data have been brought into cache and are available to the sequencer. If all
the instructions contain 16 bits, sixteen instructions are brought into
cache at the end of 15 core cycles. In addition, the first instruction that is

Figure 6-16. L2 Latency With Cache On

64 BITS

E F G H

I J K L
M N O P

A B C DA B C D

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+9 ABCD READY
TO EXECUTE

T+11 EFGH READY
TO EXECUTE

T+13 IJKL READY
TO EXECUTE

T+15 MNOP READY
TO EXECUTE

T+10 A EXECUTES

T+11 B EXECUTES

T+12 C EXECUTES

T+13 D EXECUTES

L2 MEMORY

T+15 F EXECUTES

T+14 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT

NOTE: AFTER F EXECUTES, GHIJKLMNOP
EXECUTE ON CONSECUTIVE CYCLES.

AFTER P IS IN PIPELINE,
NEW CACHE LINE FILL IS INITIATED.

CYCLES

64 BITS 64 BITS 64 BITS

T+9 T+11 T+15T+13

EACH INSTRUCTION FETCH IS 32 BYTES

INSTRUCTION ALIGNMENT UNIT

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-45

Memory

part of the cache-line fill executes on the tenth cycle; the second instruc-
tion executes on the eleventh cycle, and the third instruction executes on
the twelfth cycle—all of them in parallel with the cache line fill.

Each cache line fill is aligned on a 32-byte boundary. When the requested
instruction or data is not 32-byte aligned, the requested item is always
loaded in the first read; each read is forwarded to the core as the line is
filled. Sequential memory accesses miss the cache only when they reach
the end of a cache line.

When on-chip L2 memory is configured as non-cacheable, instruction
fetches and data fetches occur in 64-bit fills. In this case, each fill takes
seven core cycles to complete. As shown in Figure 6-17 on page 6-46,
on-chip L2 memory is configured as non-cacheable. To illustrate the con-
cept of L2 latency with cache off, simple instructions are used that do not
require additional external data fetches. In this case, consecutive instruc-
tions are issued on consecutive core cycles if multiple instructions are
brought into the core in a given fetch.

Memory Protection and Properties
This section describes the Memory Management Unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin processor contains a page based Memory Management Unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at a page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

Memory Protection and Properties

6-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The MMU is implemented as two 16-entry Content Addressable Memory
(CAM) blocks. Each entry is referred to as a Cacheability Protection
Lookaside Buffer (CPLB) descriptor. When enabled, every valid entry in
the MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because the L1 memories are separated into instruction and data memo-
ries, the CPLB entries are also divided between instruction and data
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these
are called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 Instruction Memory Control

Figure 6-17. L2 Latency With Cache Off

64 BITS

E F G H
A B C D

I J K L

A B C D

INSTRUCTION ALIGNMENT UNIT

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+9 ABCD READY
TO EXECUTE

T+10 A EXECUTES

T+11 B EXECUTES

T+12 C EXECUTES

T+13 D EXECUTES

L2 MEMORY

T+18 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT
CYCLES T+9

EACH INSTRUCTION FETCH IS 64 BITS

T

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-47

Memory

(IMEM_CONTROL) and L1 Data Memory Control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 6-2 on page 6-7 and
Figure 6-9 on page 6-25, respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

If valid CPLBs are set up for this space, the default CPLBs are
ignored.

Memory Protection and Properties

6-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Memory Pages
The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

• 1K byte

• 4K byte

• 1M byte

• 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATA[n]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

• Page size

1K byte, 4K byte, 1M byte, 4M byte

• Cacheable/non-cacheable

Accesses to this page use the L1 cache or bypass the cache.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-49

Memory

• If cacheable: write-through/write-back

Data writes propagate directly to memory or are deferred until the
cache line is reallocated. If write-through, allocate on read only, or
read and write.

• Dirty/modified

The data in this page in memory has changed since the CPLB was
last loaded. This must be managed by software and does not
change status automatically.

• Supervisor write access permission

– Enables or disables writes to this page when in Supervisor mode.
– Data pages only.

• User write access permission

– Enables or disables writes to this page when in User mode.
– Data pages only.

• User read access permission

Enables or disables reads from this page when in User mode.

• Valid

Check this bit to determine whether this is valid CPLB data.

• Lock

Keep this entry in MMR; do not participate in CPLB replacement
policy.

Memory Protection and Properties

6-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a Page Descriptor Table, is used; in it can be stored
all the potentially required CPLB descriptors. The specific format for the
Page Descriptor Table is not defined as part of the Blackfin processor
architecture. Different operating systems, which have different memory
management models, can implement Page Descriptor Table structures
that are consistent with the OS requirements. This allows adjustments to
be made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management
When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection lookaside buffer) descriptor exists in
an MMR pair, an exception occurs. This exception places the processor
into Supervisor mode and vectors to the MMU exception handler (see

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-51

Memory

“Exceptions” on page 4-47 for more information). The handler is typically
part of the operating system (OS) kernel that implements the CPLB
replacement policy.

Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the Page Descriptor Table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the Page Descriptor
Table structure to find the correct CPLB descriptor data to load into one
of the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must
be disabled using:

• The Enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

• The Enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors

The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is
dictated by the characteristics of the operating system, usually implements
a modified LRU (Least Recently Used) policy, a round robin scheduling
method, or pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. this operation should now
find a valid CPLB descriptor for the requested address, and it should pro-
ceed normally.

Memory Protection and Properties

6-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

• Instruction page miss

• A page miss on DAG0

• A page miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the Memory Man-
agement Unit (MMU) is not used.

The MMU does not support automatic address translation in
hardware.

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between User and
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in User mode
while the operating system and its services run in Supervisor mode. It is
desirable to protect code and data structures used by the operating system

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-53

Memory

from inadvertent modification by a running User mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in Supervisor mode. If a
write to a protected memory region is attempted while in User mode, an
exception is generated before the memory is modified. Optionally, the
User mode application may be granted read access for data structures that
are useful to the application. Even Supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in Supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a result, if the L1 Instruction Memory is
enabled as cache, then any memory region that contains instructions must
have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based Page
Descriptor Table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.

Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Memory Protection and Properties

6-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Examples of Protected Memory Regions
In Figure 6-18, a starting point is provided for basic CPLB allocation for
Instruction and Data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

Figure 6-18. Examples of Protected Memory Regions

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

ASYNC: CACHEABLE
TWO 1MB PAGES

L1 INSTRUCTION: SRAM
NON-CACHEABLE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

L1 DATA: SRAM
NON-CACHEABLE ONE 4MB PAGE

ASYNC: CACHEABLE
ONE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-55

Memory

ICPLB_DATAx Registers
Figure 6-19 describes the ICPLB Data registers (ICPLB_DATAx).

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Figure 6-19. ICPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Data Registers (ICPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_LOCK

CPLB_VALID

CPLB_L1_CHBL

Clear this bit whenever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Invalid (disabled) CPLB
entry

1 - Valid (enabled) CPLB
entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry

should not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

CPLB_LRUPRIO
See “Instruction Cache Locking by Line” on page 6-16
0 - Low importance
1 - High importance

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For Memory-
mapped
addresses, see
Table 6-2.

Memory Protection and Properties

6-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 6-2. ICPLB Data Register Memory-mapped Addresses

Register Name Memory-mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-57

Memory

DCPLB_DATAx Registers
Figure 6-20 shows the DCPLB Data registers (DCPLB_DATAx).

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Figure 6-20. DCPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Data Registers (DCPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_DIRTY

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through

CPLB_L1_CHBL

Clear this bit when L1 memory is
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_L1_AOW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Valid only if write
through cacheable
(CPLB_VALID = 1,
CPLB_WT = 1)
0 - Allocate cache lines

on reads only
1 - Allocate cache lines

on reads and writes

Valid only if write back cacheable (CPLB_VALID = 1,
CPLB_WT = 0, and CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store
accesses to this page when this bit is 0. The state of
this bit is modified only by writes to this register. The
exception service routine must set this bit.

CPLB_LOCK

CPLB_USER_WR

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry should

not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR
0 - Supervisor mode write

access generates protection
violation exception

1 - Supervisor mode write
access permitted

For Memory-
mapped
addresses, see
Table 6-3.

Memory Protection and Properties

6-58 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 6-3. DCPLB Data Register Memory-mapped Addresses

Register Name Memory-mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-59

Memory

DCPLB_ADDRx Registers
Figure 6-21 shows the DCPLB Address registers (DCPLB_ADDRx).

Figure 6-21. DCPLB Address Registers

Table 6-4. DCPLB Address Register Memory-mapped Addresses

Register Name Memory-mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Address Registers (DCPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for
Match[5:0]

For Memory-
mapped
addresses, see
Table 6-4.

Memory Protection and Properties

6-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ICPLB_ADDRx Registers
Figure 6-22 shows the ICPLB Address registers (ICPLB_ADDRx).

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

Figure 6-22. ICPLB Address Registers

Table 6-4. DCPLB Address Register Memory-mapped Addresses (Cont’d)

Register Name Memory-mapped Address

00 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

ICPLB Address Registers (ICPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for
Match[5:0]

For Memory-
mapped
addresses, see
Table 6-5.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-61

Memory

DCPLB_STATUS and ICPLB_STATUS Registers
Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-
ister (ICPLB_STATUS) identify the CPLB entry that has triggered
CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.

Table 6-5. ICPLB Address Register Memory-mapped Addresses

Register Name Memory-mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C

Memory Protection and Properties

6-62 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bits FAULT_DAG, FAULT_USERSUPV and FAULT_RW in the DCPLB Status regis-
ter (DCPLB_STATUS) are used to identify the CPLB entry that has triggered
the CPLB-related exception (see Figure 6-23).

Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used
to identify the CPLB entry that has triggered the CPLB-related exception
(see Figure 6-24).

Figure 6-23. DCPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_RW

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates the hit/miss
status of the associated CPLB
entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 0008

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-63

Memory

DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
Registers

The DCPLB Address register (DCPLB_FAULT_ADDR) and ICPLB Fault
Address register (ICPLB_FAULT_ADDR) hold the address that has caused a
fault in the L1 Data Memory or L1 Instruction Memory, respectively. See
Figure 6-25 and Figure 6-26.

The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.

Figure 6-24. ICPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X X0X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

Each bit indicates hit/miss
status of associated CPLB
entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 1008

Memory Protection and Properties

6-64 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 6-25. DCPLB Address Register

Figure 6-26. ICPLB Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused
a fault in the L1 Data Memory

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 Data Memory

0xFFE0 000C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
Instruction Memory

Instruction address that has
caused a fault in the L1
Instruction Memory

0xFFE0 100C

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-65

Memory

Memory Transaction Model
Both internal and external memory locations are accessed in little endian
byte order. Figure 6-27 shows a data word stored in register R0 and in
memory at address location addr. B0 refers to the least significant byte of
the 32-bit word.

Figure 6-28 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte B0 in
addr).

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and B0) is stored in the high addresses
(addr+3 and addr+2).

Figure 6-27. Data Stored in Little Endian Order

Figure 6-28. Instructions Stored in Little Endian Order

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0

Load/Store Operation

6-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the
previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-67

Memory

the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a
subsequent instruction.

• Load operations using data previously written will use the updated
values.

• Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation
waiting on its completion, whereas the processor considers the write oper-
ation complete, and the write does not stall the pipeline if it takes more
cycles to propagate the value out to memory. This behavior could cause a
read that occurs in the program source code after a write in the program
flow to actually return its value before the write has been completed.

Load/Store Operation

6-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

This ordering provides significant performance advantages in the opera-
tion of most memory instructions. However, it can cause side effects that
the programmer must be aware of to avoid improper system operation.

When writing to or reading from nonmemory locations such as off-chip
I/O device registers, the order of how read and write operations complete
is often significant. For example, a read of a status register may depend on
a write to a control register. If the address is the same, the read would
return a value from the store buffer rather than from the actual I/O device
register, and the order of the read and write at the register may be
reversed. Both these effects could cause undesirable side effects in the
intended operation of the program and peripheral. To ensure that these
effects do not occur in code that requires precise (strong) ordering of load
and store operations, synchronization instructions (CSYNC or SSYNC)
should be used.

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the store buffer (between the processor core and the L1 memories) has
been flushed before proceeding to the next instruction. Pending core oper-
ations may include any pending interrupts, speculative states (such as
branch predictions), or exceptions.

Consider the following example code sequence:

IF CC JUMP away_from_here;

CSYNC;

R0 = [P0];

away_from_here:

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-69

Memory

In the preceding example code, the CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been
flushed.

• All pending interrupts or exceptions have been processed before
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers
between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

Load/Store Operation

6-70 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the
correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, in the case of an off-chip I/O device, this could cause an unde-
sirable side effect for a peripheral that returns sequential data from a FIFO
or from a register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

On-chip peripherals are guarded against destruction due to speculative
reads. There, a separate strobe triggers the read side-effect when the
instruction actually executes.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this
would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory
address have no side effects. However, for some off-chip memory-mapped

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-71

Memory

devices, such as peripheral data FIFOs, reads are destructive. Each time
the device is read, the FIFO advances, and the data cannot be recovered
and re-read.

When accessing off-chip memory-mapped devices that have state
dependencies on the number of read or write operations on a given
address location, disable interrupts before performing the load or
store operation.

On-chip peripherals are protected against this issue.

Working With Memory
This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment
Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a Misaligned Access exception event (see
“Exceptions” on page 4-47). However, because some datastreams (such as
8-bit video data) can properly be nonaligned in memory, alignment excep-
tions may be disabled by using the DISALGNEXCPT instruction. Moreover,
some instructions in the quad 8-bit group automatically disable alignment
exceptions.

Cache Coherency
For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 6-37), and/or explicit line invalidation
through the core MMRs (see “Data Test Registers” on page 6-38).

Working With Memory

6-72 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Atomic Operations
The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide noninterruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the CC
bit. The sequence of this memory transaction is atomic—hardware bus
locking insures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4G byte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable
regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

Memory-mapped Registers
The MMR reserved space is located at the top of the memory space
(0xFFC0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000–0xFFE0 0000) and core
MMRs (0xFFE0 0000–0xFFFF FFFF).

Like non-memory mapped registers, the core MMRs connect to the 32-bit
wide Register Access Bus (RAB). They operate at CCLK frequency.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-73

Memory

System MMRs connect to the Peripheral Access Bus (PAB), which is
implemented as either a 16-bit or a 32-bit wide bus on specific derivatives.
The PAB bus operates at SCLK rate. Writes to system MMRs do not go
through write buffers nor through store buffers. Rather, there is a simple
bridge between the RAB and the PAB bus that translates between clock
domains (and bus width) only.

On ADSP-BF535 products only, the system MMRs do reside
behind store and write buffers. There, system MMRs behave like
off-chip I/O devices as described in “Load/Store Operation” on
page 6-66. Consequently, SSYNC instructions are required after
store instructions to guarantee strong ordering of MMR accesses.

All MMRs are accessible only in Supervisor mode. Access to MMRs in
User mode generates a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMRs.

Hardware raises an exception when a multi-issue instruction
attempts to simultaneously perform two accesses to MMR space.

Appendix B provides a summary of all Core MMRs.

Core MMR Programming Code Example
Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 6-1 shows the
instructions required to manipulate a generic core MMR.

Terminology

6-74 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Listing 6-1. Core MMR Programming

CLI R0; /* stop interrupts and save IMASK */

P0 = MMR_BASE; /* 32-bit instruction to load base of MMRs */

R1 = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */

BITSET R1, #N; /* set bit N */

[P0 + TIMER_CONTROL_REG] = R1; /* restore control reg */

CSYNC; /* assures that the control reg is written */

STI R0; /* enable interrupts */

The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptible.

Terminology
The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the
cache.

cache line. Same as cache block. In this chapter, cache line is used for
cache block.

cache miss. A memory access that does not match any valid entry in the
cache.

direct-mapped. Cache architecture in which each line has only one place
in which it can appear in the cache. Also described as 1-Way associative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 6-75

Memory

dirty or modified. A state bit, stored along with the tag, indicating
whether the data in the data cache line has been changed since it was cop-
ied from the source memory and, therefore, needs to be updated in that
source memory.

exclusive, clean. The state of a data cache line, indicating that the line is
valid and that the data contained in the line matches that in the source
memory. The data in a clean cache line does not need to be written to
source memory before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.

index. Address portion that is used to select an array element (for example,
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

Level 1 (L1) memory. Memory that is directly accessed by the core with
no intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is
employed.

set. A group of N-line storage locations in the Ways of an N-Way cache,
selected by the INDEX field of the address (see Figure 6-4 on page 6-12).

Terminology

6-76 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

set associative. Cache architecture that limits line placement to a number
of sets (or Ways).

tag. Upper address bits, stored along with the cached data line, to identify
the specific address source in memory that the cached line represents.

valid. A state bit, stored with the tag, indicating that the corresponding
tag and data are current and correct and can be used to satisfy memory
access requests.

victim. A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Way. An array of line storage elements in an N-Way cache (see Figure 6-4
on page 6-12).

write back. A cache write policy, also known as copyback. The write data is
written only to the cache line. The modified cache line is written to source
memory only when it is replaced. Cache lines are allocated on both reads
and writes.

write through. A cache write policy (also known as store through). The
write data is written to both the cache line and to the source memory. The
modified cache line is not written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-1

7 PROGRAM FLOW CONTROL

Instruction Summary

• “Jump” on page 7-2

• “IF CC JUMP” on page 7-5

• “Call” on page 7-8

• “RTS, RTI, RTX, RTN, RTE (Return)” on page 7-10

• “LSETUP, LOOP” on page 7-13

Instruction Overview
This chapter discusses the instructions that control program flow. Users
can take advantage of these instructions to force new values into the Pro-
gram Counter and change program flow, branch conditionally, set up
loops, and call and return from subroutines.

Instruction Overview

7-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Jump

General Form

JUMP (destination_indirect)

JUMP (PC + offset)

JUMP offset

JUMP.S offset

JUMP.L offset

Syntax

JUMP (Preg) ; /* indirect to an absolute (not PC-relative)

address (a) */

JUMP (PC + Preg) ; /* PC-relative, indexed (a) */

JUMP pcrel25m2 ; /* PC-relative, immediate (a) or (b) */
see “Functional Description” on page 7-31

JUMP.S pcrel13m2 ; /* PC-relative, immediate, short (a) */

JUMP.L pcrel25m2 ; /* PC-relative, immediate, long (b) */

JUMP user_label ; /* user-defined absolute address label,

resolved by the assembler/linker to the appropriate PC-relative

instruction (a) or (b) */

Syntax Terminology

Preg: P5–0, SP, FP

pcrelm2: undetermined 25-bit or smaller signed, even relative offset, with
a range of –16,777,216 through 16,777,214 bytes (0xFF00 0000 to
0x00FF FFFE)

pcrel13m2: 13-bit signed, even relative offset, with a range of
–4096 through 4094 bytes (0xF000 to 0x0FFE)

1 This instruction can be used in assembly-level programs when the final distance to the target is
unknown at coding time. The assembler substitutes the opcode for JUMP.S or JUMP.L depending on
the final target. Disassembled code shows the mnemonic JUMP.S or JUMP.L.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-3

Program Flow Control

pcrel25m2: 25-bit signed, even relative offset, with a range of
 –16,777,216 through 16,777,214 bytes (0xFF00 0000 to 0x00FF FFFE)

user_label: valid assembler address label, resolved by the assembler/linker
to a valid PC-relative offset

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Jump instruction forces a new value into the Program Counter (PC) to
change program flow.

In the Indirect and Indexed versions of the instruction, the value in Preg
must be an even number (bit0=0) to maintain 16-bit address alignment.
Otherwise, an odd offset in Preg causes the processor to invoke an align-
ment exception.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Jump instruction cannot be issued in parallel with other instructions.

Instruction Overview

7-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

jump get_new_sample ; /* assembler resolved target, abstract

offsets */

jump (p5) ; /* P5 contains the absolute address of the target

*/

jump (pc + p2) ; /* P2 relative absolute address of the target

and then a presentation of the absolute values for target */

jump 0x224 ; /* offset is positive in 13 bits, so target

address is PC + 0x224, a forward jump */

jump.s 0x224 ; /* same as above with jump “short” syntax */

jump.l 0xFFFACE86 ; /* offset is negative in 25 bits, so target

address is PC + 0x1FA CE86, a backwards jump */

Also See

Call, IF CC JUMP

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-5

Program Flow Control

IF CC JUMP

General Form

IF CC JUMP destination

IF !CC JUMP destination

Syntax

IF CC JUMP pcrel11m2 ; /* branch if CC=1, branch predicted as

not taken (a) */1

IF CC JUMP pcrel11m2 (bp) ; /* branch if CC=1, branch predicted

as taken (a) */

IF !CC JUMP pcrel11m2 ; /* branch if CC=0, branch predicted as

not taken (a) */2

IF !CC JUMP pcrel11m2 (bp) ; /* branch if CC=0, branch pre-

dicted as taken (a) */

IF CC JUMP user_label ; /* user-defined absolute address label,

resolved by the assembler/linker to the appropriate PC-relative

instruction (a) */

IF CC JUMP user_label (bp) ; /* user-defined absolute address

label, resolved by the assembler/linker to the appropriate

PC-relative instruction (a) */

IF !CC JUMP user_label ; /* user-defined absolute address

label, resolved by the assembler/linker to the appropriate

PC-relative instruction (a) */

IF !CC JUMP user_label (bp) ; /* user-defined absolute address

label, resolved by the assembler/linker to the appropriate

PC-relative instruction (a) */

1 CC bit = 1 causes a branch to an address, computed by adding the signed, even offset to the current
PC value.

2 CC bit = 0 causes a branch to an address, computed by adding the signed, even relative offset to the
current PC value.

Instruction Overview

7-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Syntax Terminology

pcrel11m2: 11-bit signed even relative offset, with a range of –1024
through 1022 bytes (0xFC00 to 0x03FE). This value can optionally be
replaced with an address label that is evaluated and replaced during
linking.

user_label: valid assembler address label, resolved by the assembler/linker
to a valid PC-relative offset

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Conditional JUMP instruction forces a new value into the Program
Counter (PC) to change the program flow, based on the value of the CC bit.

The range of valid offset values is –1024 through 1022.

Option

The Branch Prediction appendix (bp) helps the processor improve branch
instruction performance. The default is branch predicted-not-taken. By
appending (bp) to the instruction, the branch becomes predicted-taken.

Typically, code analysis shows that a good default condition is to predict
branch-taken for branches to a prior address (backwards branches), and to
predict branch-not-taken for branches to subsequent addresses (forward
branches).

Flags Affected

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-7

Program Flow Control

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

if cc jump 0xFFFFFE08 (bp) ; /* offset is negative in 11 bits,

so target address is a backwards branch, branch predicted */

if cc jump 0x0B4 ; /* offset is positive, so target offset

address is a forwards branch, branch not predicted */

if !cc jump 0xFFFFFC22 (bp) ; /* negative offset in 11 bits, so

target address is a backwards branch, branch predicted */

if !cc jump 0x120 ; /* positive offset, so target address is a

forwards branch, branch not predicted */

if cc jump dest_label ; /* assembler resolved target, abstract

offsets */

Also See

Jump, Call

Special Applications

None

Instruction Overview

7-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Call

General Form

CALL (destination_indirect

CALL (PC + offset)

CALL offset

Syntax

CALL (Preg) ; /* indirect to an absolute (not PC-relative)

address (a) */

CALL (PC + Preg) ; /* PC-relative, indexed (a) */

CALL pcrel25m2 ; /* PC-relative, immediate (b) */

CALL user_label ; /* user-defined absolute address label,

resolved by the assembler/linker to the appropriate PC-relative

instruction (a) or (b) */

Syntax Terminology

Preg: P5–0 (SP and FP are not allowed as the source register for this
instruction.)

pcrel25m2: 25-bit signed, even, PC-relative offset; can be specified as a
symbolic address label, with a range of –16,777,216 through 16,777,214
(0xFF00 0000 to 0x00FF FFFE) bytes.

user_label: valid assembler address label, resolved by the assembler/linker
to a valid PC-relative offset

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-9

Program Flow Control

Functional Description

The CALL instruction calls a subroutine from an address that a P-register
points to or by using a PC-relative offset. After the CALL instruction exe-
cutes, the RETS register contains the address of the next instruction.

The value in the Preg must be an even value to maintain 16-bit alignment.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

call (p5) ;

call (pc + p2) ;

call 0x123456 ;

call get_next_sample ;

Also See

RTS, RTI, RTX, RTN, RTE (Return), Jump, IF CC JUMP

Special Applications

None

Instruction Overview

7-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

RTS, RTI, RTX, RTN, RTE (Return)

General Form

RTS, RTI, RTX, RTN, RTE

Syntax

RTS ; // Return from Subroutine (a)

RTI ; // Return from Interrupt (a)

RTX ; // Return from Exception (a)

RTN ; // Return from NMI (a)

RTE ; // Return from Emulation (a)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Return instruction forces a return from a subroutine, maskable or
NMI interrupt routine, exception routine, or emulation routine (see
Table 7-1).

Flags Affected

None

Required Mode

Table 7-2 identifies the modes required by the Return instruction.

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-11

Program Flow Control

Table 7-1. Types of Return Instruction

Mnemonic Description

RTS Forces a return from a subroutine by loading the value of the RETS
Register into the Program Counter (PC), causing the processor to fetch
the next instruction from the address contained in RETS. For nested
subroutines, you must save the value of the RETS Register. Otherwise,
the next subroutine CALL instruction overwrites it.

RTI Forces a return from an interrupt routine by loading the value of the
RETI Register into the PC. When an interrupt is generated, the proces-
sor enters a non-interruptible state. Saving RETI to the stack re-enables
interrupt detection so that subsequent, higher priority interrupts can be
serviced (or “nested”) during the current interrupt service routine. If
RETI is not saved to the stack, higher priority interrupts are recognized
but not serviced until the current interrupt service routine concludes.
Restoring RETI back off the stack at the conclusion of the interrupt
service routine masks subsequent interrupts until the RTI instruction
executes. In any case, RETI is protected against inadvertent corruption
by higher priority interrupts.

RTX Forces a return from an exception routine by loading the value of the
RETX Register into the PC.

RTN Forces a return from a non-maskable interrupt (NMI) routine by load-
ing the value of the RETN Register into the PC.

RTE Forces a return from an emulation routine and emulation mode by
loading the value of the RETE Register into the PC. Because only one
emulation routine can run at a time, nesting is not an issue, and saving
the value of the RETE Register is unnecessary.

Table 7-2. Required Mode for the Return Instruction

Mnemonic Required Mode

RTS User & Supervisor

RTI, RTX, and RTN Supervisor only. Any attempt to execute in User mode produces a
protection violation exception.

RTE Emulation only. Any attempt to execute in User mode or Supervi-
sor mode produces an exception.

Instruction Overview

7-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

rts ;

rti ;

rtx ;

rtn ;

rte ;

Also See

Call, --SP (Push), SP++ (Pop)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-13

Program Flow Control

LSETUP, LOOP

General Form

There are two forms of this instruction. The first is:

LOOP loop_name loop_counter

LOOP_BEGIN loop_name

LOOP_END loop_name

The second form is:

LSETUP (Begin_Loop, End_Loop)Loop_Counter

Syntax

For Loop0

LOOP loop_name LC0 ; /* (b) */

LOOP loop_name LC0 = Preg ; /* autoinitialize LC0 (b) */

LOOP loop_name LC0 = Preg >> 1 ; /* autoinit LC0(b) */

LOOP_BEGIN loop_name ; /* define the 1st instruction of loop(b)

*/

LOOP_END loop_name ; /* define the last instruction of the loop

(b) */

/* use any one of the LOOP syntax versions with a LOOP_BEGIN and

a LOOP_END instruction. The name of the loop (“loop_name” in the

syntax) relates the three instructions together. */

LSETUP (pcrel5m2 , lppcrel11m2) LC0 ; /* (b) */

LSETUP (pcrel5m2 , lppcrel11m2) LC0 = Preg ; /* autoinitial-

ize LC0 (b) */

LSETUP (pcrel5m2 , lppcrel11m2) LC0 = Preg >> 1 ; /* autoini-

tialize LC0 (b) */

Instruction Overview

7-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

For Loop1

LOOP loop_name LC1 ; /* (b) */

LOOP loop_name LC1 = Preg ; /* autoinitialize LC1 (b) */

LOOP loop_name LC1 = Preg >> 1 ; /* autoinitialize LC1 (b) */

LOOP_BEGIN loop_name ; /* define the first instruction of the

loop (b) */

LOOP_END loop_name ; /* define the last instruction of the loop

(b) */

/* Use any one of the LOOP syntax versions with a LOOP_BEGIN and

a LOOP_END instruction. The name of the loop (“loop_name” in the

syntax) relates the three instructions together. */

LSETUP (pcrel5m2 , lppcrel11m2) LC1 ; /* (b) */

LSETUP (pcrel5m2 , lppcrel11m2) LC1 = Preg ; /* autoinitial-

ize LC1 (b) */

LSETUP (pcrel5m2 , lppcrel11m2) LC1 = Preg >> 1 ; /* autoini-

tialize LC1 (b) */

Syntax Terminology

Preg: P5–0 (SP and FP are not allowed as the source register for this
instruction.)

pcrel5m2: 5-bit unsigned, even, PC-relative offset; can be replaced by a
symbolic label. The range is 4 to 30, or 25–2.

lppcrel11m2: 11-bit unsigned, even, PC-relative offset for a loop; can be
replaced by a symbolic label. The range is 4 to 2046 (0x0004 to 0x07FE),
or 211–2.

loop_name: a symbolic identifier

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-15

Program Flow Control

Functional Description

The Zero-Overhead Loop Setup instruction provides a flexible,
counter-based, hardware loop mechanism that provides efficient,
zero-overhead software loops. In this context, zero-overhead means that
the software in the loops does not incur a performance or code size penalty
by decrementing a counter, evaluating a loop condition, then calculating
and branching to a new target address.

When the Begin_Loop address is the next sequential address after
the LSETUP instruction, the loop has zero overhead. If the
Begin_Loop address is not the next sequential address after the
LSETUP instruction, there is some overhead that is incurred on loop
entry only.

The architecture includes two sets of three registers each to support two
independent, nestable loops. The registers are Loop_Top (LTn),
Loop_Bottom (LBn) and Loop_Count (LCn). Consequently, LT0, LB0, and
LC0 describe Loop0, and LT1, LB1, and LC1 describe Loop1.

The LOOP and LSETUP instructions are a convenient way to initialize all
three registers in a single instruction. The size of the LOOP and LSETUP
instructions only supports a finite number of bits, so the loop range is lim-
ited. However, LT0 and LT1, LB0 and LB1 and LC0 and LC1 can be
initialized manually using Move instructions if loop length and repetition
count need to be beyond the limits supported by the LOOP and LSETUP syn-
tax. Thus, a single loop can span the entire 4 GB of memory space.

When initializing LT0 and LT1, LB0 and LB1, and LC0 and LC1 man-
ually, make sure that Loop_Top (LTn) and Loop_Bottom (LBn) are
configured before setting Loop_Count (LCn) to the desired loop
count value.

The instruction syntax supports an optional initialization value from a
P-register or P-register divided by 2.

Instruction Overview

7-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The LOOP, LOOP_BEGIN, LOOP_END syntax is generally more readable and
user friendly. The LSETUP syntax contains the same information, but in a
more compact form.

If LCn is nonzero when the fetch address equals LBn, the processor decre-
ments LCn and places the address in LTn into the PC. The loop always
executes once through because Loop_Count is evaluated at the end of the
loop.

There are two special cases for small loop count values. A value of 0 in
Loop_Count causes the hardware loop mechanism to neither decrement or
loopback, causing the instructions enclosed by the loop pointers to be exe-
cuted as straight-line code. A value of 1 in Loop_Count causes the hardware
loop mechanism to decrement only (not loopback), also causing the
instructions enclosed by the loop pointers to be executed as straight-line
code.

In the instruction syntax, the designation of the loop counter–LC0 or LC1–
determines which loop level is initialized. Consequently, to initialize
Loop0, code LC0; to initialize Loop1, code LC1.

In the case of nested loops that end on the same instruction, the processor
requires Loop0 to describe the outer loop and Loop1 to describe the inner
loop. The user is responsible for meeting this requirement.

For example, if LB0=LB1, then the processor assumes loop 1 is the inner
loop and loop 0 the outer loop.

Just like entries in any other register, loop register entries can be saved and
restored. If nesting beyond two loop levels is required, the user can explic-
itly save the outermost loop register values, re-use the registers for an inner
loop, and then restore the outermost loop values before terminating the
inner loop. In such a case, remember that loop 0 must always be outside of
loop 1. Alternately, the user can implement the outermost loop in soft-
ware with the Conditional Jump structure.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-17

Program Flow Control

Begin_Loop, the value loaded into LTn, is a 5-bit, PC-relative, even offset
from the current instruction to the first instruction in the loop. The user
is required to preserve half-word alignment by maintaining even values in
this register. The offset is interpreted as a one’s complement, unsigned
number, eliminating backwards loops.

End_Loop, the value loaded into LBn, is an 11-bit, unsigned, even, PC-rela-
tive offset from the current instruction to the last instruction of the loop.

When using the LSETUP instruction, Begin_Loop and End_Loop are typi-
cally address labels. The linker replaces the labels with offset values.

A loop counter register (LC0 or LC1) counts the trips through the loop.
The register contains a 32-bit unsigned value, supporting as many as
4,294,967,294 trips through the loop. The loop is disabled (subsequent
executions of the loop code pass through without reiterating) when the
loop counter equals 0.

The last instruction of the loop must not be any of the following
instructions.

• Jump

• Conditional Branch

• Call

• CSYNC

• SSYNC

• Return (RTS, RTN, etc.)

As long as the hardware loop is active (Loop_Count is nonzero), any of
these forbidden instructions at the End_Loop address produces undefined
execution, and no exception is generated. Forbidden End_Loop

Instruction Overview

7-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

instructions that appear anywhere else in the defined loop execute nor-
mally. Branch instructions that are located anywhere else in the defined
loop execute normally.

Also, the last instruction in the loop must not modify the registers that
define the currently active loop (LCn, LTn, or LBn). User modifications to
those registers while the hardware accesses them produces undefined exe-
cution. Software can legally modify the loop counter at any other location
in the loop.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

lsetup (4, 4) lc0 ;

lsetup (poll_bit, end_poll_bit) lc0 ;

lsetup (4, 6) lc1 ;

lsetup (FIR_filter, bottom_of_FIR_filter) lc1 ;

lsetup (4, 8) lc0 = p1 ;

lsetup (4, 8) lc0 = p1>>1 ;

loop DoItSome LC0 ; /* define loop ‘DoItSome’ with Loop Counter

0 */

loop_begin DoItSome ; /* place before the first instruction in

the loop */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 7-19

Program Flow Control

loop_end DoItSome ; /* place after the last instruction in the

loop */

loop MyLoop LC1 ; /* define loop ‘MyLoop’ with Loop Counter 1

*/

loop_begin MyLoop ; /* place before the first instruction in

the loop */

loop_end MyLoop ; /* place after the last instruction in the

loop */

Also See

IF CC JUMP, Jump

Special Applications

None

Instruction Overview

7-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-1

8 LOAD / STORE

Instruction Summary

• “Load Immediate” on page 8-3

• “Load Pointer Register” on page 8-7

• “Load Data Register” on page 8-10

• “Load Half-Word – Zero-Extended” on page 8-15

• “Load Half-Word – Sign-Extended” on page 8-19

• “Load High Data Register Half” on page 8-23

• “Load Low Data Register Half” on page 8-27

• “Load Byte – Zero-Extended” on page 8-31

• “Load Byte – Sign-Extended” on page 8-34

• “Store Pointer Register” on page 8-37

• “Store Data Register” on page 8-40

• “Store High Data Register Half” on page 8-45

• “Store Low Data Register Half” on page 8-49

• “Store Byte” on page 8-54

Instruction Overview

8-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Overview
This chapter discusses the load/store instructions. Users can take advan-
tage of these instructions to load and store immediate values, pointer
registers, data registers or data register halves, and half words (zero or sign
extended).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-3

Load / Store

Load Immediate

General Form

register = constant

A1 = A0 = 0

Syntax

Half-Word Load

reg_lo = uimm16 ; /* 16-bit value into low-half data or

address register (b) */

reg_hi = uimm16 ; /* 16-bit value into high-half data or

address register (b) */

Zero Extended

reg = uimm16 (Z) ; /* 16-bit value, zero-extended, into data or

address register (b) */

A0 = 0 ; /* Clear A0 register (b) */

A1 = 0 ; /* Clear A1 register (b) */

A1 = A0 = 0 ; /* Clear both A1 and A0 registers (b) */

Sign Extended

Dreg = imm7 (X) ; /* 7-bit value, sign extended, into Dreg (a)

*/

Preg = imm7 (X) ; /* 7-bit value, sign extended, into Preg

(a) */

reg = imm16 (X) ; /* 16-bit value, sign extended, into data or

address register (b) */

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

Instruction Overview

8-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

reg_lo: R7–0.L, P5–0.L, SP.L, FP.L, I3–0.L, M3–0.L, B3–0.L, L3–0.L

reg_hi: R7–0.H, P5–0.H, SP.H, FP.H, I3–0.H, M3–0.H, B3–0.H, L3–0.H

reg: R7–0, P5–0, SP, FP, I3–0, M3–0, B3–0, L3–0

imm7: 7-bit signed field, with a range of –64 through 63

imm16: 16-bit signed field, with a range of –32,768 through 32,767
(0x800 through 0x7FFF)

uimm16: 16-bit unsigned field, with a range of 0 through 65,535 (0x0000
through 0xFFFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Immediate instruction loads immediate values, or explicit con-
stants, into registers.

The instruction loads a 7-bit or 16-bit quantity, depending on the size of
the immediate data. The range of constants that can be loaded is 0x8000
through 0x7FFF, equivalent to –32768 through +32767.

The only values that can be immediately loaded into 40-bit Accumulator
registers are zeros.

Sixteen-bit half-words can be loaded into either the high half or low half
of a register. The load operation leaves the unspecified half of the register
intact.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-5

Load / Store

Loading a 32-bit value into a register using Load Immediate requires two
separate instructions—one for the high and one for the low half. For
example, to load the address “foo” into register P3, write:

p3.h = foo ;

p3.1 = foo ;

The assembler automatically selects the correct half-word portion of the
32-bit literal for inclusion in the instruction word.

The zero-extended versions fill the upper bits of the destination register
with zeros. The sign-extended versions fill the upper bits with the sign of
the constant value.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The accumulator version of the Load Immediate instruction can be issued
in parallel with other instructions.

Example

r7 = 63 (z) ;

p3 = 12 (z) ;

r0 = -344 (x) ;

r7 = 436 (z) ;

m2 = 0x89ab (z) ;

p1 = 0x1234 (z) ;

m3 = 0x3456 (x) ;

l3.h = 0xbcde ;

Instruction Overview

8-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

a0 = 0 ;

a1 = 0 ;

a1 = a0 = 0 ;

Also See

Load Pointer Register

Special Applications

Use the Load Immediate instruction to initialize registers.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-7

Load / Store

Load Pointer Register

General Form

P-register = [indirect_address]

Syntax

Preg = [Preg] ; /* indirect (a) */

Preg = [Preg ++] ; /* indirect, post-increment (a) */

Preg = [Preg --] ; /* indirect, post-decrement (a) */

Preg = [Preg + uimm6m4] ; /* indexed with small offset (a) */

Preg = [Preg + uimm17m4] ; /* indexed with large offset

(b) */

Preg = [Preg - uimm17m4] ; /* indexed with large offset

(b) */

Preg = [FP - uimm7m4] ; /* indexed FP-relative (a) */

Syntax Terminology

Preg: P5–0, SP, FP

uimm6m4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimm17m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x0000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Instruction Overview

8-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Functional Description

The Load Pointer Register instruction loads a 32-bit P-register with a
32-bit word from an address specified by a P-register.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

Options

The Load Pointer Register instruction supports the following options.

• Post-increment the source pointer by 4 bytes.

• Post-decrement the source pointer by 4 bytes.

• Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

• Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

• Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (useful to access
arguments from a called function) can be accomplished using one of the
other versions of this instruction. Preg includes the Frame Pointer and
Stack Pointer.

Auto-increment or auto-decrement pointer registers cannot also be the
destination of a Load instruction. For example, sp=[sp++] is not a valid
instruction because it prescribes two competing values for the Stack
Pointer–the data returned from memory, and post-incremented SP++.
Similarly, P0=[P0++] and P1=[P1++], etc. are invalid. Such an instruction
causes an undefined instruction exception.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-9

Load / Store

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

p3 = [p2] ;

p5 = [p0 ++] ;

p2 = [sp --] ;

p3 = [p2 + 8] ;

p0 = [p2 + 0x4008] ;

p1 = [fp - 16] ;

Also See

Load Immediate, SP++ (Pop), SP++ (Pop Multiple)

Special Applications

None

Instruction Overview

8-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Data Register

General Form

D-register = [indirect_address]

Syntax

Dreg = [Preg] ; /* indirect (a) */

Dreg = [Preg ++] ; /* indirect, post-increment (a) */

Dreg = [Preg --] ; /* indirect, post-decrement (a) */

Dreg = [Preg + uimm6m4] ; /* indexed with small offset (a) */

Dreg = [Preg + uimm17m4] ; /* indexed with large offset

(b) */

Dreg = [Preg - uimm17m4] ; /* indexed with large offset

(b) */

Dreg = [Preg ++ Preg] ; /* indirect, post-increment index

(a) */1

Dreg = [FP - uimm7m4] ; /* indexed FP-relative (a) */

Dreg = [Ireg] ; /* indirect (a) */

Dreg = [Ireg ++] ; /* indirect, post-increment (a) */

Dreg = [Ireg --] ; /* indirect, post-decrement (a) */

Dreg = [Ireg ++ Mreg] ; /* indirect, post-increment index

(a) */1

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

Ireg: I3–0

Mreg: M3–0

1 See “Indirect and Post-Increment Index Addressing” on page 8-12.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-11

Load / Store

uimm6m4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimm17m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x0000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Data Register instruction loads a 32-bit word into a 32-bit
D-register from a memory location. The Source Pointer register can be a
P-register, I-register, or the Frame Pointer.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Instruction Overview

8-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Options

The Load Data Register instruction supports the following options.

• Post-increment the source pointer by 4 bytes to maintain word
alignment.

• Post-decrement the source pointer by 4 bytes to maintain word
alignment.

• Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

• Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

• Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (useful to access
arguments from a called function) can be accomplished using one of the
other versions of this instruction. Preg includes the Frame Pointer and
Stack Pointer.

Indirect and Post-Increment Index Addressing

The syntax of the form:

Dest = [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dest = [Src_1] ; /* load the 32-bit destination, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed

by Src_2 */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-13

Load / Store

where:

• Dest is the destination register. (Dreg in the syntax example).

• Src_1 is the first source register on the right-hand side of the
equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3 = [p0] ;

r7 = [p1 ++] ;

r2 = [sp --] ;

r6 = [p2 + 12] ;

r0 = [p4 + 0x800C] ;

Instruction Overview

8-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

r1 = [p0 ++ p1] ;

r5 = [fp -12] ;

r2 = [i2] ;

r0 = [i0 ++] ;

r0 = [i0 --] ;

/* Before indirect post-increment indexed addressing*/

r7 = 0 ;

i3 = 0x4000 ; /* Memory location contains 15, for example.*/

m0 = 4 ;

r7 = [i3 ++ m0] ;

/* Afterwards . . .*/

/* r7 = 15 from memory location 0x4000*/

/* i3 = i3 + m0 = 0x4004*/

/* m0 still equals 4*/

Also See

Load Immediate

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-15

Load / Store

Load Half-Word – Zero-Extended

General Form

D-register = W [indirect_address] (Z)

Syntax

Dreg = W [Preg] (Z) ; /* indirect (a)*/

Dreg = W [Preg ++] (Z) ; /* indirect, post-increment (a)*/

Dreg = W [Preg --] (Z) ; /* indirect, post-decrement (a)*/

Dreg = W [Preg + uimm5m2] (Z) ; /* indexed with small offset

(a) */

Dreg = W [Preg + uimm16m2] (Z) ; /* indexed with large offset

(b) */

Dreg = W [Preg - uimm16m2] (Z) ; /* indexed with large offset

(b) */

Dreg = W [Preg ++ Preg] (Z) ; /* indirect, post-increment

index (a) */1

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

uimm5m2: 5-bit unsigned field that must be a multiple of 2, with a range of
0 through 30 bytes

uimm16m2: 16-bit unsigned field that must be a multiple of 2, with a range
of 0 through 65,534 bytes (0x0000 through 0xFFFC)

1 See “Indirect and Post-Increment Index Addressing” on page 8-17.

Instruction Overview

8-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Half-Word – Zero-Extended instruction loads 16 bits from a
memory location into the lower half of a 32-bit data register. The instruc-
tion zero-extends the upper half of the register. The Pointer register is a
P-register.

The indirect address and offset must yield an even numbered address to
maintain 2-byte half-word address alignment. Failure to maintain proper
alignment causes a misaligned memory access exception.

Options

The Load Half-Word – Zero-Extended instruction supports the following
options.

• Post-increment the source pointer by 2 bytes.

• Post-decrement the source pointer by 2 bytes.

• Offset the source pointer with a small (5-bit), half-word-aligned
(even), unsigned constant.

• Offset the source pointer with a large (17-bit), half-word-aligned
(even), signed constant.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-17

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of the form:

Dest = W [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dest = [Src_1] ; /* load the 32-bit destination, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed

by Src_2 */

where:

• Dest is the destination register. (Dreg in the syntax example).

• Src_1 is the first source register on the right-hand side of the
equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the instruction functions as a simple, non-incrementing
load. For example, r0 = W[p2++p2](z) functions as r0 = W[p2](z).

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

8-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3 = w [p0] (z) ;

r7 = w [p1 ++] (z) ;

r2 = w [sp --] (z) ;

r6 = w [p2 + 12] (z) ;

r0 = w [p4 + 0x8004] (z) ;

r1 = w [p0 ++ p1] (z) ;

Also See

Load Half-Word – Sign-Extended, Load Low Data Register Half, Load
High Data Register Half, Load Data Register

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-19

Load / Store

Load Half-Word – Sign-Extended

General Form

D-register = W [indirect_address] (X)

Syntax

Dreg = W [Preg] (X) ; // indirect (a)

Dreg = W [Preg ++] (X) ; // indirect, post-increment (a)

Dreg = W [Preg --] (X) ; // indirect, post-decrement (a)

Dreg = W [Preg + uimm5m2] (X) ; /* indexed with small offset

(a) */

Dreg = W [Preg + uimm16m2] (X) ; /* indexed with large offset

(b) */

Dreg = W [Preg - uimm16m2] (X) ; /* indexed with large offset

(b) */

Dreg = W [Preg ++ Preg] (X) ; /* indirect, post-increment

index (a) */1

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

uimm5m2: 5-bit unsigned field that must be a multiple of 2, with a range of
0 through 30 bytes

uimm16m2: 16-bit unsigned field that must be a multiple of 2, with a range
of –0 through 65,534 bytes (0x0000 through 0xFFFE)

1 See “Indirect and Post-Increment Index Addressing” on page 8-21.

Instruction Overview

8-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Half-Word – Sign-Extended instruction loads 16 bits
sign-extended from a memory location into a 32-bit data register. The
Pointer register is a P-register. The MSB of the number loaded is repli-
cated in the whole upper-half word of the destination D-register.

The indirect address and offset must yield an even numbered address to
maintain 2-byte half-word address alignment. Failure to maintain proper
alignment causes a misaligned memory access exception.

Options

The Load Half-Word – Sign-Extended instruction supports the following
options.

• Post-increment the source pointer by 2 bytes.

• Post-decrement the source pointer by 2 bytes.

• Offset the source pointer with a small (5-bit), half-word-aligned
(even), unsigned constant.

• Offset the source pointer with a large (17-bit), half-word-aligned
(even), signed constant.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-21

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of the form:

Dest = W [Src_1 ++ Src_2] (X)

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dest = [Src_1] ; /* load the 32-bit destination, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed

by Src_2 */

where:

• Dest is the destination register. (Dreg in the syntax example).

• Src_1 is the first source register on the right-hand side of the
equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized
indirect address cadence. The indirect, post-increment index ver-
sion must have separate P-registers for the input operands. If a
common Preg is used for the inputs, the instruction functions as a
simple, non-incrementing load. For example, r0 = W[p2++p2]
functions as r0 = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

8-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3 = w [p0] (x) ;

r7 = w [p1 ++] (x) ;

r2 = w [sp --] (x) ;

r6 = w [p2 + 12] (x) ;

r0 = w [p4 + 0x800E] (x) ;

r1 = w [p0 ++ p1] (x) ;

Also See

Load Half-Word – Zero-Extended, Load Low Data Register Half, Load
High Data Register Half

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-23

Load / Store

Load High Data Register Half

General Form

Dreg_hi = W [indirect_address]

Syntax

Dreg_hi = W [Ireg] ; /* indirect data addressing (a)*/

Dreg_hi = W [Ireg ++] ; /* indirect, post-increment data

addressing (a) */

Dreg_hi = W [Ireg --] ; /* indirect, post-decrement data

addressing (a) */

Dreg_hi = W [Preg] ; /* indirect (a)*/

Dreg_hi = W [Preg ++ Preg] ; /* indirect, post-increment

index (a) */1

Syntax Terminology

Dreg_hi: R7–0.H

Preg: P5–0, SP, FP

Ireg: I3–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Load High Data Register Half instruction loads 16 bits from a mem-
ory location indicated by an I-register or a P-register into the most
significant half of a 32-bit data register. The operation does not affect the
least significant half.

1 See “Indirect and Post-Increment Index Addressing” on page 8-25.

Instruction Overview

8-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The indirect address must be even to maintain 2-byte half-word address
alignment. Failure to maintain proper alignment causes a misaligned
memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

The Load High Data Register Half instruction supports the following
options.

• Post-increment the source pointer I-register by 2 bytes to maintain
half-word alignment.

• Post-decrement the source pointer I-register by 2 bytes to maintain
half-word alignment.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-25

Load / Store

Indirect and Post-Increment Index Addressing

Dst_hi = [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dst_hi = [Src_1] ; /* load the half-word into the upper half of

the destination register, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed

by Src_2 */

where:

• Dst_hi is the most significant half of the destination register.
(Dreg_hi in the syntax example).

• Src_1 is the memory source pointer register on the right-hand side
of the syntax.

• Src_2 is the increment pointer register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the instruction functions as a simple, non-incrementing
load. For example, r0.h = W[p2++p2] functions as r0.h = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

8-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For more information, see “Issuing Parallel Instructions” on page 20-1.

Example

r3.h = w [i1] ;

r7.h = w [i3 ++] ;

r1.h = w [i0 --] ;

r2.h = w [p4] ;

r5.h = w [p2 ++ p0] ;

Also See

Load Low Data Register Half, Load Half-Word – Zero-Extended, Load
Half-Word – Sign-Extended

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-27

Load / Store

Load Low Data Register Half

General Form

Dreg_lo = W [indirect_address]

Syntax

Dreg_lo = W [Ireg] ; /* indirect data addressing (a)*/

Dreg_lo = W [Ireg ++] ; /* indirect, post-increment data

addressing (a) */

Dreg_lo = W [Ireg --] ; /* indirect, post-decrement data

addressing (a) */

Dreg_lo = W [Preg] ; /* indirect (a)*/

Dreg_lo = W [Preg ++ Preg] ; /* indirect, post-increment

index (a) */1

Syntax Terminology

Dreg_lo: R7–0.L

Preg: P5–0, SP, FP

Ireg: I3–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Load Low Data Register Half instruction loads 16 bits from a mem-
ory location indicated by an I-register or a P-register into the least
significant half of a 32-bit data register. The operation does not affect the
most significant half of the data register.

1 See “Indirect and Post-Increment Index Addressing” on page 8-29.

Instruction Overview

8-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The indirect address must be even to maintain 2-byte half-word address
alignment. Failure to maintain proper alignment causes an misaligned
memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

The Load Low Data Register Half instruction supports the following
options.

• Post-increment the source pointer I-register by 2 bytes.

• Post-decrement the source pointer I-register by 2 bytes.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-29

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of the form:

Dst_lo = [Src_1 ++ Src_2]

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

Dst_lo = [Src_1] ; /* load the half-word into the lower half of

the destination register, indirect*/

Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed

by Src_2 */

where:

• Dst_lo is the least significant half of the destination register.
(Dreg_lo in the syntax example).

• Src_1 is the memory source pointer register on the right side of the
syntax.

• Src_2 is the increment index register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the instruction functions as a simple, non-incrementing
load. For example, r0.l = W[p2++p2] functions as r0.l = W[p2].

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

8-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For more information, see “Issuing Parallel Instructions” on page 20-1.

Example

r3.l = w[i1] ;

r7.l = w[i3 ++] ;

r1.l = w[i0 --] ;

r2.l = w[p4] ;

r5.l = w[p2 ++ p0] ;

Also See

Load High Data Register Half, Load Half-Word – Zero-Extended, Load
Half-Word – Sign-Extended

Special Applications

To read consecutive, aligned 16-bit values for high-performance DSP
operations, use the Load Data Register instructions instead of these
Half-Word instructions. The Half-Word Load instructions use only half
of the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-31

Load / Store

Load Byte – Zero-Extended

General Form

D-register = B [indirect_address] (Z)

Syntax

Dreg = B [Preg] (Z) ; /* indirect (a)*/

Dreg = B [Preg ++] (Z) ; /* indirect, post-increment (a)*/

Dreg = B [Preg --] (Z) ; /* indirect, post-decrement (a)*/

Dreg = B [Preg + uimm15] (Z) ; /* indexed with offset (b)*/

Dreg = B [Preg - uimm15] (Z) ; /* indexed with offset (b)*/

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

uimm15: 15-bit unsigned field, with a range of 0 through 32,767 bytes
(0x0000 through 0x7FFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Byte – Zero-Extended instruction loads an 8-bit byte,
zero-extended to 32 bits indicated by an I-register or a P-register, from a
memory location into a 32-bit data register. Fill the D-register bits 31–8
with zeros.

The indirect address and offset have no restrictions for memory address
alignment.

Instruction Overview

8-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Options

The Load Byte – Zero-Extended instruction supports the following
options.

• Post-increment the source pointer by 1 byte.

• Post-decrement the source pointer by 1 byte.

• Offset the source pointer with a 16-bit signed constant.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-33

Load / Store

Example

r3 = b [p0] (z) ;

r7 = b [p1 ++] (z) ;

r2 = b [sp --] (z) ;

r0 = b [p4 + 0xFFFF800F] (z) ;

Also See

Load Byte – Sign-Extended

Special Applications

None

Instruction Overview

8-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Byte – Sign-Extended

General Form

D-register = B [indirect_address] (X)

Syntax

Dreg = B [Preg] (X) ; /* indirect (a)*/

Dreg = B [Preg ++] (X) ; /* indirect, post-increment (a)*/

Dreg = B [Preg --] (X) ; /* indirect, post-decrement (a)*/

Dreg = B [Preg + uimm15] (X) ; /* indexed with offset (b)*/

Dreg = B [Preg - uimm15] (X) ; /* indexed with offset (b)*/

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

uimm15: 15-bit unsigned field, with a range of 0 through 32,767 bytes
(0x0000 through 0x7FFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Load Byte – Sign-Extended instruction loads an 8-bit byte,
sign-extended to 32 bits, from a memory location indicated by a P-register
into a 32-bit data register. The Pointer register is a P-register. Fill the
D-register bits 31–8 with the most significant bit of the loaded byte.

The indirect address and offset have no restrictions for memory address
alignment.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-35

Load / Store

Options

The Load Byte – Sign-Extended instruction supports the following
options.

• Post-increment the source pointer by 1 byte.

• Post-decrement the source pointer by 1 byte.

• Offset the source pointer with a 16-bit signed constant.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Instruction Overview

8-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

r3 = b [p0] (x) ;

r7 = b [p1 ++](x) ;

r2 = b [sp --] (x) ;

r0 = b [p4 + 0xFFFF800F](x) ;

Also See

Load Byte – Zero-Extended

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-37

Load / Store

Store Pointer Register

General Form

[indirect_address] = P-register

Syntax

[Preg] = Preg ; /* indirect (a)*/

[Preg ++] = Preg ; /* indirect, post-increment (a)*/

[Preg --] = Preg ; /* indirect, post-decrement (a)*/

[Preg + uimm6m4] = Preg ; /* indexed with small offset (a)*/

[Preg + uimm17m4] = Preg ; /* indexed with large offset (b)*/

[Preg - uimm17m4] = Preg ; /* indexed with large offset (b)*/

[FP - uimm7m4] = Preg ; /* indexed FP-relative (a)*/

Syntax Terminology

Preg: P5–0, SP, FP

uimm6m4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimm17m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x000 0000 through 0x0001 FFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Instruction Overview

8-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Functional Description

The Store Pointer Register instruction stores the contents of a 32-bit
P-register to a 32-bit memory location. The Pointer register is a P-register.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

Options

The Store Pointer Register instruction supports the following options.

• Post-increment the destination pointer by 4 bytes.

• Post-decrement the destination pointer by 4 bytes.

• Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

• Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

• Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (useful to access
arguments from a called function) can be accomplished using one of the
other versions of this instruction. Preg includes the Frame Pointer and
Stack Pointer.

Flags Affected

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-39

Load / Store

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

[p2] = p3 ;

[sp ++] = p5 ;

[p0 --] = p2 ;

[p2 + 8] = p3 ;

[p2 + 0x4444] = p0 ;

[fp -12] = p1 ;

Also See

--SP (Push), --SP (Push Multiple)

Special Applications

None

Instruction Overview

8-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Store Data Register

General Form

[indirect_address] = D-register

Syntax

Using Pointer Registers

[Preg] = Dreg ; /* indirect (a)*/

[Preg ++] = Dreg ; /* indirect, post-increment (a)*/

[Preg --] = Dreg ; /* indirect, post-decrement (a)*/

[Preg + uimm6m4] = Dreg ; /* indexed with small offset (a)*/

[Preg + uimm17m4] = Dreg ; /* indexed with large offset (b)*/

[Preg - uimm17m4] = Dreg ; /* indexed with large offset (b)*/

[Preg ++ Preg] = Dreg ; /* indirect, post-increment index (a)

*/1

[FP - uimm7m4] = Dreg ; /* indexed FP-relative (a)*/

Using Data Address Generator (DAG) Registers

[Ireg] = Dreg ; /* indirect (a)*/

[Ireg ++] = Dreg ; /* indirect, post-increment (a)*/

[Ireg --] = Dreg ; /* indirect, post-decrement (a)*/

[Ireg ++ Mreg] = Dreg ; /* indirect, post-increment index (a)

*/

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

Ireg: I3–0

1 See “Indirect and Post-Increment Index Addressing” on page 8-43.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-41

Load / Store

Mreg: M3–0

uimm6m4: 6-bit unsigned field that must be a multiple of 4, with a range of
0 through 60 bytes

uimm7m4: 7-bit unsigned field that must be a multiple of 4, with a range of
4 through 128 bytes

uimm17m4: 17-bit unsigned field that must be a multiple of 4, with a range
of 0 through 131,068 bytes (0x0000 through 0xFFFC)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Store Data Register instruction stores the contents of a 32-bit D-reg-
ister to a 32-bit memory location. The destination Pointer register can be
a P-register, I-register, or the Frame Pointer.

The indirect address and offset must yield an even multiple of 4 to main-
tain 4-byte word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.

Instruction Overview

8-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

The Store Data Register instruction supports the following options.

• Post-increment the destination pointer by 4 bytes.

• Post-decrement the destination pointer by 4 bytes.

• Offset the source pointer with a small (6-bit), word-aligned (multi-
ple of 4), unsigned constant.

• Offset the source pointer with a large (18-bit), word-aligned (mul-
tiple of 4), signed constant.

• Frame Pointer (FP) relative and offset with a 7-bit, word-aligned
(multiple of 4), negative constant.

The indexed FP-relative form is typically used to access local variables in a
subroutine or function. Positive offsets relative to FP (such as is useful to
access arguments from a called function) can be accomplished using one
of the other versions of this instruction. Preg includes the Frame Pointer
and Stack Pointer.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-43

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of the form:

[Dst_1 ++ Dst_2] = Src

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

[Dst_1] = Src ; /* load the 32-bit source, indirect*/

Dst_1 += Dst_2 ; /* post-increment Dst_1 by a quantity indexed

by Dst_2 */

where:

• Src is the source register. (Dreg in the syntax example).

• Dst_1 is the memory destination register on the left side of the
equation.

• Dst_2 is the increment index register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

8-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

[p0] = r3 ;

[p1 ++] = r7 ;

[sp --] = r2 ;

[p2 + 12] = r6 ;

[p4 - 0x1004] = r0 ;

[p0 ++ p1] = r1 ;

[fp - 28] = r5 ;

[i2] = r2 ;

[i0 ++] = r0 ;

[i0 --] = r0 ;

[i3 ++ m0] = r7 ;

Also See

Load Immediate

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-45

Load / Store

Store High Data Register Half

General Form

W [indirect_address] = Dreg_hi

Syntax

W [Ireg] = Dreg_hi ; /* indirect data addressing (a)*/

W [Ireg ++] = Dreg_hi ; /* indirect, post-increment data

addressing (a) */

W [Ireg --] = Dreg_hi ; /* indirect, post-decrement data

addressing (a) */

W [Preg] = Dreg_hi ; /* indirect (a)*/

W [Preg ++ Preg] = Dreg_hi ; /* indirect, post-increment

index (a) */1

Syntax Terminology

Dreg_hi: P7–0.H

Preg: P5–0, SP, FP

Ireg: I3–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Store High Data Register Half instruction stores the most significant
16 bits of a 32-bit data register to a 16-bit memory location. The Pointer
register is either an I-register or a P-register.

1 See “Indirect and Post-Increment Index Addressing” on page 8-47.

Instruction Overview

8-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The indirect address and offset must yield an even number to maintain
2-byte half-word address alignment. Failure to maintain proper alignment
causes a misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

The Store High Data Register Half instruction supports the following
options.

• Post-increment the destination pointer I-register by 2 bytes.

• Post-decrement the destination pointer I-register by 2 bytes.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-47

Load / Store

Indirect and Post-Increment Index Addressing

The syntax of the form:

[Dst_1 ++ Dst_2] = Src_hi

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

[Dst_1] = Src_hi ; /* store the upper half of the source regis-

ter, indirect*/

Dst_1 += Dst_2 ; /* post-increment Dst_1 by a quantity indexed

by Dst_2 */

where:

• Src_hi is the most significant half of the source register. (Dreg_hi
in the syntax example).

• Dst_1 is the memory destination pointer register on the left side of
the syntax.

• Dst_2 is the increment index register.

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

8-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For more information, see “Issuing Parallel Instructions” on page 20-1.

Example

w[i1] = r3.h ;

w[i3 ++] = r7.h ;

w[i0 --] = r1.h ;

w[p4] = r2.h ;

w[p2 ++ p0] = r5.h ;

Also See

Store Low Data Register Half

Special Applications

To write consecutive, aligned 16-bit values for high-performance DSP
operations, use the Store Data Register instructions instead of these
Half-Word instructions. The Half-Word Store instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-49

Load / Store

Store Low Data Register Half

General Form

W [indirect_address] = Dreg_lo

W [indirect_address] = D-register

Syntax

W [Ireg] = Dreg_lo ; /* indirect data addressing (a)*/

W [Ireg ++] = Dreg_lo ; /* indirect, post-increment data

addressing (a) */

W [Ireg --] = Dreg_lo ; /* indirect, post-decrement data

addressing (a) */

W [Preg] = Dreg_lo ; /* indirect (a)*/

W [Preg] = Dreg ; /* indirect (a)*/

W [Preg ++] = Dreg ; /* indirect, post-increment (a)*/

W [Preg --] = Dreg ; /* indirect, post-decrement (a)*/

W [Preg + uimm5m2] = Dreg ; /* indexed with small offset (a)

*/

W [Preg + uimm16m2] = Dreg ; /* indexed with large offset (b)

*/

W [Preg - uimm16m2] = Dreg ; /* indexed with large offset (b)

*/

W [Preg ++ Preg] = Dreg_lo ; /* indirect, post-increment

index (a) */1

Syntax Terminology

Dreg_lo: R7–0.L

Preg: P5–0, SP, FP

Ireg: I3–0

1 See “Indirect and Post-Increment Index Addressing” on page 8-51.

Instruction Overview

8-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Dreg: R7–0

uimm5m2: 5-bit unsigned field that must be a multiple of 2, with a range of
0 through 30 bytes

uimm16m2: 16-bit unsigned field that must be a multiple of 2, with a range
of 0 through 65,534 bytes (0x0000 through 0xFFFE)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Store Low Data Register Half instruction stores the least significant
16 bits of a 32-bit data register to a 16-bit memory location. The Pointer
register is either an I-register or a P-register.

The indirect address and offset must yield an even number to maintain
2-byte half-word address alignment. Failure to maintain proper alignment
causes an misaligned memory access exception.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-51

Load / Store

Options

The Store Low Data Register Half instruction supports the following
options.

• Post-increment the destination pointer by 2 bytes.

• Post-decrement the destination pointer by 2 bytes.

• Offset the source pointer with a small (5-bit), half-word-aligned
(even), unsigned constant.

• Offset the source pointer with a large (17-bit), half-word-aligned
(even), signed constant.

Indirect and Post-Increment Index Addressing

The syntax of the form:

[Dst_1 ++ Dst_2] = Src

is indirect, post-increment index addressing. The form is shorthand for
the following sequence.

[Dst_1] = Src_lo ; /* store the lower half of the source regis-

ter, indirect*/

Dst_1 += Dst_2 ; /* post-increment Dst_1 by a quantity indexed

by Dst_2 */

where:

• Src is the least significant half of the source register. (Dreg or
Dreg_lo in the syntax example).

• Dst_1 is the memory destination pointer register on the left side of
the syntax.

• Dst_2 is the increment index register.

Instruction Overview

8-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Indirect and post-increment index addressing supports customized indi-
rect address cadence. The indirect, post-increment index version must
have separate P-registers for the input operands. If a common Preg is used
for the inputs, the auto-increment feature does not work.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

w [i1] = r3.l ;

w [p0] = r3 ;

w [i3 ++] = r7.l ;

w [i0 --] = r1.l ;

w [p4] = r2.l ;

w [p1 ++] = r7 ;

w [sp --] = r2 ;

w [p2 + 12] = r6 ;

w [p4 - 0x200C] = r0 ;

w [p2 ++ p0] = r5.l ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-53

Load / Store

Also See

Store High Data Register Half, Store Data Register

Special Applications

To write consecutive, aligned 16-bit values for high-performance DSP
operations, use the Store Data Register instructions instead of these
Half-Word instructions. The Half-Word Store instructions use only half
the available 32-bit data bus bandwidth, possibly imposing a bottleneck
constriction in the data flow rate.

Instruction Overview

8-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Store Byte

General Form

B [indirect_address] = D-register

Syntax

B [Preg] = Dreg ; /* indirect (a)*/

B [Preg ++] = Dreg ; /* indirect, post-increment (a)*/

B [Preg --] = Dreg ; /* indirect, post-decrement (a)*/

B [Preg + uimm15] = Dreg ; /* indexed with offset (b)*/

B [Preg - uimm15] = Dreg ; /* indexed with offset (b)*/

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

uimm15: 15-bit unsigned field, with a range of 0 through 32,767 bytes
(0x0000 through 0x7FFF)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Store Byte instruction stores the least significant 8-bit byte of a data
register to an 8-bit memory location. The Pointer register is a P-register.

The indirect address and offset have no restrictions for memory address
alignment.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 8-55

Load / Store

Options

The Store Byte instruction supports the following options.

• Post-increment the destination pointer by 1 byte to maintain byte
alignment.

• Post-decrement the destination pointer by 1 byte to maintain byte
alignment.

• Offset the destination pointer with a 16-bit signed constant.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 32-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

b [p0] = r3 ;

b [p1 ++] = r7 ;

b [sp --] = r2 ;

b [p4 + 0x100F] = r0 ;

b [p4 - 0x53F] = r0 ;

Instruction Overview

8-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

None

Special Applications

To write consecutive, 8-bit values for high-performance DSP operations,
use the Store Data Register instructions instead of these byte instructions.
The byte store instructions use only one fourth the available 32-bit data
bus bandwidth, possibly imposing a bottleneck constriction in the data
flow rate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-1

9 MOVE

Instruction Summary

• “Move Register” on page 9-2

• “Move Conditional” on page 9-8

• “Move Half to Full Word – Zero-Extended” on page 9-10

• “Move Half to Full Word – Sign-Extended” on page 9-13

• “Move Register Half” on page 9-15

• “Move Byte – Zero-Extended” on page 9-23

• “Move Byte – Sign-Extended” on page 9-25

Instruction Overview
This chapter discusses the move instructions. Users can take advantage of
these instructions to move registers (or register halves), move half words
(zero or sign extended), move bytes, and perform conditional moves.

Instruction Overview

9-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Register

General Form

dest_reg = src_reg

Syntax

genreg = genreg ; /* (a) */

genreg = dagreg ; /* (a) */

dagreg = genreg ; /* (a) */

dagreg = dagreg ; /* (a) */

genreg = USP ; /* (a)*/

USP = genreg ; /* (a)*/

Dreg = sysreg ; /* sysreg to 32-bit D-register (a) */

Preg = sysreg ; /* sysreg to P-register (c) */

sysreg = Dreg ; /* 32-bit D-register to sysreg (a) */

sysreg = Preg ; /* 32-bit P-register to sysreg (a) */

sysreg = USP ; /* (a) */

A0 = A1 ; /* move 40-bit Accumulator value (b) */

A1 = A0 ; /* move 40-bit Accumulator value (b) */

A0 = Dreg ; /* 32-bit D-register to 40-bit A0, sign extended

(b)*/

A1 = Dreg ; /* 32-bit D-register to 40-bit A1, sign extended

(b)*/

Accumulator to D-register Move:

Dreg_even = A0 (opt_mode) ; /* move 32-bit A0.W to even Dreg

(b) */

Dreg_odd = A1 (opt_mode) ; /* move 32-bit A1.W to odd Dreg (b)

*/

Dreg_even = A0, Dreg_odd = A1 (opt_mode) ; /* move both Accumu-

lators to a register pair (b) */

Dreg_odd = A1, Dreg_even = A0 (opt_mode) ; /* move both Accumu-

lators to a register pair (b) */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-3

Move

Syntax Terminology

genreg: R7–0, P5–0, SP, FP, A0.X, A0.W, A1.X, A1.W

dagreg: I3–0, M3–0, B3–0, L3–0

sysreg: ASTAT, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, RETS, LC0 and
LC1, LT0 and LT1, LB0 and LB1, CYCLES, CYCLES2, and EMUDAT

USP: The User Stack Pointer Register

Dreg: R7–0

Preg: P5–0, SP, FP

Dreg_even: R0, R2, R4, R6

Dreg_odd: R1, R3, R5, R7

When combining two moves in the same instruction, the
Dreg_even and Dreg_odd operands must be members of the same
register pair, for example from the set R1:0, R3:2, R5:4, R7:6.

opt_mode: Optionally (FU), (S2RND), or (ISS2) (See Table 9-1 on
page 9-4).

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length. Comment (c) indicates an instruc-
tion that is not valid on the ADSP-BF535 processor.

Functional Description

The Move Register instruction copies the contents of the source register
into the destination register. The operation does not affect the source reg-
ister contents.

All moves from smaller to larger registers are sign extended.

Instruction Overview

9-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

All moves from 40-bit Accumulators to 32-bit D-registers support
saturation.

Options

The Accumulator to Data Register Move instruction supports the options
listed in the table below.

Table 9-1. Accumulator to Data Register Move

Option Accumulator Copy Formatting

Default Signed fraction. Copy Accumulator 9.31 format to register 1.31 format. Saturate
results between minimum -1 and maximum 1-2-31.
Signed integer. Copy Accumulator 40.0 format to register 32.0 format. Saturate
results between minimum -231 and maximum 231-1.
In either case, the resulting hexadecimal range is minimum 0x8000 0000 through
maximum 0x7FFF FFFF.
The Accumulator is unaffected by extraction.

(FU) Unsigned fraction. Copy Accumulator 8.32 format to register 0.32 format. Saturate
results between minimum 0 and maximum 1-2-32.
Unsigned integer. Copy Accumulator 40.0 format to register 32.0 format. Saturate
results between minimum 0 and maximum 232-1.
In either case, the resulting hexadecimal range is minimum 0x0000 0000 through
maximum 0xFFFF FFFF.
The Accumulator is unaffected by extraction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-5

Move

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

The ASTAT register that contains the flags can be explicitly modified by
this instruction.

The Accumulator to D-register Move versions of this instruction affect the
following flags.

• V is set if the result written to the D-register file saturates 32 bits;
cleared if no saturation. In the case of two simultaneous operations,
V represents the logical “OR” of the two.

• VS is set if V is set; unaffected otherwise.

(S2RND) Signed fraction with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 1.31 format. Copy to destination register. Results
range between minimum -1 and maximum 1-2-31.
Signed integer with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 32.0 format. Copy to destination register. Results
range between minimum -1 and maximum 231-1.
In either case, the resulting hexadecimal range is minimum 0x8000 0000 through
maximum 0x7FFF FFFF.
The Accumulator is unaffected by extraction.

(ISS2) Signed fraction with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 1.31 format. Copy to destination register. Results
range between minimum -1 and maximum 1-2-31.
Signed integer with scaling. Shift the Accumulator contents one place to the left
(multiply x 2). Saturate result to 32.0 format. Copy to destination register. Results
range between minimum -1 and maximum 231-1.
In either case, the resulting hexadecimal range is minimum 0x8000 0000 through
maximum 0x7FFF FFFF.
The Accumulator is unaffected by extraction.

Table 9-1. Accumulator to Data Register Move (Cont’d)

Option Accumulator Copy Formatting

Instruction Overview

9-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• AZ is set if result is zero; cleared if nonzero. In the case of two
simultaneous operations, AZ represents the logical “OR” of the two.

• AN is set if result is negative; cleared if non-negative. In the case of
two simultaneous operations, AN represents the logical “OR” of the
two.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor for most cases.

Explicit accesses to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN and RETE
require Supervisor mode. If any of these registers are explicitly accessed
from User mode, an Illegal Use of Protected Resource exception occurs.

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For more information, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r3 = r0 ;

r7 = p2 ;

r2 = a0 ;

a0 = a1 ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-7

Move

a1 = a0 ;

a0 = r7 ; /* move R7 to 32-bit A0.W */

a1 = r3 ; /* move R3 to 32-bit A1.W */

retn = p0 ; /* must be in Supervisor mode */

r2 = a0 ; /* 32-bit move with saturation */

r7 = a1 ; /* 32-bit move with saturation */

r0 = a0 (iss2) ; /* 32-bit move with scaling, truncation and

saturation */

Also See

Load Immediate to initialize registers.

Move Register Half to move values explicitly into the A0.X and A1.X
registers.

LSETUP, LOOP to implicitly access registers LC0, LT0, LB0, LC1, LT1 and
LB1.

Call, RAISE (Force Interrupt / Reset) and RTS, RTI, RTX, RTN, RTE
(Return) to implicitly access registers RETI, RETN, and RETS.

Force Exception and Force Emulation to implicitly access registers RETX
and RETE.

Special Applications

None

Instruction Overview

9-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Conditional

General Form

IF CC dest_reg = src_reg

IF ! CC dest_reg = src_reg

Syntax

IF CC DPreg = DPreg ; /* move if CC = 1 (a) */

IF ! CC DPreg = DPreg ; /* move if CC = 0 (a) */

Syntax Terminology

DPreg: R7–0, P5–0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Conditional instruction moves source register contents into a
destination register, depending on the value of CC.

IF CC DPreg = DPreg, the move occurs only if CC = 1.

IF ! CC DPreg = DPreg, the move occurs only if CC = 0.

The source and destination registers are any D-register or P-register.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-9

Move

Parallel Issue

The Move Conditional instruction cannot be issued in parallel with other
instructions.

Example

if cc r3 = r0 ; /* move if CC=1 */

if cc r2 = p4 ;

if cc p0 = r7 ;

if cc p2 = p5 ;

if ! cc r3 = r0 ; /* move if CC=0 */

if ! cc r2 = p4 ;

if ! cc p0 = r7 ;

if ! cc p2 = p5 ;

Also See

Compare Accumulator, Move CC, Negate CC, IF CC JUMP

Special Applications

None

Instruction Overview

9-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Half to Full Word – Zero-Extended

General Form

dest_reg = src_reg (Z)

Syntax

Dreg = Dreg_lo (Z) ; /* (a) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Half to Full Word – Zero-Extended instruction converts an
unsigned half word (16 bits) to an unsigned word (32 bits).

The instruction copies the least significant 16 bits from a source register
into the lower half of a 32-bit register and zero-extends the upper half of
the destination register. The operation supports only D-registers. Zero
extension is appropriate for unsigned values. If used with signed values, a
small negative 16-bit value will become a large positive value.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-11

Move

Flags Affected

The following flags are affected by the Move Half to Full
Word – Zero-Extended instruction.

• AZ is set if result is zero; cleared if nonzero.

• AN is cleared.

• AC0 is cleared.

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

/* If r0.l = 0xFFFF */

r4 = r0.l (z) ; /* Equivalent to r4.l = r0.l and r4.h = 0 */

/* . . . then r4 = 0x0000FFFF */

Instruction Overview

9-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Move Half to Full Word – Sign-Extended, Move Register Half

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-13

Move

Move Half to Full Word – Sign-Extended

General Form

dest_reg = src_reg (X)

Syntax

Dreg = Dreg_lo (X) ; /* (a)*/

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Half to Full Word – Sign-Extended instruction converts a
signed half word (16 bits) to a signed word (32 bits). The instruction cop-
ies the least significant 16 bits from a source register into the lower half of
a 32-bit register and sign-extends the upper half of the destination regis-
ter. The operation supports only D-registers.

Flags Affected

The following flags are affected by the Move Half to Full
Word – Sign-Extended instruction.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is cleared.

Instruction Overview

9-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r4 = r0.l(x) ;

r4 = r0.l ;

Also See

Move Half to Full Word – Zero-Extended, Move Register Half

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-15

Move

Move Register Half

General Form

dest_reg_half = src_reg_half

dest_reg_half = accumulator (opt_mode)

Syntax

A0.X = Dreg_lo ; /* least significant 8 bits of Dreg into A0.X

(b) */1

A1.X = Dreg_lo ; /* least significant 8 bits of Dreg into A1.X

(b) */

Dreg_lo = A0.X ; /* 8-bit A0.X, sign-extended, into least sig-

nificant 16 bits of Dreg (b) */

Dreg_lo = A1.X ; /* 8-bit A1.X, sign-extended, into least sig-

nificant 16 bits of Dreg (b) */

A0.L = Dreg_lo ; /* least significant 16 bits of Dreg into

least significant 16 bits of A0.W (b) */

A1.L = Dreg_lo ; /* least significant 16 bits of Dreg into

least significant 16 bits of A1.W (b) */

A0.H = Dreg_hi ; /* most significant 16 bits of Dreg into most

significant 16 bits of A0.W (b) */

A1.H = Dreg_hi ; /* most significant 16 bits of Dreg into most

significant 16 bits of A1.W (b) */

1 The Accumulator Extension registers A0.X and A1.X are defined only for the 8 low-order bits 7
through 0 of A0.X and A1.X. This instruction truncates the upper byte of Dreg_lo before moving the
value into the Accumulator Extension register (A0.X or A1.X).

Instruction Overview

9-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Accumulator to Half D-register Moves

Dreg_lo = A0 (opt_mode) ; /* move A0 to lower half of Dreg (b) */

Dreg_hi = A1 (opt_mode) ; /* move A1 to upper half of Dreg (b)
*/

Dreg_lo = A0, Dreg_hi = A1 (opt_mode) ; /* move both values at

once; must go to the lower and upper halves of the same Dreg (b)

*/

Dreg_hi = A1, Dreg_lo = AO (opt_mode) ; /* move both values at

once; must go to the upper and lower halves of the same Dreg (b)

*/

Syntax Terminology

Dreg_lo: R7–0.L

Dreg_hi: R7–0.H

A0.L: the least significant 16 bits of Accumulator A0.W

A1.L: the least significant 16 bits of Accumulator A1.W

A0.H: the most significant 16 bits of Accumulator A0.W

A1.H: the most significant 16 bits of Accumulator A1.W

opt_mode: Optionally (FU), (IS), (IU), (T), (S2RND), (ISS2), or (IH) (See
Table 9-2 on page 9-19).

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-17

Move

Functional Description

The Move Register Half instruction copies 16 bits from a source register
into half of a 32-bit register. The instruction does not affect the unspeci-
fied half of the destination register. It supports only D-registers and the
Accumulator.

One version of the instruction simply copies the 16 bits (saturated at 16
bits) of the Accumulator into a data half-register. This syntax supports
truncation and rounding beyond a simple Move Register Half instruction.

The fraction version of this instruction (the default option) transfers the
Accumulator result to the destination register according to the diagrams in
Figure 9-1. Accumulator A0.H contents transfer to the lower half of the
destination D-register. A1.H contents transfer to the upper half of the des-
tination D-register.

Figure 9-1. Result to Destination Register (Default Option)

A0 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Instruction Overview

9-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The integer version of this instruction (the (IS) option) transfers the
Accumulator result to the destination register according to the diagrams,
shown in Figure 9-2. Accumulator A0.L contents transfer to the lower half
of the destination D-register. A1.L contents transfer to the upper half of
the destination D-register.

Some versions of this instruction are affected by the RND_MOD bit in the
ASTAT register when they copy the results into the destination register.
RND_MOD determines whether biased or unbiased rounding is used. RND_MOD
controls rounding for all versions of this instruction except the (IS),
(ISS2), (IU), and (T) options.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Figure 9-2. Result to Destination Register ((IS) Option)

A0 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-19

Move

Options

The Accumulator to Half D-Register Move instructions support the copy
options in Table 9-2.

Table 9-2. Accumulator to Half D-Register Move Options

Option Accumulator Copy Formatting

Default Signed fraction format. Round Accumulator 9.31 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the
result to 1.15 precision and copy it to the destination register half. Result is
between minimum -1 and maximum 1-2-15 (or, expressed in hex, between mini-
mum 0x8000 and maximum 0x7FFF).
The Accumulator is unaffected by extraction.

(FU) Unsigned fraction format. Round Accumulator 8.32 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the
result to 0.16 precision and copy it to the destination register half. Result is
between minimum 0 and maximum 1-2-16 (or, expressed in hex, between mini-
mum 0x0000 and maximum 0xFFFF).
The Accumulator is unaffected by extraction.

(IS) Signed integer format. Extract the lower 16 bits of the Accumulator. Saturate for
16.0 precision and copy to the destination register half. Result is between mini-
mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000
and maximum 0x7FFF).
The Accumulator is unaffected by extraction.

(IU) Unsigned integer format. Extract the lower 16 bits of the Accumulator. Saturate
for 16.0 precision and copy to the destination register half. Result is between
minimum 0 and maximum 216-1 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF).
The Accumulator is unaffected by extraction.

(T) Signed fraction with truncation. Truncate Accumulator 9.31 format value at bit
16. (Perform no rounding.) Saturate the result to 1.15 precision and copy it to the
destination register half. Result is between minimum -1 and maximum 1-2-15 (or,
expressed in hex, between minimum 0x8000 and maximum 0x7FFF).
The Accumulator is unaffected by extraction.

Instruction Overview

9-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

To truncate the result, the operation eliminates the least significant bits
that do not fit into the destination register.

When necessary, saturation is performed after the rounding.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

The Accumulator to Half D-register Move versions of this instruction
affect the following flags.

• V is set if the result written to the half D-register file saturates 16
bits; cleared if no saturation.

• VS is set if V is set; unaffected otherwise.

(S2RND) Signed fraction with scaling and rounding. Shift the Accumulator contents one
place to the left (multiply x 2). Round Accumulator 9.31 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the
result to 1.15 precision and copy it to the destination register half. Result is
between minimum -1 and maximum 1-2-15 (or, expressed in hex, between mini-
mum 0x8000 and maximum 0x7FFF).
The Accumulator is unaffected by extraction.

(ISS2) Signed integer with scaling. Extract the lower 16 bits of the Accumulator. Shift
them one place to the left (multiply x 2). Saturate the result for 16.0 format and
copy to the destination register half. Result is between minimum -215 and maxi-
mum 215-1 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).
The Accumulator is unaffected by extraction.

(IH) Signed integer, high word extract. Round Accumulator 40.0 format value at bit
16. (RND_MOD bit in the ASTAT register controls the rounding.) Saturate to
32.0 result. Copy the upper 16 bits of that value to the destination register half.
Result is between minimum -215 and maximum 215-1 (or, expressed in hex,
between minimum 0x8000 and maximum 0x7FFF).
The Accumulator is unaffected by extraction.

Table 9-2. Accumulator to Half D-Register Move Options (Cont’d)

Option Accumulator Copy Formatting

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-21

Move

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• All other flags are unaffected.

Flags are not affected by other versions of this instruction.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For more information, see “Issuing Parallel Instructions” on
page 20-1.

Example

a0.x = r1.l ;

a1.x = r4.l ;

r7.l = a0.x ;

r0.l = a1.x ;

a0.l = r2.l ;

a1.l = r1.l ;

a0.l = r5.l ;

a1.l = r3.l ;

a0.h = r7.h ;

a1.h = r0.h ;

r7.l = a0 ; /* copy A0.H into R7.L with saturation. */

r2.h = a1 ; /* copy A0.H into R2.H with saturation. */

Instruction Overview

9-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

r3.1 = a0, r3.h = a1 ; /* copy both half words; must go to the

lower and upper halves of the same Dreg. */

r1.h = a1, rl.l = a0 ; /* copy both half words; must go to the

upper and lower halves of the same Dreg.

r0.h = a1 (is) ; /* copy A1.L into R0.H with saturation. */

r5.l = a0 (t) ; /* copy A0.H into R5.L; truncate A0.L; no satu-

ration. */

r1.l = a0 (s2rnd) ; /* copy A0.H into R1.L with scaling, round-

ing & saturation. */

r2.h = a1 (iss2) ; /* copy A1.L into R2.H with scaling and sat-

uration. */

r6.l = a0 (ih) ; /* copy A0.H into R6.L with saturation, then

rounding. */

Also See

Move Half to Full Word – Zero-Extended, Move Half to Full Word –
Sign-Extended

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-23

Move

Move Byte – Zero-Extended

General Form

dest_reg = src_reg_byte (Z)

Syntax

Dreg = Dreg_byte (Z) ; /* (a)*/

Syntax Terminology

Dreg_byte: R7–0.B, the low-order 8 bits of each Data Register

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Byte – Zero-Extended instruction converts an unsigned byte to
an unsigned word (32 bits). The instruction copies the least significant 8
bits from a source register into the least significant 8 bits of a 32-bit regis-
ter. The instruction zero-extends the upper bits of the destination register.
This instruction supports only D-registers.

Flags Affected

The following flags are affected by the Move Byte – Zero-Extended
instruction.

• AZ is set if result is zero; cleared if nonzero.

• AN is cleared.

• AC0 is cleared.

Instruction Overview

9-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r7 = r2.b (z) ;

Also See

Move Register Half to explicitly access the Accumulator Extension regis-
ters A0.X and A1.X.

Move Byte – Sign-Extended

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 9-25

Move

Move Byte – Sign-Extended

General Form

dest_reg = src_reg_byte (X)

Syntax

Dreg = Dreg_byte (X) ; /* (a) */

Syntax Terminology

Dreg_byte: R7–0.B, the low-order 8 bits of each Data Register

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Move Byte – Sign-Extended instruction converts a signed byte to a
signed word (32 bits). It copies the least significant 8 bits from a source
register into the least significant 8 bits of a 32-bit register. The instruction
sign-extends the upper bits of the destination register. This instruction
supports only D-registers.

Flags Affected

The following flags are affected by the Move Byte – Sign-Extended
instruction.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is cleared.

Instruction Overview

9-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r7 = r2.b ;

r7 = r2.b(x) ;

Also See

Move Byte – Zero-Extended

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-1

10 STACK CONTROL

Instruction Summary

• “--SP (Push)” on page 10-2

• “--SP (Push Multiple)” on page 10-5

• “SP++ (Pop)” on page 10-8

• “SP++ (Pop Multiple)” on page 10-12

• “LINK, UNLINK” on page 10-17

Instruction Overview
This chapter discusses the instructions that control the stack. Users can
take advantage of these instructions to save the contents of single or multi-
ple registers to the stack or to control the stack frame space on the stack
and the Frame Pointer (FP) for that space.

Instruction Overview

10-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

--SP (Push)

General Form

[-- SP] = src_reg

Syntax

[-- SP] = allreg ; /* predecrement SP (a) */

Syntax Terminology

allreg: R7–0, P5–0, FP, I3–0, M3–0, B3–0, L3–0, A0.X, A0.W, A1.X, A1.W,
ASTAT, RETS, RETI, RETX, RETN, RETE, LC0, LC1, LT0, LT1, LB0, LB1, CYCLES,
CYCLES2, EMUDAT, USP, SEQSTAT, and SYSCFG

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Push instruction stores the contents of a specified register in the
stack. The instruction pre-decrements the Stack Pointer to the next avail-
able location in the stack first. Push and Push Multiple are the only
instructions that perform pre-modify functions.

The stack grows down from high memory to low memory. Consequently,
the decrement operation is used for pushing, and the increment operation
is used for popping values. The Stack Pointer always points to the last
used location. Therefore, the effective address of the push is SP–4.

The following illustration shows what the stack would look like when a
series of pushes occur.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-3

Stack Control

higher memory

lower memory

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts.

Push/pop on RETS has no effect on the interrupt system.

Push/pop on RETI does affect the interrupt system.

Pushing RETI enables the interrupt system, whereas popping RETI disables
the interrupt system.

Pushing the Stack Pointer is meaningless since it cannot be retrieved from
the stack. Using the Stack Pointer as the destination of a pop instruction
(as in the fictional instruction SP=[SP++]) causes an undefined instruction
exception. (Refer to “Register Names” on page 1-13 for more
information.)

Flags Affected

None

Required Mode

User & Supervisor for most cases.

Explicit accesses to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN, and RETE
requires Supervisor mode. A protection violation exception results if any
of these registers are explicitly accessed from User mode.

P5 [--sp]=p5 ;

P1 [--sp]=p1 ;

R3 <-------- SP [--sp]=r3 ;

...

Instruction Overview

10-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

[-- sp] = r0 ;

[-- sp] = r1 ;

[-- sp] = p0 ;

[-- sp] = i0 ;

Also See

--SP (Push Multiple), SP++ (Pop)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-5

Stack Control

--SP (Push Multiple)

General Form

[-- SP] = (src_reg_range)

Syntax

[-- SP] = (R7 : Dreglim , P5 : Preglim) ; /* Dregs and

indexed Pregs (a) */

[-- SP] = (R7 : Dreglim) ; /* Dregs, only (a) */

[-- SP] = (P5 : Preglim) ; /* indexed Pregs, only (a) */

Syntax Terminology

Dreglim: any number in the range 7 through 0

Preglim: any number in the range 5 through 0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Push Multiple instruction saves the contents of multiple data and/or
Pointer registers to the stack. The range of registers to be saved always
includes the highest index register (R7 and/or P5) plus any contiguous
lower index registers specified by the user down to and including R0
and/or P0. Push and Push Multiple are the only instructions that perform
pre-modify functions.

The instructions start by saving the register having the lowest index then
advance to the register with the highest index. The index of the first regis-
ter saved in the stack is specified by the user in the instruction syntax.
Data registers are pushed before Pointer registers if both are specified in
one instruction.

Instruction Overview

10-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The instruction pre-decrements the Stack Pointer to the next available
location in the stack first.

The stack grows down from high memory to low memory, therefore the
decrement operation is the same used for pushing, and the increment
operation is used for popping values. The Stack Pointer always points to
the last used location. Therefore, the effective address of the push is SP–4.

The following illustration shows what the stack would look like when a
push multiple occurs.

higher memory

lower memory

Because the lowest-indexed registers are saved first, it is advisable that a
runtime system be defined to have its compiler scratch registers as the low-
est-indexed registers. For instance, data registers R0, P0 would be the
return value registers for a simple calling convention.

Although this instruction takes a variable amount of time to complete
depending on the number of registers to be saved, it reduces compiled
code size.

This instruction is not interruptible. Interrupts asserted after the first
issued stack write operation are appended until all the writes complete.
However, exceptions that occur while this instruction is executing cause it
to abort gracefully. For example, a load/store operation might cause a pro-
tection violation while Push Multiple is executing. The SP is reset to its
value before the execution of this instruction. This measure ensures that

P3 [--sp]=(p5:3) ;

P4

P5 <-------- SP

...

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-7

Stack Control

the instruction can be restarted after the exception. Note that when a Push
Multiple operation is aborted due to an exception, the memory state is
changed by the stores that have already completed before the exception.

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts, as described above.

Only pointer registers P5–0 can be operands for this instruction; SP and FP
cannot. All data registers R7–0 can be operands for this instruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

[-- sp] = (r7:5, p5:0) ; /* D-registers R4:0 excluded */

[-- sp] = (r7:2) ; /* R1:0 excluded */

[-- sp] = (p5:4) ; /* P3:0 excluded */

Also See

--SP (Push), SP++ (Pop), SP++ (Pop Multiple)

Special Applications

None

Instruction Overview

10-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

SP++ (Pop)

General Form

dest_reg = [SP ++]

Syntax

mostreg = [SP ++] ; /* post-increment SP; does not apply to

Data Registers and Pointer Registers (a) */

Dreg = [SP ++] ; /* Load Data Register instruction (repeated

here for user convenience) (a) */

Preg = [SP ++] ; /* Load Pointer Register instruction

(repeated here for user convenience) (a) */

Syntax Terminology

mostreg: I3–0, M3–0, B3–0, L3–0, A0.X, A0.W, A1.X, A1.W, ASTAT, RETS,
RETI, RETX, RETN, RETE, LC0, LC1, LT0, LT1, LB0, LB1, USP, SEQSTAT, and
SYSCFG

Dreg: R7–0

Preg: P5–0, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Pop instruction loads the contents of the stack indexed by the current
Stack Pointer into a specified register. The instruction post-increments
the Stack Pointer to the next occupied location in the stack before
concluding.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-9

Stack Control

The stack grows down from high memory to low memory, therefore the
decrement operation is used for pushing, and the increment operation is
used for popping values. The Stack Pointer always points to the last used
location. When a pop operation is issued, the value pointed to by the
Stack Pointer is transferred and the SP is replaced by SP+4.

The illustration below shows what the stack would look like when a pop
such as R3 = [SP ++] occurs.

higher memory

lower memory

higher memory

lower memory

higher memory

lower memory

The value just popped remains on the stack until another push instruction
overwrites it.

Word0

Word1 BEGINNING STATE

Word2 <------- SP

...

Word0

Word1 LOAD REGISTER R3 FROM STACK

Word2 <------ SP ========> R3 = Word2

...

Word0 POST-INCREMENT STACK POINTER

Word1 <------ SP

Word2

...

Instruction Overview

10-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Of course, the usual intent for Pop and these specific Load Register
instructions is to recover register values that were previously pushed onto
the stack. The user must exercise programming discipline to restore the
stack values back to their intended registers from the first-in, last-out
structure of the stack. Pop or load exactly the same registers that were
pushed onto the stack, but pop them in the opposite order.

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts.

A value cannot be popped off the stack directly into the Stack Pointer.
SP = [SP ++] is an invalid instruction. Refer to “Register Names” on
page 1-13 for more information.

Flags Affected

The ASTAT = [SP++] version of this instruction explicitly affects arith-
metic flags.

Flags are not affected by other versions of this instruction.

Required Mode

User & Supervisor for most cases

Explicit access to USP, SEQSTAT, SYSCFG, RETI, RETX, RETN, and RETE
requires Supervisor mode. A protection violation exception results if any
of these registers are explicitly accessed from User mode.

Parallel Issue

The 16-bit versions of the Load Data Register and Load Pointer Register
instructions can be issued in parallel with specific other instructions. For
details, see “Issuing Parallel Instructions” on page 20-1.

The Pop instruction cannot be issued in parallel with other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-11

Stack Control

Example

r0 = [sp++] ; /* Load Data Register instruction */

p4 = [sp++] ; /* Load Pointer Register instruction */

i1 = [sp++] ; /* Pop instruction */

reti = [sp++] ; /* Pop instruction; supervisor mode required */

Also See

Load Pointer Register, Load Data Register, --SP (Push), --SP (Push Multi-
ple), SP++ (Pop Multiple)

Special Applications

None

Instruction Overview

10-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

SP++ (Pop Multiple)

General Form

(dest_reg_range) = [SP ++]

Syntax

(R7 : Dreglim, P5 : Preglim) = [SP ++] ; /* Dregs and

indexed Pregs (a) */

(R7 : Dreglim) = [SP ++] ; /* Dregs, only (a) */

(P5 : Preglim) = [SP ++] ; /* indexed Pregs, only (a) */

Syntax Terminology

Dreglim: any number in the range 7 through 0

Preglim: any number in the range 5 through 0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Pop Multiple instruction restores the contents of multiple data
and/or Pointer registers from the stack. The range of registers to be
restored always includes the highest index register (R7 and/or P5) plus any
contiguous lower index registers specified by the user down to and includ-
ing R0 and/or P0.

The instructions start by restoring the register having the highest index
then descend to the register with the lowest index. The index of the last
register restored from the stack is specified by the user in the instruction
syntax. Pointer registers are popped before Data registers, if both are spec-
ified in the same instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-13

Stack Control

The instruction post-increments the Stack Pointer to the next occupied
location in the stack before concluding.

The stack grows down from high memory to low memory, therefore the
decrement operation is used for pushing, and the increment operation is
used for popping values. The Stack Pointer always points to the last used
location. When a pop operation is issued, the value pointed to by the
Stack Pointer is transferred and the SP is replaced by SP+4.

The following graphic shows what the stack would look like when a Pop
Multiple such as (R7:5) = [SP ++] occurs.

higher memory

lower memory

higher memory

lower memory

Word0

Word1

Word2 BEGINNING STATE

Word3 <------ SP

...

R3

R4

R6 LOAD REGISTER R7 FROM STACK

R7 <------ SP ========> R7 = Word3

...

Instruction Overview

10-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

higher memory

lower memory

higher memory.

lower memory

higher memory

lower memory

The value(s) just popped remain on the stack until another push instruc-
tion overwrites it.

Of course, the usual intent for Pop Multiple is to recover register values
that were previously pushed onto the stack. The user must exercise pro-
gramming discipline to restore the stack values back to their intended

R4

R5 LOAD REGISTER R6 FROM STACK

R6 <------ SP ========> R6 = Word2

R7

...

..

R5 LOAD REGISTER R5 FROM STACK

R6 <------ SP ========> R5 = Word1

R7

..

..

... POST-INCREMENT STACK POINTER

Word0 <------ SP

Word1

Word2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-15

Stack Control

registers from the first-in, last-out structure of the stack. Pop exactly the
same registers that were pushed onto the stack, but pop them in the oppo-
site order.

Although this instruction takes a variable amount of time to complete
depending on the number of registers to be saved, it reduces compiled
code size.

This instruction is not interruptible. Interrupts asserted after the first
issued stack read operation are appended until all the reads complete.
However, exceptions that occur while this instruction is executing cause it
to abort gracefully. For example, a load/store operation might cause a pro-
tection violation while Pop Multiple is executing. In that case, SP is reset
to its original value prior to the execution of this instruction. This mea-
sure ensures that the instruction can be restarted after the exception.

Note that when a Pop Multiple operation aborts due to an exception,
some of the destination registers are changed as a result of loads that have
already completed before the exception.

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts, as described above.

Only Pointer registers P5–0 can be operands for this instruction; SP and FP
cannot. All data registers R7–0 can be operands for this instruction.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

10-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

(p5:4) = [sp ++] ; /* P3 through P0 excluded */

(r7:2) = [sp ++] ; /* R1 through R0 excluded */

(r7:5, p5:0) = [sp ++] ; /* D-registers R4 through R0

optionally excluded */

Also See

--SP (Push), --SP (Push Multiple), SP++ (Pop)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-17

Stack Control

LINK, UNLINK

General Form

LINK, UNLINK

Syntax

LINK uimm18m4 ; /* allocate a stack frame of specified size

(b) */

UNLINK ; /* de-allocate the stack frame (b)*/

Syntax Terminology

uimm18m4: 18-bit unsigned field that must be a multiple of 4, with a range
of 8 through 262,152 bytes (0x00008 through 0x3FFFC)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Linkage instruction controls the stack frame space on the stack and
the Frame Pointer (FP) for that space. LINK allocates the space and UNLINK
de-allocates the space.

LINK saves the current RETS and FP registers to the stack, loads the FP regis-
ter with the new frame address, then decrements the SP by the
user-supplied frame size value.

Typical applications follow the LINK instruction with a Push Multiple
instruction to save pointer and data registers to the stack.

Instruction Overview

10-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The user-supplied argument for LINK determines the size of the allocated
stack frame. LINK always saves RETS and FP on the stack, so the minimum
frame size is 2 words when the argument is zero. The maximum stack
frame size is 218 + 8 = 262152 bytes in 4-byte increments.

UNLINK performs the reciprocal of LINK, de-allocating the frame space by
moving the current value of FP into SP and restoring previous values into
FP and RETS from the stack.

The UNLINK instruction typically follows a Pop Multiple instruction that
restores pointer and data registers previously saved to the stack.

The frame values remain on the stack until a subsequent Push, Push Mul-
tiple or LINK operation overwrites them.

Of course, FP must not be modified by user code between LINK and
UNLINK to preserve stack integrity.

Neither LINK nor UNLINK can be interrupted. However, exceptions that
occur while either of these instructions is executing cause the instruction
to abort. For example, a load/store operation might cause a protection vio-
lation while LINK is executing. In that case, SP and FP are reset to their
original values prior to the execution of this instruction. This measure
ensures that the instruction can be restarted after the exception.

Note that when a LINK operation aborts due to an exception, the stack
memory may already be changed due to stores that have already completed
before the exception. Likewise, an aborted UNLINK operation may leave the
FP and RETS registers changed because of a load that has already completed
before the interruption.

The illustrations below show the stack contents after executing a LINK
instruction followed by a Push Multiple instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 10-19

Stack Control

higher memory

lower memory

higher memory

lower memory

The Stack Pointer must already be 32-bit aligned to use this instruction. If
an unaligned memory access occurs, an exception is generated and the
instruction aborts, as described above.

. . .

. . . AFTER LINK EXECUTES

Saved RETS

Prior FP <-FP

Allocated
words for local
subroutine
variables

<-SP = FP +– frame_size

. . .

. . .

. . .

Saved RETS AFTER A PUSH
MULTIPLE EXECUTES

Prior FP <-FP

Allocated
words for local
subroutine
variables

R0
R1
:
R7
P0
:
P5 <-SP

Instruction Overview

10-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

link 8 ; /* establish frame with 8 words allocated for local

variables */

[-- sp] = (r7:0, p5:0) ; /* save D- and P-registers */

(r7:0, p5:0) = [sp ++] ; /* restore D- and P-registers */

unlink ; /* close the frame* /

Also See

--SP (Push Multiple) SP++ (Pop Multiple)

Special Applications

The Linkage instruction is used to set up and tear down stack frames for a
high-level language like C.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-1

11 CONTROL CODE BIT
MANAGEMENT

Instruction Summary

• “Compare Data Register” on page 11-2

• “Compare Pointer” on page 11-6

• “Compare Accumulator” on page 11-9

• “Move CC” on page 11-12

• “Negate CC” on page 11-15

Instruction Overview
This chapter discusses the instructions that affect the Control Code (CC)
bit in the ASTAT register. Users can take advantage of these instructions to
set the CC bit based on a comparison of values from two registers, pointers,
or accumulators. In addition, these instructions can move the status of the
CC bit to and from a data register or arithmetic status bit, or they can
negate the status of the CC bit.

Instruction Overview

11-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Compare Data Register

General Form

CC = operand_1 == operand_2

CC = operand_1 < operand_2

CC = operand_1 <= operand_2

CC = operand_1 < operand_2 (IU)

CC = operand_1 <= operand_2 (IU)

Syntax

CC = Dreg == Dreg ; /* equal, register, signed (a) */

CC = Dreg == imm3 ; /* equal, immediate, signed (a) */

CC = Dreg < Dreg ; /* less than, register, signed (a) */

CC = Dreg < imm3 ; /* less than, immediate, signed (a) */

CC = Dreg <= Dreg ; /* less than or equal, register, signed

(a) */

CC = Dreg <= imm3 ; /* less than or equal, immediate, signed

(a) */

CC = Dreg < Dreg (IU) ; /* less than, register, unsigned

(a) */

CC = Dreg < uimm3 (IU) ; /* less than, immediate, unsigned (a)

*/

CC = Dreg <= Dreg (IU) ; /* less than or equal, register,

unsigned (a) */

CC = Dreg <= uimm3 (IU) ; /* less than or equal, immediate

unsigned (a) */

Syntax Terminology

Dreg: R7–0

imm3: 3-bit signed field, with a range of –4 through 3

uimm3: 3-bit unsigned field, with a range of 0 through 7

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-3

Control Code Bit Management

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Compare Data Register instruction sets the Control Code (CC) bit
based on a comparison of two values. The input operands are D-registers.

The compare operations are nondestructive on the input operands and
affect only the CC bit and the flags. The value of the CC bit determines all
subsequent conditional branching.

The various forms of the Compare Data Register instruction perform
32-bit signed compare operations on the input operands or an unsigned
compare operation, if the (IU) optional mode is appended. The compare
operations perform a subtraction and discard the result of the subtraction
without affecting user registers. The compare operation that you specify
determines the value of the CC bit.

Flags Affected

The Compare Data Register instruction uses the values shown in
Table 11-1 in signed and unsigned compare operations.

Table 11-1. Compare Data Register Values

Comparison Signed Unsigned

Equal AZ=1 n/a

Less than AN=1 AC0=0

Less than or equal AN or AZ=1 AC0=0 or AZ=1

Instruction Overview

11-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The following flags are affected by the Compare Data Register instruction.

• CC is set if the test condition is true; cleared if false.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is set if result generated a carry; cleared if no carry.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

cc = r3 == r2 ;

cc = r7 == 1 ;

/* If r0 = 0x8FFF FFFF and r3 = 0x0000 0001, then the signed

operation . . . */

cc = r0 < r3 ;

/* . . . produces cc = 1, because r0 is treated as a negative

value */

cc = r2 < -4 ;

cc = r6 <= r1 ;

cc = r4 <= 3 ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-5

Control Code Bit Management

/* If r0 = 0x8FFF FFFF and r3 = 0x0000 0001,then the unsigned

operation . . . */

cc = r0 < r3 (iu) ;

/* . . . produces CC = 0, because r0 is treated as a large

unsigned value */

cc = r1 < 0x7 (iu) ;

cc = r2 <= r0 (iu) ;

cc = r3 <= 2 (iu) ;

Also See

Compare Pointer, Compare Accumulator, IF CC JUMP, BITTST

Special Applications

None

Instruction Overview

11-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Compare Pointer

General Form

CC = operand_1 == operand_2

CC = operand_1 < operand_2

CC = operand_1 <= operand_2

CC = operand_1 < operand_2 (IU)

CC = operand_1 <= operand_2 (IU)

Syntax

CC = Preg == Preg ; /* equal, register, signed (a) */

CC = Preg == imm3 ; /* equal, immediate, signed (a) */

CC = Preg < Preg ; /* less than, register, signed (a) */

CC = Preg < imm3 ; /* less than, immediate, signed (a) */

CC = Preg <= Preg ; /* less than or equal, register, signed

(a) */

CC = Preg <= imm3 ; /* less than or equal, immediate, signed

(a) */

CC = Preg < Preg (IU) ; /* less than, register, unsigned (a) */

CC = Preg < uimm3 (IU) ; /* less than, immediate, unsigned (a) */

CC = Preg <= Preg (IU) ; /* less than or equal, register,

unsigned (a) */

CC = Preg <= uimm3 (IU) ; /* less than or equal, immediate

unsigned (a) */

Syntax Terminology

Preg: P5–0, SP, FP

imm3: 3-bit signed field, with a range of –4 through 3

uimm3: 3-bit unsigned field, with a range of 0 through 7

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-7

Control Code Bit Management

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Compare Pointer instruction sets the Control Code (CC) bit based on
a comparison of two values. The input operands are P-registers.

The compare operations are nondestructive on the input operands and
affect only the CC bit and the flags. The value of the CC bit determines all
subsequent conditional branching.

The various forms of the Compare Pointer instruction perform 32-bit
signed compare operations on the input operands or an unsigned compare
operation, if the (IU) optional mode is appended. The compare opera-
tions perform a subtraction and discard the result of the subtraction
without affecting user registers. The compare operation that you specify
determines the value of the CC bit.

Flags Affected

• CC is set if the test condition is true; cleared if false.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Instruction Overview

11-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

cc = p3 == p2 ;

cc = p0 == 1 ;

cc = p0 < p3 ;

cc = p2 < -4 ;

cc = p1 <= p0 ;

cc = p4 <= 3 ;

cc = p5 < p3 (iu) ;

cc = p1 < 0x7 (iu) ;

cc = p2 <= p0 (iu) ;

cc = p3 <= 2 (iu) ;

Also See

Compare Data Register, Compare Accumulator, IF CC JUMP

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-9

Control Code Bit Management

Compare Accumulator

General Form

CC = A0 == A1

CC = A0 < A1

CC = A0 <= A1

Syntax

CC = A0 == A1 ; /* equal, signed (a) */

CC = A0 < A1 ; /* less than, Accumulator, signed (a) */

CC = A0 <= A1 ; /* less than or equal, Accumulator, signed (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Compare Accumulator instruction sets the Control Code (CC) bit
based on a comparison of two values. The input operands are
Accumulators.

These instructions perform 40-bit signed compare operations on the
Accumulators. The compare operations perform a subtraction and discard
the result of the subtraction without affecting user registers. The compare
operation that you specify determines the value of the CC bit.

No unsigned compare operations or immediate compare operations are
performed for the Accumulators.

The compare operations are nondestructive on the input operands, and
affect only the CC bit and the flags. All subsequent conditional branching
is based on the value of the CC bit.

Instruction Overview

11-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

The Compare Accumulator instruction uses the values shown in
Table 11-2 in compare operations.

The following arithmetic status bits reside in the ASTAT register.

• CC is set if the test condition is true; cleared if false.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is set if result generated a carry; cleared if no carry.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Table 11-2. Compare Accumulator Instruction Values

Comparison Signed

Equal AZ=1

Less than AN=1

Less than or equal AN or AZ=1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-11

Control Code Bit Management

Example

cc = a0 == a1 ;

cc = a0 < a1 ;

cc = a0 <= a1 ;

Also See

Compare Pointer, Compare Data Register, IF CC JUMP

Special Applications

None

Instruction Overview

11-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move CC

General Form

dest = CC

dest |= CC

dest &= CC

dest ^= CC

CC = source

CC |= source

CC &= source

CC ^= source

Syntax

Dreg = CC ; /* CC into 32-bit data register, zero-extended (a)

*/

statbit = CC ; /* status bit equals CC (a) */

statbit |= CC ; /* status bit equals status bit OR CC (a) */

statbit &= CC ; /* status bit equals status bit AND CC (a) */

statbit ^= CC ; /* status bit equals status bit XOR CC (a) */

CC = Dreg ; /* CC set if the register is non-zero (a) */

CC = statbit ; /* CC equals status bit (a) */

CC |= statbit ; /* CC equals CC OR status bit (a) */

CC &= statbit ; /* CC equals CC AND status bit (a) */

CC ^= statbit ; /* CC equals CC XOR status bit (a) */

Syntax Terminology

Dreg: R7–0

statbit: AZ, AN, AC0, AC1, V, VS, AV0, AV0S, AV1, AV1S, AQ

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-13

Control Code Bit Management

Functional Description

The Move CC instruction moves the status of the Control Code (CC) bit to
and from a data register or arithmetic status bit.

When copying the CC bit into a 32-bit register, the operation moves the CC
bit into the least significant bit of the register, zero-extended to 32 bits.
The two cases are as follows.

• If CC = 0, Dreg becomes 0x00000000.

• If CC = 1, Dreg becomes 0x00000001.

When copying a data register to the CC bit, the operation sets the CC bit to
1 if any bit in the source data register is set; that is, if the register is non-
zero. Otherwise, the operation clears the CC bit.

Some versions of this instruction logically set or clear an arithmetic status
bit based on the status of the Control Code.

The use of the CC bit as source and destination in the same instruction is
disallowed. See the Negate CC instruction to change CC based solely on its
own value.

Flags Affected

• The Move CC instruction affects flags CC, AZ, AN, AC0, AC1, V, VS,
AV0, AV0S, AV1, AV1S, AQ, according to the status bit and syntax
used, as described in “Syntax” on page 11-12.

• All other flags not explicitly specified by the syntax are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Instruction Overview

11-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Required Mode

User & Supervisor

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r0 = cc ;

az = cc ;

an |= cc ;

ac0 &= cc ;

av0 ^= cc ;

cc = r4 ;

cc = av1 ;

cc |= aq ;

cc &= an ;

cc ^= ac1 ;

Also See

Negate CC

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 11-15

Control Code Bit Management

Negate CC

General Form

CC = ! CC

Syntax

CC = ! CC ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Negate CC instruction inverts the logical state of CC.

Flags Affected

• CC is toggled from its previous value by the Negate CC instruction.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Instruction Overview

11-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

cc =! cc ;

Also See

Move CC

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-1

12 LOGICAL OPERATIONS

Instruction Summary

• “& (AND)” on page 12-2

• “~ (NOT One’s Complement)” on page 12-4

• “| (OR)” on page 12-6

• “^ (Exclusive-OR)” on page 12-8

• “BXORSHIFT, BXOR” on page 12-10

Instruction Overview
This chapter discusses the instructions that specify logical operations.
Users can take advantage of these instructions to perform logical AND,
NOT, OR, exclusive-OR, and bit-wise exclusive-OR (BXORSHIFT)
operations.

Instruction Overview

12-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

& (AND)

General Form

dest_reg = src_reg_0 & src_reg_1

Syntax

Dreg = Dreg & Dreg ; /* (a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The AND instruction performs a 32-bit, bit-wise logical AND operation
on the two source registers and stores the results into the dest_reg.

The instruction does not implicitly modify the source registers. The
dest_reg and one src_reg can be the same D-register. This would explic-
itly modifies the src_reg.

Flags Affected

The AND instruction affects flags as follows.

• AZ is set if the final result is zero, cleared if nonzero.

• AN is set if the result is negative, cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-3

Logical Operations

• AC0 and V are cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r4 = r4 & r3 ;

Also See

| (OR)

Special Applications

None

Instruction Overview

12-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

~ (NOT One’s Complement)

General Form

dest_reg = ~ src_reg

Syntax

Dreg = ~ Dreg ; /* (a)*/

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The NOT One’s Complement instruction toggles every bit in the 32-bit
register.

The instruction does not implicitly modify the src_reg. The dest_reg
and src_reg can be the same D-register. Using the same D-register as the
dest_reg and src_reg would explicitly modify the src_reg.

Flags Affected

The NOT One’s Complement instruction affects flags as follows.

• AZ is set if the final result is zero, cleared if nonzero.

• AN is set if the result is negative, cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-5

Logical Operations

• AC0 and V are cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r3 = ~ r4 ;

Also See

Negate (Two’s Complement)

Special Applications

None

Instruction Overview

12-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

| (OR)

General Form

dest_reg = src_reg_0 | src_reg_1

Syntax

Dreg = Dreg | Dreg ; /* (a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The OR instruction performs a 32-bit, bit-wise logical OR operation on
the two source registers and stores the results into the dest_reg.

The instruction does not implicitly modify the source registers. The
dest_reg and one src_reg can be the same D-register. This would explic-
itly modifies the src_reg.

Flags Affected

The OR instruction affects flags as follows.

• AZ is set if the final result is zero, cleared if nonzero.

• AN is set if the result is negative, cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-7

Logical Operations

• AC0 and V are cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r4 = r4 | r3 ;

Also See

^ (Exclusive-OR), BXORSHIFT, BXOR

Special Applications

None

Instruction Overview

12-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

^ (Exclusive-OR)

General Form

dest_reg = src_reg_0 ^ src_reg_1

Syntax

Dreg = Dreg ^ Dreg ; /* (a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Exclusive-OR (XOR) instruction performs a 32-bit, bit-wise logical
exclusive OR operation on the two source registers and loads the results
into the dest_reg.

The XOR instruction does not implicitly modify source registers. The
dest_reg and one src_reg can be the same D-register. This would explic-
itly modifies the src_reg.

Flags Affected

The XOR instruction affects flags as follows.

• AZ is set if the final result is zero, cleared if nonzero.

• AN is set if the result is negative, cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-9

Logical Operations

• AC0 and V are cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

r4 = r4 ^ r3 ;

Also See

| (OR), BXORSHIFT, BXOR

Special Applications

None

Instruction Overview

12-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BXORSHIFT, BXOR

General Form

dest_reg = CC = BXORSHIFT (A0, src_reg)

dest_reg = CC = BXOR (A0, src_reg)

dest_reg = CC = BXOR (A0, A1, CC)

A0 = BXORSHIFT (A0, A1, CC)

Syntax

LFSR Type I (Without Feedback)

Dreg_lo = CC = BXORSHIFT (A0, Dreg) ; /* (b) */

Dreg_lo = CC = BXOR (A0, Dreg) ; /* (b) */

LFSR Type I (With Feedback)

Dreg_lo = CC = BXOR (A0, A1, CC) ; /* (b) */

A0 = BXORSHIFT (A0, A1, CC) ; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

Four Bit-Wise Exclusive-OR (BXOR) instructions support two different
types of linear feedback shift register (LFSR) implementations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-11

Logical Operations

The Type I LFSRs (no feedback) applies a 32-bit registered mask to a
40-bit state residing in Accumulator A0, followed by a bit-wise XOR
reduction operation. The result is placed in CC and a destination register
half.

The Type I LFSRs (with feedback) applies a 40-bit mask in Accumulator A1
to a 40-bit state residing in A0. The result is shifted into A0.

In the following circuits describing the BXOR instruction group, a
bit-wise XOR reduction is defined as:

where B0 through BN–1 represent the N bits that result from masking the
contents of Accumulator A0 with the polynomial stored in either A1 or a
32-bit register. The instruction descriptions are shown in Figure 12-1.

In the figure above, the bits A0 bit 0 and A0 bit 1 are logically AND’ed
with bits D[0] and D[1]. The result from this operation is XOR reduced
according to the following formula.

Figure 12-1. Bit-Wise Exclusive-OR Reduction

Out B(((((0 B1) B2) B3) ...⊕) Bn 1–)⊕ ⊕ ⊕ ⊕=

D[0] D[1]

A0[0] A0[1]

s(D)

s D() A0 0[]&D 0[]) A0 1[]&D 0[](⊕()=

Instruction Overview

12-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Modified Type I LFSR (without feedback)

Two instructions support the LSFR with no feedback.

Dreg_lo = CC = BXORSHIFT(A0, dreg)

Dreg_lo = CC = BXOR(A0, dreg)

In the first instruction the Accumulator A0 is left-shifted by 1 prior to the
XOR reduction. This instruction provides a bit-wise XOR of A0 logically
AND’ed with a dreg. The result of the operation is placed into both the CC
flag and the least significant bit of the destination register. The operation
is shown in Figure 12-2.

The upper 15 bits of dreg_lo are overwritten with zero, and dr[0] = IN
after the operation.

Figure 12-2. A0 Left-Shifted by 1 Followed by XOR Reduction

A0[39] A0[38] A0[37] A0[0] 0

A0[39:0] Left Shift by 1

Before XOR Reduction

D[31]

0

XOR Reduction

+ + + + CC dreg_lo
IN

D[2] D[1] D[0]

A0[1] A0[0] 0A0[30]A0[38]

dr[15] dr[14] dr[13] IN

dreg_lo[15:0]

After Operation

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-13

Logical Operations

The second instruction in this class performs a bit-wise XOR of A0 logi-
cally AND'ed with the dreg. The output is placed into the least significant
bit of the destination register and into the CC bit. The Accumulator A0 is
not modified by this operation. This operation is illustrated in
Figure 12-3.

The upper 15 bits of dreg_lo are overwritten with zero, and dr[0] = IN
after the operation.

Modified Type I LFSR (with feedback)

Two instructions support the LFSR with feedback.

A0 = BXORSHIFT(A0, A1, CC)

Dreg_lo = CC = BXOR(A0, A1, CC)

Figure 12-3. XOR of A0, Logical AND with the D-Register

D[31]

0

XOR Reduction

+ + + + CC dreg_lo
IN

D[2] D[1] D[0]

A0[2] A0[1] A0[0]A0[31]A0[39]

dr[15] dr[14] dr[13] IN

dreg_lo[15:0]

After Operation

Instruction Overview

12-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The first instruction provides a bit-wise XOR of A0 logically AND'ed with
A1. The resulting intermediate bit is XOR'ed with the CC flag. The result
of the operation is left-shifted into the least significant bit of A0 following
the operation. This operation is illustrated in Figure 12-4. The CC bit is
not modified by this operation.

The second instruction in this class performs a bit-wise XOR of A0 logi-
cally AND'ed with A1. The resulting intermediate bit is XOR'ed with the
CC flag. The result of the operation is placed into both the CC flag and the
least significant bit of the destination register.

This operation is illustrated in Figure 12-5.

The Accumulator A0 is not modified by this operation. The upper 15 bits
of dreg_lo are overwritten with zero, and dr[0] = IN.

Figure 12-4. XOR of A0 AND A1, Left-Shifted into LSB of A0

A1[0]

A0[0]

CC + + +

IN

A1[39] A1[38] A1[37]

A0[39] A0[38] A0[37]

A0[38] A0[37] A0[36] IN

A0[39:0]

After Operation

+

Left Shift by 1
Following XOR
Reduction

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 12-15

Logical Operations

Flags Affected

The following flags are affected by the Four Bit-Wise Exclusive-OR
instructions.

• CC is set or cleared according to the Functional Description for the
BXOR and the nonfeedback version of the BXORSHIFT instruction.
The feedback version of the BXORSHIFT instruction affects no flags.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Figure 12-5. XOR of A0 AND A1, to CC Flag and LSB of Dest Register

A1[0]

A0[0]

CC + + + CC dreg_lo[0]
IN

A1[39] A1[38] A1[37]

A0[39] A0[38] A0[37]

dr[15] dr[14] dr[13] IN

dreg_lo[15:0]

After Operation

Instruction Overview

12-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r0.l = cc = bxorshift (a0, r1) ;

r0.l = cc = bxor (a0, r1) ;

r0.l = cc = bxor (a0, a1, cc) ;

a0 = bxorshift (a0, a1, cc) ;

Also See

None

Special Applications

Linear feedback shift registers (LFSRs) can multiply and divide polynomi-
als and are often used to implement cyclical encoders and decoders.

LFSRs use the set of Bit-Wise XOR instructions to compute bit XOR
reduction from a state masked by a polynomial.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-1

13 BIT OPERATIONS

Instruction Summary

• “BITCLR” on page 13-2

• “BITSET” on page 13-4

• “BITTGL” on page 13-6

• “BITTST” on page 13-8

• “DEPOSIT” on page 13-10

• “EXTRACT” on page 13-16

• “BITMUX” on page 13-21

• “ONES (One’s Population Count)” on page 13-26

Instruction Overview
This chapter discusses the instructions that specify bit operations. Users
can take advantage of these instructions to set, clear, toggle, and test bits.
They can also merge bit fields and save the result, extract specific bits from
a register, merge bit streams, and count the number of ones in a register.

Instruction Overview

13-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BITCLR

General Form

BITCLR (register, bit_position)

Syntax

BITCLR (Dreg , uimm5) ; /* (a) */

Syntax Terminology

Dreg: R7–0

uimm5: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Clear instruction clears the bit designated by bit_position in the
specified D-register. It does not affect other bits in that register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

Flags Affected

The Bit Clear instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-3

Bit Operations

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

bitclr (r2, 3) ; /* clear bit 3 (the fourth bit from LSB) in

R2 */

For example, if R2 contains 0xFFFFFFFF before this instruction, it con-
tains 0xFFFFFFF7 after the instruction.

Also See

BITSET, BITTST, BITTGL

Special Applications

None

Instruction Overview

13-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BITSET

General Form

BITSET (register, bit_position)

Syntax

BITSET (Dreg , uimm5) ; /* (a) */

Syntax Terminology

Dreg: R7–0

uimm5: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Set instruction sets the bit designated by bit_position in the
specified D-register. It does not affect other bits in the D-register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

Flags Affected

The Bit Set instruction affects flags as follows.

• AZ is cleared.

• AN is set if result is negative; cleared if non-negative.

• AC0 is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-5

Bit Operations

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

bitset (r2, 7) ; /* set bit 7 (the eighth bit from LSB) in

R2 */

For example, if R2 contains 0x00000000 before this instruction, it con-
tains 0x00000080 after the instruction.

Also See

BITCLR, BITTST, BITTGL

Special Applications

None

Instruction Overview

13-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BITTGL

General Form

BITTGL (register, bit_position)

Syntax

BITTGL (Dreg , uimm5) ; /* (a) */

Syntax Terminology

Dreg: R7–0

uimm5: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Toggle instruction inverts the bit designated by bit_position in
the specified D-register. The instruction does not affect other bits in the
D-register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

Flags Affected

The Bit Toggle instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-7

Bit Operations

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

bittgl (r2, 24) ; /* toggle bit 24 (the 25th bit from LSB in

R2 */

For example, if R2 contains 0xF1FFFFFF before this instruction, it con-
tains 0xF0FFFFFF after the instruction. Executing the instruction a
second time causes the register to contain 0xF1FFFFFF.

Also See

BITSET, BITTST, BITCLR

Special Applications

None

Instruction Overview

13-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BITTST

General Form

CC = BITTST (register, bit_position)

CC = ! BITTST (register, bit_position)

Syntax

CC = BITTST (Dreg , uimm5) ; /* set CC if bit = 1 (a)*/

CC = ! BITTST (Dreg , uimm5) ; /* set CC if bit = 0 (a)*/

Syntax Terminology

Dreg: R7–0

uimm5: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Bit Test instruction sets or clears the CC bit, based on the bit desig-
nated by bit_position in the specified D-register. One version tests
whether the specified bit is set; the other tests whether the bit is clear. The
instruction does not affect other bits in the D-register.

The bit_position range of values is 0 through 31, where 0 indicates the
LSB, and 31 indicates the MSB of the 32-bit D-register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-9

Bit Operations

Flags Affected

The Bit Test instruction affects flags as follows.

• CC is set if the tested bit is 1; cleared otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

cc = bittst (r7, 15) ; /* test bit 15 TRUE in R7 */

For example, if R7 contains 0xFFFFFFFF before this instruction, CC is set
to 1, and R7 still contains 0xFFFFFFFF after the instruction.

cc = ! bittst (r3, 0) ; /* test bit 0 FALSE in R3 */

If R3 contains 0xFFFFFFFF, this instruction clears CC to 0.

Also See

BITCLR, BITSET, BITTGL

Special Applications

None

Instruction Overview

13-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

DEPOSIT

General Form

dest_reg = DEPOSIT (backgnd_reg, foregnd_reg)

dest_reg = DEPOSIT (backgnd_reg, foregnd_reg) (X)

Syntax

Dreg = DEPOSIT (Dreg, Dreg) ; /* no extension (b) */

Dreg = DEPOSIT (Dreg, Dreg) (X) ; /* sign-extended (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Field Deposit instruction merges the background bit field in
backgnd_reg with the foreground bit field in the upper half of
foregnd_reg and saves the result into dest_reg. The user determines the
length of the foreground bit field and its position in the background field.

The input register bit field definitions appear in Table 13-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-11

Bit Operations

The operation writes the foreground bit field of length L over the back-
ground bit field with the foreground LSB located at bit p of the
background. See “Example,” below, for more.

Boundary Cases

Consider the following boundary cases.

• Unsigned syntax, L = 0: The architecture copies backgnd_reg con-
tents without modification into dest_reg. By definition, a
foreground of zero length is transparent.

• Sign-extended, L = 0 and p = 0: This case loads 0x0000 0000 into
dest_reg. The sign of a zero length, zero position foreground is
zero; therefore, sign-extended is all zeros.

Table 13-1. Input Register Bit Field Definitions

31................24 23................16 15..................8 7....................0

backgnd_reg:1 bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb

foregnd_reg:2 nnnn nnnn nnnn nnnn xxxp pppp xxxL LLLL

1 where b = background bit field (32 bits)
2 where:

–n = foreground bit field (16 bits); the L field determines the actual number of foreground bits
used.

–p = intended position of foreground bit field LSB in dest_reg (valid range 0 through 31)
–L = length of foreground bit field (valid range 0 through 16)

Instruction Overview

13-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• Sign-extended, L = 0 and p = 0: The architecture copies the lower
order bits of backgnd_reg below position p into dest_reg, then
sign-extends that number. The foreground value has no effect. For
instance, if:

backgnd_reg = 0x0000 8123,

L = 0, and

p = 16,

then:

dest_reg = 0xFFFF 8123.

In this example, the architecture copies bits 15–0 from
backgnd_reg into dest_reg, then sign-extends that number.

• Sign-extended, (L + p) > 32: Any foreground bits that fall outside
the range 31–0 are truncated.

The Bit Field Deposit instruction does not modify the contents of the two
source registers. One of the source registers can also serve as dest_reg.

Options

The (X) syntax sign-extends the deposited bit field. If you specify the
sign-extended syntax, the operation does not affect the dest_reg bits that
are less significant than the deposited bit field.

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is cleared.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-13

Bit Operations

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

Bit Field Deposit Unsigned

r7 = deposit (r4, r3) ;

• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111

where this is the background bit field

• R3=0b0000 0000 0000 0000 0000 0111 0000 0011
where bits 31–16 are the foreground bit field, bits 15–8 are
the position, and bits 7–0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b1111 1111 1111 1111 1111 1100 0111 1111

Instruction Overview

13-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111

where this is the background bit field

• R3=0b0000 0000 1111 1010 0000 1101 0000 1001
where bits 31–16 are the foreground bit field, bits 15–8 are
the position, and bits 7–0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b1111 1111 1101 1111 0101 1111 1111 1111

Bit Field Deposit Sign-Extended

r7 = deposit (r4, r3) (x) ; /* sign-extended*/

• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111

where this is the background bit field

• R3=0b0101 1010 0101 1010 0000 0111 0000 0011
where bits 31–16 are the foreground bit field, bits 15–8 are
the position, and bits 7–0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b0000 0000 0000 0000 0000 0001 0111 1111

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-15

Bit Operations

• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111

where this is the background bit field

• R3=0b0000 1001 1010 1100 0000 1101 0000 1001
where bits 31–16 are the foreground bit field, bits 15–8 are
the position, and bits 7–0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b1111 1111 1111 0101 1001 1111 1111 1111

Also See

EXTRACT

Special Applications

Video image overlay algorithms

Instruction Overview

13-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

EXTRACT

General Form

dest_reg = EXTRACT (scene_reg, pattern_reg) (Z)

dest_reg = EXTRACT (scene_reg, pattern_reg) (X)

Syntax

Dreg = EXTRACT (Dreg, Dreg_lo) (Z) ; /* zero-extended (b)*/

Dreg = EXTRACT (Dreg, Dreg_lo) (X) ; /* sign-extended (b)*/

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Field Extraction instruction moves only specific bits from the
scene_reg into the low-order bits of the dest_reg. The user determines
the length of the pattern bit field and its position in the scene field.

The input register bit field definitions appear in Table 13-2.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-17

Bit Operations

The operation reads the pattern bit field of length L from the scene bit
field, with the pattern LSB located at bit p of the scene. See “Example”,
below, for more.

Boundary Case

If (p + L) > 32: In the zero-extended and sign-extended versions of the
instruction, the architecture assumes that all bits to the left of the
scene_reg are zero. In such a case, the user is trying to access more bits
than the register actually contains. Consequently, the architecture fills any
undefined bits beyond the MSB of the scene_reg with zeros.

The Bit Field Extraction instruction does not modify the contents of the
two source registers. One of the source registers can also serve as dest_reg.

Options

The user has the choice of using the (X) syntax to perform sign-extend
extraction or the (Z) syntax to perform zero-extend extraction.

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

Table 13-2. Input Register Bit Field Definitions

31................24 23................16 15..................8 7....................0

scene_reg:1 ssss ssss ssss ssss ssss ssss ssss ssss

pattern_reg:2 xxxp pppp xxxL LLLL

1 where s = scene bit field (32 bits)
2 where:

–p = position of pattern bit field LSB in scene_reg (valid range 0 through 31)
–L = length of pattern bit field (valid range 0 through 31)

Instruction Overview

13-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• AC0 is cleared.

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

Bit Field Extraction Unsigned

r7 = extract (r4, r3.l) (z) ; /* zero-extended*/

• If

• R4=0b1010 0101 1010 0101 1100 0011 1010 1010

where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 0111 0000 0100
where bits 15–8 are the position, and bits 7–0 are the length

then the Bit Field Extraction (unsigned) instruction produces:

• R7=0b0000 0000 0000 0000 0000 0000 0000 0111

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-19

Bit Operations

• If

• R4=0b1010 0101 1010 0101 1100 0011 1010 1010

where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 1101 0000 1001
where bits bits 15–8 are the position, and bits 7–0 are the
length

then the Bit Field Extraction (unsigned) instruction produces:

• R7=0b0000 0000 0000 0000 0000 0001 0010 1110

Bit Field Extraction Sign-Extended

r7 = extract (r4, r3.l) (x) ; /* sign-extended*/

• If

• R4=0b1010 0101 1010 0101 1100 0011 1010 1010

where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 0111 0000 0100
where bits 15–8 are the position, and bits 7–0 are the length

then the Bit Field Extraction (sign-extended) instruction produces:

• R7=0b0000 0000 0000 0000 0000 0000 0000 0111

Instruction Overview

13-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• If

• R4=0b1010 0101 1010 0101 1100 0011 1010 1010

where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 1101 0000 1001
where bits bits 15–8 are the position, and bits 7–0 are the
length

Then the Bit Field Extraction (sign-extended) instruction
produces:

• R7=0b1111 1111 1111 1111 1111 1111 0010 1110

Also See

DEPOSIT

Special Applications

Video image pattern recognition and separation algorithms

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-21

Bit Operations

BITMUX

General Form

BITMUX (source_1, source_0, A0) (ASR)

BITMUX (source_1, source_0, A0) (ASL)

Syntax

BITMUX (Dreg , Dreg , A0) (ASR) ; /* shift right, LSB is

shifted out (b) */

BITMUX (Dreg , Dreg , A0) (ASL) ; /* shift left, MSB is

shifted out (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Bit Multiplex instruction merges bit streams.

The instruction has two versions, Shift Right and Shift Left. This instruc-
tion overwrites the contents of source_1 and source_0. See Table 13-3,
Table 13-4, and Table 13-5.

In the Shift Right version, the processor performs the following sequence.

1. Right shift Accumulator A0 by one bit. Right shift the LSB of
source_1 into the MSB of the Accumulator.

2. Right shift Accumulator A0 by one bit. Right shift the LSB of
source_0 into the MSB of the Accumulator.

Instruction Overview

13-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In the Shift Left version, the processor performs the following sequence.

1. Left shift Accumulator A0 by one bit. Left shift the MSB of
source_0 into the LSB of the Accumulator.

2. Left shift Accumulator A0 by one bit. Left shift the MSB of
source_1 into the LSB of the Accumulator.

source_1 and source_0 must not be the same D-register.

Table 13-3. Contents Before Shift

IF 39............32 31............24 23............16 15..............8 7................0

source_1: xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

source_0: yyyy yyyy yyyy yyyy yyyy yyyy yyyy yyyy

Accumulator A0: zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz

Table 13-4. A Shift Right Instruction

IF 39............32 31............24 23............16 15..............8 7................0

source_1:1

1 source_1 is shifted right 1 place

0xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

source_0:2

2 source_0 is shifted right 1 place

0yyy yyyy yyyy yyyy yyyy yyyy yyyy yyyy

Accumulator A0:3

3 Accumulator A0 is shifted right 2 places

yxzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-23

Bit Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Table 13-5. A Shift Left Instruction

IF 39............32 31............24 23............16 15..............8 7................0

source_1:1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx0

source_0:2 yyyy yyyy yyyy yyyy yyyy yyyy yyyy yyy0

Accumulator A0:3 zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzyx

1 source_1 is shifted left 1 place
2 source_0 is shifted left 1 place
3 Accumulator A0 is shifted left 2 places

Instruction Overview

13-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

bitmux (r2, r3, a0) (asr) ; /* right shift*/

• If

• R2=0b1010 0101 1010 0101 1100 0011 1010 1010

• R3=0b1100 0011 1010 1010 1010 0101 1010 0101

• A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0000 0111

then the Shift Right instruction produces:

• R2=0b0101 0010 1101 0010 1110 0001 1101 0101

• R3=0b0110 0001 1101 0101 0101 0010 1101 0010

• A0=0b1000 0000 0000 0000 0000 0000 0000 0000 0000 0001

bitmux (r3, r2, a0) (asl) ; /* left shift*/

• If

• R3=0b1010 0101 1010 0101 1100 0011 1010 1010

• R2=0b1100 0011 1010 1010 1010 0101 1010 0101

• A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0000 0111

then the Shift Left instruction produces:

• R2=0b1000 0111 0101 0101 0100 1011 0100 1010

• R3=0b0100 1011 0100 1011 1000 0111 0101 0100

• A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0001 1111

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-25

Bit Operations

Also See

None

Special Applications

Convolutional encoder algorithms

Instruction Overview

13-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ONES (One’s Population Count)

General Form

dest_reg = ONES src_reg

Syntax

Dreg_lo = ONES Dreg ; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The One’s Population Count instruction loads the number of 1’s
contained in the src_reg into the lower half of the dest_reg.

The range of possible values loaded into dest_reg is 0 through 32.

The dest_reg and src_reg can be the same D-register. Otherwise, the
One’s Population Count instruction does not modify the contents of
src_reg.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 13-27

Bit Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3.l = ones r7 ;

If R7 contains 0xA5A5A5A5, R3.L contains the value 16, or 0x0010.

If R7 contains 0x00000081, R3.L contains the value 2, or 0x0002.

Also See

None

Special Applications

Software parity testing

Instruction Overview

13-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-1

14 SHIFT/ROTATE OPERATIONS

Instruction Summary

• “Add with Shift” on page 14-2

• “Shift with Add” on page 14-5

• “Arithmetic Shift” on page 14-7

• “Logical Shift” on page 14-14

• “ROT (Rotate)” on page 14-21

Instruction Overview
This chapter discusses the instructions that manipulate bit operations.
Users can take advantage of these instructions to perform logical and
arithmetic shifts, combine addition operations with shifts, and rotate a
registered number through the Control Code (CC) bit.

Instruction Overview

14-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add with Shift

General Form

dest_pntr = (dest_pntr + src_reg) << 1

dest_pntr = (dest_pntr + src_reg) << 2

dest_reg = (dest_reg + src_reg) << 1

dest_reg = (dest_reg + src_reg) << 2

Syntax

Pointer Operations

Preg = (Preg + Preg) << 1 ; /* dest_reg = (dest_reg +

src_reg) x 2 (a) */

Preg = (Preg + Preg) << 2 ; /* dest_reg = (dest_reg +

src_reg) x 4 (a) */

Data Operations

Dreg = (Dreg + Dreg) << 1 ; /* dest_reg = (dest_reg + src_reg)

x 2 (a) */

Dreg = (Dreg + Dreg) << 2 ; /* dest_reg = (dest_reg + src_reg)

x 4 (a) */

Syntax Terminology

Preg: P5–0

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-3

Shift/Rotate Operations

Functional Description

The Add with Shift instruction combines an addition operation with a
one- or two-place logical shift left. Of course, a left shift accomplishes a x2
multiplication on sign-extended numbers. Saturation is not supported.

The Add with Shift instruction does not intrinsically modify values that
are strictly input. However, dest_reg serves as an input as well as the
result, so dest_reg is intrinsically modified.

Flags Affected

The D-register versions of this instruction affect flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is set if result overflows; cleared if no overflow.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register versions of this instruction do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Instruction Overview

14-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

p3 = (p3+p2)<<1 ; /* p3 = (p3 + p2) * 2 */

p3 = (p3+p2)<<2 ; /* p3 = (p3 + p2) * 4 */

r3 = (r3+r2)<<1 ; /* r3 = (r3 + r2) * 2 */

r3 = (r3+r2)<<2 ; /* r3 = (r3 + r2) * 4 */

Also See

Shift with Add, Logical Shift, Arithmetic Shift, Add, Multiply 32-Bit
Operands

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-5

Shift/Rotate Operations

Shift with Add

General Form

dest_pntr = adder_pntr + (src_pntr << 1)

dest_pntr = adder_pntr + (src_pntr << 2)

Syntax

Preg = Preg + (Preg << 1) ; /* adder_pntr + (src_pntr x 2)

(a) */

Preg = Preg + (Preg << 2) ; /* adder_pntr + (src_pntr x 4)

(a) */

Syntax Terminology

Preg: P5–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Shift with Add instruction combines a one- or two-place logical shift
left with an addition operation.

The instruction provides a shift-then-add method that supports a rudi-
mentary multiplier sequence useful for array pointer manipulation.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

14-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

p3 = p0+(p3<<1) ; /* p3 = (p3 * 2) + p0 */

p3 = p0+(p3<<2) ; /* p3 = (p3 * 4) + p0 */

Also See

Add with Shift, Logical Shift, Arithmetic Shift, Add, Multiply 32-Bit
Operands

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-7

Shift/Rotate Operations

Arithmetic Shift

General Form

dest_reg >>>= shift_magnitude

dest_reg = src_reg >>> shift_magnitude (opt_sat)

dest_reg = src_reg << shift_magnitude (S)

accumulator = accumulator >>> shift_magnitude

dest_reg = ASHIFT src_reg BY shift_magnitude (opt_sat)

accumulator = ASHIFT accumulator BY shift_magnitude

Syntax

Constant Shift Magnitude

Dreg >>>= uimm5 ; /* arithmetic right shift (a) */

Dreg <<= uimm5 ; /* logical left shift (a) */

Dreg_lo_hi = Dreg_lo_hi >>> uimm4 ; /* arithmetic right shift

(b) */

Dreg_lo_hi = Dreg_lo_hi << uimm4 (S) ; /* arithmetic left

shift (b) */

Dreg = Dreg >>> uimm5 ; /* arithmetic right shift (b) */

Dreg = Dreg << uimm5 (S) ; /* arithmetic left shift (b) */

A0 = A0 >>> uimm5 ; /* arithmetic right shift (b) */

A0 = A0 << uimm5 ; /* logical left shift (b) */

A1 = A1 >>> uimm5 ; /* arithmetic right shift (b) */

A1 = A1 << uimm5 ; /* logical left shift (b) */

Registered Shift Magnitude

Dreg >>>= Dreg ; /* arithmetic right shift (a) */

Dreg <<= Dreg ; /* logical left shift (a) */

Dreg_lo_hi = ASHIFT Dreg_lo_hi BY Dreg_lo (opt_sat) ; /*

arithmetic right shift (b) */

Dreg = ASHIFT Dreg BY Dreg_lo (opt_sat) ; /* arithmetic right

shift (b) */

Instruction Overview

14-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

A0 = ASHIFT A0 BY Dreg_lo ; /* arithmetic right shift (b)*/

A1 = ASHIFT A1 BY Dreg_lo ; /* arithmetic right shift (b)*/

Syntax Terminology

Dreg: R7–0

Dreg_lo_hi: R7–0.L, R7–0.H

Dreg_lo: R7–0.L

uimm4: 4-bit unsigned field, with a range of 0 through 15

uimm5: 5-bit unsigned field, with a range of 0 through 31

opt_sat: optional “(S)” (without the quotes) to invoke saturation of the
result. Not optional on versions that show “(S)” in the syntax.

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Arithmetic Shift instruction shifts a registered number a specified dis-
tance and direction while preserving the sign of the original number. The
sign bit value back-fills the left-most bit positions vacated by the arith-
metic right shift.

Specific versions of arithmetic left shift are supported, too. Arithmetic left
shift saturates the result if the value is shifted too far. A left shift that
would otherwise lose nonsign bits off the left-hand side saturates to the
maximum positive or negative value instead.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-9

Shift/Rotate Operations

The “ASHIFT” versions of this instruction support two modes.

1. Default–arithmetic right shifts and logical left shifts. Logical left
shifts do not guarantee sign bit preservation. The “ASHIFT” versions
automatically select arithmetic and logical shift modes based on the
sign of the shift_magnitude.

2. Saturation mode–arithmetic right and left shifts that saturate if the
value is shifted left too far.

The “>>>=” and “>>>” versions of this instruction supports only arithmetic
right shifts. If left shifts are desired, the programmer must explicitly use
arithmetic “<<” (saturating) or logical “<<” (non-saturating) instructions.

Logical left shift instructions are duplicated in the Syntax section
for programmer convenience. See the Logical Shift instruction for
details on those operations.

The Arithmetic Shift instruction supports 16-bit and 32-bit instruction
length.

• The “>>>=” syntax instruction is 16 bits in length, allowing for
smaller code at the expense of flexibility.

• The “>>>”, “<<”, and “ASHIFT” syntax instructions are 32 bits in
length, providing a separate source and destination register, alter-
native data sizes, and parallel issue with Load/Store instructions.

Both syntaxes support constant and registered shift magnitudes.

For the ASHIFT versions, the sign of the shift magnitude determines the
direction of the shift.

• Positive shift magnitudes produce Logical Left shifts.

• Negative shift magnitudes produce Arithmetic Right shifts.

Instruction Overview

14-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In essence, the magnitude is the power of 2 multiplied by the src_reg
number. Positive magnitudes cause multiplication (N x 2n) whereas neg-
ative magnitudes produce division (N x 2-n or N / 2n).

The dest_reg and src_reg can be a 16-, 32-, or 40-bit register. Some ver-
sions of the Arithmetic Shift instruction support optional saturation.

See “Saturation” on page 1-17 for a description of saturation behavior.

For 16-bit src_reg, valid shift magnitudes are –16 through +15, zero
included. For 32- and 40-bit src_reg, valid shift magnitudes are –32
through +31, zero included.

The D-register versions of this instruction shift 16 or 32 bits for half-word
and word registers, respectively. The Accumulator versions shift all 40 bits
of those registers.

The D-register versions of this instruction do not implicitly modify the
src_reg values. Optionally, dest_reg can be the same D-register as
src_reg. Doing this explicitly modifies the source register.

The Accumulator versions always modify the Accumulator source value.

Table 14-1. Arithmetic Shifts

Syntax Description

“>>>=” The value in dest_reg is right-shifted by the number of places specified
by shift_magnitude. The data size is always 32 bits long. The entire 32
bits of the shift_magnitude determine the shift value. Shift magnitudes
larger than 0x1F result in either 0x00000000 (when the input value is
positive) or 0xFFFFFFFF (when the input value is negative).
Only right shifting is supported in this syntax; there is no equivalent
“<<<=” arithmetic left shift syntax. However, logical left shift is sup-
ported. See the Logical Shift instruction.

“>>>”, “<<”, and
“ASHIFT”

The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.
The “ASHIFT” versions can shift 32-bit Dreg and 40-bit Accumulator
registers by up to –32 through +31 places.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-11

Shift/Rotate Operations

Options

Option (S) invokes saturation of the result.

In the default case–without the saturation option–numbers can be
left-shifted so far that all the sign bits overflow and are lost. However,
when the saturation option is enabled, a left shift that would otherwise
shift nonsign bits off the left-hand side saturates to the maximum positive
or negative value instead. Consequently, with saturation enabled, the
result always keeps the same sign as the original number.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

The versions of this instruction that send results to a Dreg set flags as
follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is set if result overflows; cleared if no overflow.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The versions of this instruction that send results to an Accumulator A0 set
flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AV0 is set if result is zero; cleared if nonzero.

• AV0S is set if AV0 is set; unaffected otherwise.

• All other flags are unaffected.

Instruction Overview

14-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The versions of this instruction that send results to an Accumulator A1 set
flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AV1 is set if result is zero; cleared if nonzero.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r0 >>>= 19 ; /* 16-bit instruction length arithmetic right

shift */

r3.l = r0.h >>> 7 ; /* arithmetic right shift, half-word */

r3.h = r0.h >>> 5 ; /* same as above; any combination of upper

and lower half-words is supported */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-13

Shift/Rotate Operations

r3.l = r0.h >>> 7(s) ; /* arithmetic right shift, half-word,

saturated */

r4 = r2 >>> 20 ; /* arithmetic right shift, word */

A0 = A0 >>> 1 ; /* arithmetic right shift, Accumulator */

r0 >>>= r2 ; /* 16-bit instruction length arithmetic right

shift */

r3.l = r0.h << 12 (S) ; /* arithmetic left shift */

r5 = r2 << 24(S) ; /* arithmetic left shift */

r3.l = ashift r0.h by r7.l ; /* shift, half-word */

r3.h = ashift r0.l by r7.l ;

r3.h = ashift r0.h by r7.l ;

r3.l = ashift r0.l by r7.l ;

r3.l = ashift r0.h by r7.l(s) ; /* shift, half-word,

saturated */

r3.h = ashift r0.l by r7.l(s) ; /* shift, half-word,

saturated */

r3.h = ashift r0.h by r7.l(s) ;

r3.l = ashift r0.l by r7.l (s) ;

r4 = ashift r2 by r7.l ; /* shift, word */

r4 = ashift r2 by r7.l (s) ; /* shift, word, saturated */

A0 = ashift A0 by r7.l ; /* shift, Accumulator */

A1 = ashift A1 by r7.l ; /* shift, Accumulator */

// If r0.h = -64, then performing . . .

r3.h = r0.h >>> 4 ; /* . . . produces r3.h = -4, preserving the

sign */

Also See

Vector Arithmetic Shift, Vector Logical Shift, Logical Shift, Shift with
Add, ROT (Rotate)

Special Applications

Multiply, divide, and normalize signed numbers

Instruction Overview

14-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Shift

General Form

dest_pntr = src_pntr >> 1

dest_pntr = src_pntr >> 2

dest_pntr = src_pntr << 1

dest_pntr = src_pntr << 2

dest_reg >>= shift_magnitude

dest_reg <<= shift_magnitude

dest_reg = src_reg >> shift_magnitude

dest_reg = src_reg << shift_magnitude

dest_reg = LSHIFT src_reg BY shift_magnitude

Syntax

Pointer Shift, Fixed Magnitude

Preg = Preg >> 1 ; /* right shift by 1 bit (a) */

Preg = Preg >> 2 ; /* right shift by 2 bit (a) */

Preg = Preg << 1 ; /* left shift by 1 bit (a) */

Preg = Preg << 2 ; /* left shift by 2 bit (a) */

Data Shift, Constant Shift Magnitude

Dreg >>= uimm5 ; /* right shift (a) */

Dreg <<= uimm5 ; /* left shift (a) */

Dreg_lo_hi = Dreg_lo_hi >> uimm4 ; /* right shift (b) */

Dreg_lo_hi = Dreg_lo_hi << uimm4 ; /* left shift (b) */

Dreg = Dreg >> uimm5 ; /* right shift (b) */

Dreg = Dreg << uimm5 ; /* left shift (b) */

A0 = A0 >> uimm5 ; /* right shift (b) */

A0 = A0 << uimm5 ; /* left shift (b) */

A1 = A1 << uimm5 ; /* left shift (b) */

A1 = A1 >> uimm5 ; /* right shift (b) */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-15

Shift/Rotate Operations

Data Shift, Registered Shift Magnitude

Dreg >>= Dreg ; /* right shift (a) */

Dreg <<= Dreg ; /* left shift (a) */

Dreg_lo_hi = LSHIFT Dreg_lo_hi BY Dreg_lo ; /* (b) */

Dreg = LSHIFT Dreg BY Dreg_lo ; /* (b) */

A0 = LSHIFT A0 BY Dreg_lo ; /* (b) */

A1 = LSHIFT A1 BY Dreg_lo ; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Dreg_lo_hi: R7–0.L, R7–0.H

Preg: P5–0

uimm4: 4-bit unsigned field, with a range of 0 through 15

uimm5: 5-bit unsigned field, with a range of 0 through 31

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Logical Shift instruction logically shifts a register by a specified dis-
tance and direction.

Logical shifts discard any bits shifted out of the register and backfill
vacated bits with zeros.

Instruction Overview

14-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Four versions of the Logical Shift instruction support pointer shifting.
The instruction does not implicitly modify the input src_pntr value. For
the P-register versions of this instruction, dest_pntr can be the same
P-register as src_pntr. Doing so explicitly modifies the source register.

The rest of this description applies to the data shift versions of this
instruction relating to D-registers and Accumulators.

The Logical Shift instruction supports 16-bit and 32-bit instruction
length.

• The “>>=” and “<<=” syntax instruction is 16 bits in length, allow-
ing for smaller code at the expense of flexibility.

• The “>>”, “<<”, and “LSHIFT” syntax instruction is 32 bits in
length, providing a separate source and destination register, alter-
native data sizes, and parallel issue with Load/Store instructions.

Both syntaxes support constant and registered shift magnitudes.

For the LSHIFT version, the sign of the shift magnitude determines the
direction of the shift.

• Positive shift magnitudes produce Left shifts.

• Negative shift magnitudes produce Right shifts.

Table 14-2. Logical Shifts

Syntax Description

“>>=”
and “<<=”

The value in dest_reg is shifted by the number of places specified by
shift_magnitude. The data size is always 32 bits long. The entire 32 bits
of the shift_magnitude determine the shift value. Shift magnitudes larger
than 0x1F produce a 0x00000000 result.

“>>”, “<<”,
and “LSHIFT”

The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.
The LSHIFT versions can shift 32-bit Dreg and 40-bit Accumulator reg-
isters by up to –32 through +31 places.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-17

Shift/Rotate Operations

The dest_reg and src_reg can be a 16-, 32-, or 40-bit register.

For the LSHIFT instruction, the shift magnitude is the lower 6 bits of the
Dreg_lo, sign extended. The Dreg >>= Dreg and Dreg <<= Dreg instruc-
tions use the entire 32 bits of magnitude.

The D-register versions of this instruction shift 16 or 32 bits for half-word
and word registers, respectively. The Accumulator versions shift all 40 bits
of those registers.

Forty-bit Accumulator values can be shifted by up to –32 to +31 bit
places.

Shift magnitudes that exceed the size of the destination register produce
all zeros in the result. For example, shifting a 16-bit register value by 20
bit places (a valid operation) produces 0x0000.

A shift magnitude of zero performs no shift operation at all.

The D-register versions of this instruction do not implicitly modify the
src_reg values. Optionally, dest_reg can be the same D-register as
src_reg. Doing this explicitly modifies the source register.

Flags Affected

The P-register versions of this instruction do not affect any flags.

The versions of this instruction that send results to a Dreg set flags as
follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is cleared.

• All other flags are unaffected.

Instruction Overview

14-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The versions of this instruction that send results to an Accumulator A0 set
flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AV0 is cleared.

• All other flags are unaffected.

The versions of this instruction that send results to an Accumulator A1 set
flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AV1 is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-19

Shift/Rotate Operations

Example

p3 = p2 >> 1 ; /* pointer right shift by 1 */

p3 = p3 >> 2 ; /* pointer right shift by 2 */

p4 = p5 << 1 ; /* pointer left shift by 1 */

p0 = p1 << 2 ; /* pointer left shift by 2 */

r3 >>= 17 ; /* data right shift */

r3 <<= 17 ; /* data left shift */

r3.l = r0.l >> 4 ; /* data right shift, half-word register */

r3.l = r0.h >> 4 ; /* same as above; half-word register combi-

nations are arbitrary */

r3.h = r0.l << 12 ; /* data left shift, half-word register */

r3.h = r0.h << 14 ; /* same as above; half-word register com-

binations are arbitrary */

r3 = r6 >> 4 ; /* right shift, 32-bit word */

r3 = r6 << 4 ; /* left shift, 32-bit word */

a0 = a0 >> 7 ; /* Accumulator right shift */

a1 = a1 >> 25 ; /* Accumulator right shift */

a0 = a0 << 7 ; /* Accumulator left shift */

a1 = a1 << 14 ; /* Accumulator left shift */

r3 >>= r0 ; /* data right shift */

r3 <<= r1 ; /* data left shift */

r3.l = lshift r0.l by r2.l ; /* shift direction controlled by

sign of R2.L */

r3.h = lshift r0.l by r2.l ;

a0 = lshift a0 by r7.l ;

a1 = lshift a1 by r7.l ;

/* If r0.h = -64 (or 0xFFC0), then performing . . . */

r3.h = r0.h >> 4 ; /* . . . produces r3.h = 0x0FFC (or 4092),

losing the sign */

Instruction Overview

14-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Arithmetic Shift, ROT (Rotate), Shift with Add, Vector Arithmetic Shift,
Vector Logical Shift

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-21

Shift/Rotate Operations

ROT (Rotate)

General Form

dest_reg = ROT src_reg BY rotate_magnitude

accumulator_new = ROT accumulator_old BY rotate_magnitude

Syntax

Constant Rotate Magnitude

Dreg = ROT Dreg BY imm6 ; /* (b) */

A0 = ROT A0 BY imm6 ; /* (b) */

A1 = ROT A1 BY imm6 ; /* (b) */

Registered Rotate Magnitude

Dreg = ROT Dreg BY Dreg_lo ; /* (b) */

A0 = ROT A0 BY Dreg_lo ; /* (b) */

A1 = ROT A1 BY Dreg_lo ; */ (b) */

Syntax Terminology

Dreg: R7–0

imm6: 6-bit signed field, with a range of –32 through +31

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Rotate instruction rotates a register through the CC bit a specified dis-
tance and direction. The CC bit is in the rotate chain. Consequently, the
first value rotated into the register is the initial value of the CC bit.

Instruction Overview

14-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Rotation shifts all the bits either right or left. Each bit that rotates out of
the register (the LSB for rotate right or the MSB for rotate left) is stored in
the CC bit, and the CC bit is stored into the bit vacated by the rotate on the
opposite end of the register.

If 31 0

D-register: 1010 1111 0000 0000 0000 0000 0001 1010

CC bit: N (“1” or “0”)

Rotate left 1 bit 31 0

D-register: 0101 1110 0000 0000 0000 0000 0011 010N

CC bit: 1

Rotate left 1 bit again 31 0

D-register: 1011 1100 0000 0000 0000 0000 0110 10N1

CC bit: 0

If 31 0

D-register: 1010 1111 0000 0000 0000 0000 0001 1010

CC bit: N (“1” or “0”)

Rotate right 1 bit 31 0

D-register: N101 0111 1000 0000 0000 0000 0000 1101

CC bit: 0

Rotate right 1 bit again 31 0

D-register: 0N10 1011 1100 0000 0000 0000 0000 0110

CC bit: 1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-23

Shift/Rotate Operations

The sign of the rotate magnitude determines the direction of the rotation.

• Positive rotate magnitudes produce Left rotations.

• Negative rotate magnitudes produce Right rotations.

Valid rotate magnitudes are –32 through +31, zero included. The Rotate
instruction masks and ignores bits that are more significant than those
allowed. The distance is determined by the lower 6 bits (sign extended) of
the shift_magnitude.

Unlike shift operations, the Rotate instruction loses no bits of the source
register data. Instead, it rearranges them in a circular fashion. However,
the last bit rotated out of the register remains in the CC bit, and is not
returned to the register. Because rotates are performed all at once and not
one bit at a time, rotating one direction or another regardless of the rotate
magnitude produces no advantage. For instance, a rotate right by two bits
is no more efficient than a rotate left by 30 bits. Both methods produce
identical results in identical execution time.

The D-register versions of this instruction rotate all 32 bits. The Accumu-
lator versions rotate all 40 bits of those registers.

The D-register versions of this instruction do not implicitly modify the
src_reg values. Optionally, dest_reg can be the same D-register as
src_reg. Doing this explicitly modifies the source register.

Instruction Overview

14-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

The following flags are affected by the Rotate instruction.

• CC contains the latest value shifted into it.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r4 = rot r1 by 8 ; /* rotate left */

r4 = rot r1 by -5 ; /* rotate right */

a0 = rot a0 by 22 ; /* rotate Accumulator left */

a1 = rot a1 by -31 ; /* rotate Accumulator right */

r4 = rot r1 by r2.l ;

a0 = rot a0 by r3.l ;

a1 = rot a1 by r7.l ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 14-25

Shift/Rotate Operations

Also See

Arithmetic Shift, Logical Shift

Special Applications

None

Instruction Overview

14-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-1

15 ARITHMETIC OPERATIONS

Instruction Summary

• “ABS” on page 15-3

• “Add” on page 15-6

• “Add/Subtract – Prescale Down” on page 15-10

• “Add/Subtract – Prescale Up” on page 15-13

• “Add Immediate” on page 15-16

• “DIVS, DIVQ (Divide Primitive)” on page 15-19

• “EXPADJ” on page 15-26

• “MAX” on page 15-30

• “MIN” on page 15-32

• “Modify – Decrement” on page 15-34

• “Modify – Increment” on page 15-37

• “Multiply 16-Bit Operands” on page 15-43

• “Multiply 32-Bit Operands” on page 15-51

• “Multiply and Multiply-Accumulate to Accumulator” on
page 15-53

• “Multiply and Multiply-Accumulate to Half-Register” on
page 15-58

Instruction Overview

15-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• “Multiply and Multiply-Accumulate to Data Register” on
page 15-67

• “Negate (Two’s Complement)” on page 15-73

• “RND (Round to Half-Word)” on page 15-77

• “Saturate” on page 15-80

• “SIGNBITS” on page 15-83

• “Subtract” on page 15-86

• “Subtract Immediate” on page 15-90

Instruction Overview
This chapter discusses the instructions that specify arithmetic operations.
Users can take advantage of these instructions to add, subtract, divide, and
multiply, as well as to calculate and store absolute values, detect expo-
nents, round, saturate, and return the number of sign bits.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-3

Arithmetic Operations

ABS

General Form

dest_reg = ABS src_reg

Syntax

A0 = ABS A0 ; /* (b) */

A0 = ABS A1 ; /* (b) */

A1 = ABS A0 ; /* (b) */

A1 = ABS A1 ; /* (b) */

A1 = ABS A1, A0 = ABS A0 ; /* (b) */

Dreg = ABS Dreg ; /* (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Instruction Overview

15-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Functional Description

The Dreg form of the Absolute Value instruction calculates the absolute
value of a 32-bit register and stores it into a 32-bit dest_reg. The accumu-
lator form of this instruction takes the absolute value of a 40-bit input
value in a register and produces a 40-bit result. Calculation is done
according to the following rules.

• If the input value is positive or zero, copy it unmodified to the
destination.

• If the input value is negative, subtract it from zero and store the
result in the destination. Saturation is automatically performed
with the instruction, so taking the absolute value of the larg-
est-magnitude negative number returns the largest-magnitude
positive number.

The ABS operation can also be performed on both Accumulators by a sin-
gle instruction.

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero. In the case of two
simultaneous operations, AZ represents the logical “OR” of the two.

• AN is cleared.

• V is set if the maximum negative value is saturated to the maximum
positive value and the dest_reg is a Dreg; cleared if no saturation.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result overflows and the dest_reg is A0; cleared if no
overflow.

• AV0S is set if AV0 is set; unaffected otherwise.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-5

Arithmetic Operations

• AV1 is set if result overflows and the dest_reg is A1; cleared if no
overflow.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

a0 = abs a0 ;

a0 = abs a1 ;

a1 = abs a0 ;

a1 = abs a1 ;

a1 = abs a1, a0=abs a0 ;

r3 = abs r1 ;

Also See

Vector ABS

Special Applications

None

Instruction Overview

15-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add

General Form

dest_reg = src_reg_1 + src_reg_2

Syntax

Pointer Registers — 32-Bit Operands, 32-Bit Result

Preg = Preg + Preg ; /* (a) */

Data Registers — 32-Bit Operands, 32-bit Result

Dreg = Dreg + Dreg ; /* no saturation support but shorter

instruction length (a) */

Dreg = Dreg + Dreg (sat_flag) ; /* saturation optionally sup-

ported, but at the cost of longer instruction length (b) */

Data Registers — 16-Bit Operands, 16-Bit Result

Dreg_lo_hi = Dreg_lo_hi + Dreg_lo_hi (sat_flag) ; /* (b) */

Syntax Terminology

Preg: P5–0, SP, FP

Dreg: R7–0

Dreg_lo_hi: R7–0.L, R7–0.H

sat_flag: nonoptional saturation flag, (S) or (NS)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-7

Arithmetic Operations

Functional Description

The Add instruction adds two source values and places the result in a des-
tination register.

There are two ways to specify addition on 32-bit data in D-registers:

• One does not support saturation (16-bit instruction length)

• The other supports optional saturation (32-bit instruction length)

The shorter 16-bit instruction takes up less memory space. The larger
32-bit instruction can sometimes save execution time because it can be
issued in parallel with certain other instructions. See “Parallel Issue” on
page 15-5.

The D-register version that accepts 16-bit half-word operands stores the
result in a half-word data register. This version accepts any combination
of upper and lower half-register operands, and places the results in the
upper or lower half of the destination register at the user’s discretion.

All versions that manipulate 16-bit data are 32 bits long.

Options

In the syntax, where sat_flag appears, substitute one of the following
values.

(S) – saturate the result

(NS) – no saturation

See “Saturation” on page 1-17 for a description of saturation behavior.

Instruction Overview

15-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

D-register versions of this instruction set flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is set if the operation generates a carry; cleared if no carry.

• V is set if result overflows; cleared if no overflow.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register versions of this instruction do not affect any flags.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-9

Arithmetic Operations

Example

r5 = r2 + r1 ; /* 16-bit instruction length add, no

saturation */

r5 = r2 + r1(ns) ; /* same result as above, but 32-bit

instruction length */

r5 = r2 + r1(s) ; /* saturate the result */

p5 = p3 + p0 ;

/* If r0.l = 0x7000 and r7.l = 0x2000, then . . . */

r4.l = r0.l + r7.l (ns) ; /* . . . produces r4.l = 0x9000,

because no saturation is enforced */

/* If r0.l = 0x7000 and r7.h = 0x2000, then . . . */

r4.l = r0.l + r7.h (s) ; /* . . . produces r4.l = 0x7FFF, satu-

rated to the maximum positive value */

r0.l = r2.h + r4.l(ns) ;

r1.l = r3.h + r7.h(ns) ;

r4.h = r0.l + r7.l (ns) ;

r4.h = r0.l + r7.h (ns) ;

r0.h = r2.h + r4.l(s) ; /* saturate the result */

r1.h = r3.h + r7.h(ns) ;

Also See

Modify – Increment, Add with Shift, Shift with Add, Vector Add /
Subtract

Special Applications

None

Instruction Overview

15-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add/Subtract – Prescale Down

General Form

dest_reg = src_reg_0 + src_reg_1 (RND20)

dest_reg = src_reg_0 - src_reg_1 (RND20)

Syntax

Dreg_lo_hi = Dreg + Dreg (RND20) ; // (b)

Dreg_lo_hi = Dreg - Dreg (RND20) ; // (b)

Syntax Terminology

Dreg: R7–0

Dreg_lo_hi: R7–0.L, R7–0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Add/Subtract -- Prescale Down instruction combines two 32-bit val-
ues to produce a 16-bit result as follows:

• Prescale down both input operand values by arithmetically shifting
them four places to the right

• Add or subtract the operands, depending on the instruction version
used

• Round the upper 16 bits of the result

• Extract the upper 16 bits to the dest_reg

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-11

Arithmetic Operations

The instruction supports only biased rounding. The RND_MOD bit in the
ASTAT register has no bearing on the rounding behavior of this instruction.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Flags Affected

The following flags are affected by this instruction:

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is cleared.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r1.l = r6+r7(rnd20) ;

r1.l = r6-r7(rnd20) ;

r1.h = r6+r7(rnd20) ;

r1.h = r6-r7(rnd20) ;

Instruction Overview

15-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Add/Subtract – Prescale Up, RND (Round to Half-Word), Add

Special Applications

Typically, use the Add/Subtract – Prescale Down instruction to provide
an IEEE 1180–compliant 2D 8x8 inverse discrete cosine transform.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-13

Arithmetic Operations

Add/Subtract – Prescale Up

General Form

dest_reg = src_reg_0 + src_reg_1 (RND12)

dest_reg = src_reg_0 - src_reg_1 (RND12)

Syntax

Dreg_lo_hi = Dreg + Dreg (RND12) ; // (b)

Dreg_lo_hi = Dreg - Dreg (RND12) ; // (b)

Syntax Terminology

Dreg: R7–0

Dreg_lo_hi: R7–0.L, R7–0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Add/Subtract – Prescale Up instruction combines two 32-bit values
to produce a 16-bit result as follows:

• Prescale up both input operand values by shifting them four places
to the left

• Add or subtract the operands, depending on the instruction version
used

• Round and saturate the upper 16 bits of the result

• Extract the upper 16 bits to the dest_reg

Instruction Overview

15-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The instruction supports only biased rounding. The RND_MOD bit in the
ASTAT register has no bearing on the rounding behavior of this instruction.

See “Saturation” on page 1-17 for a description of saturation behavior.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Flags Affected

The following flags are affected by this instruction:

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is set if result saturates; cleared if no saturation.

• VS is set if V is set; unaffected otherwise.

All other flags are unaffected.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r1.l = r6+r7(rnd12) ;

r1.l = r6-r7(rnd12) ;

r1.h = r6+r7(rnd12) ;

r1.h = r6-r7(rnd12) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-15

Arithmetic Operations

Also See

RND (Round to Half-Word), Add/Subtract – Prescale Down, Add

Special Applications

Typically, use the Add/Subtract – Prescale Up instruction to provide an
IEEE 1180–compliant 2D 8x8 inverse discrete cosine transform.

Instruction Overview

15-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add Immediate

General Form

register += constant

Syntax

Dreg += imm7 ; /* Dreg = Dreg + constant (a) */

Preg += imm7 ; /* Preg = Preg + constant (a) */

Ireg += 2 ; /* increment Ireg by 2, half-word address pointer

increment (a) */

Ireg += 4 ; /* word address pointer increment (a) */

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

Ireg: I3–0

imm7: 7-bit signed field, with the range of –64 through +63

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Add Immediate instruction adds a constant value to a register without
saturation.

To subtract immediate values from I-registers, use the Subtract
Immediate instruction.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-17

Arithmetic Operations

on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Flags Affected

D-register versions of this instruction set flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is set if the operation generates a carry; cleared if no carry.

• V is set if result overflows; cleared if no overflow.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register and I-register versions of this instruction do not affect any
flags.

Instruction Overview

15-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Required Mode

User & Supervisor

Parallel Issue

The Index Register versions of this instruction can be issued in parallel
with specific other instructions. For details, see “Issuing Parallel Instruc-
tions” on page 20-1.

The Data Register and Pointer Register versions of this instruction cannot
be issued in parallel with other instructions.

Example

r0 += 40 ;

p5 += -4 ; /* decrement by adding a negative value */

i0 += 2 ;

i1 += 4 ;

Also See

Subtract Immediate

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-19

Arithmetic Operations

DIVS, DIVQ (Divide Primitive)

General Form

DIVS (dividend_register, divisor_register)

DIVQ (dividend_register, divisor_register)

Syntax

DIVS (Dreg, Dreg) ; /* Initialize for DIVQ. Set the AQ flag

based on the signs of the 32-bit dividend and the 16-bit divisor.

Left shift the dividend one bit. Copy AQ into the dividend LSB.

(a) */

DIVQ (Dreg, Dreg) ; /* Based on AQ flag, either add or sub-

tract the divisor from the dividend. Then set the AQ flag based

on the MSBs of the 32-bit dividend and the 16-bit divisor. Left

shift the dividend one bit. Copy the logical inverse of AQ into

the dividend LSB. (a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Divide Primitive instruction versions are the foundation elements of a
nonrestoring conditional add-subtract division algorithm. See “Example”
on page 15-24 for such a routine.

The dividend (numerator) is a 32-bit value. The divisor (denominator) is
a 16-bit value in the lower half of divisor_register. The high-order
half-word of divisor_register is ignored entirely.

Instruction Overview

15-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The division can either be signed or unsigned, but the dividend and divi-
sor must both be of the same type. The divisor cannot be negative. A
signed division operation, where the dividend may be negative, begins the
sequence with the DIVS (“divide-sign”) instruction, followed by repeated
execution of the DIVQ (“divide-quotient”) instruction. An unsigned divi-
sion omits the DIVS instruction. In that case, the user must manually clear
the AQ flag of the ASTAT register before issuing the DIVQ instructions.

Up to 16 bits of signed quotient resolution can be calculated by issuing
DIVS once, then repeating the DIVQ instruction 15 times. A 16-bit
unsigned quotient is calculated by omitting DIVS, clearing the AQ flag, then
issuing 16 DIVQ instructions.

Less quotient resolution is produced by executing fewer DIVQ iterations.

The result of each successive addition or subtraction appears in
dividend_register, aligned and ready for the next addition or subtraction
step. The contents of divisor_register are not modified by this
instruction.

The final quotient appears in the low-order half-word of
dividend_register at the end of the successive add/subtract sequence.

DIVS computes the sign bit of the quotient based on the signs of the divi-
dend and divisor. DIVS initializes the AQ flag based on that sign, and
initializes the dividend for the first addition or subtraction. DIVS performs
no addition or subtraction.

DIVQ either adds (dividend + divisor) or subtracts (dividend – divisor)
based on the AQ flag, then reinitializes the AQ flag and dividend for the next
iteration. If AQ is 1, addition is performed; if AQ is 0, subtraction is
performed.

See “Flags Affected” on page 15-4 for the conditions that set and clear the
AQ flag.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-21

Arithmetic Operations

Both instruction versions align the dividend for the next iteration by left
shifting the dividend one bit to the left (without carry). This left shift
accomplishes the same function as aligning the divisor one bit to the right,
such as one would do in manual binary division.

The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor. Let:

• NL represent the number of bits to the left of the binal point of the
dividend, and

• NR represent the number of bits to the right of the binal point of
the dividend (numerator);

• DL represent the number of bits to the left of the binal point of the
divisor, and

• DR represent the number of bits to the right of the binal point of
the divisor (denominator).

Then the quotient has NL – DL + 1 bits to the left of the binal point and
NR – DR – 1 bits to the right of the binal point. See the following
example.

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format), the result is fully

Dividend (numerator) BBBB B .
NL bits

BBB BBBB BBBB BBBB BBBB BBBB BBBB
NR bits

Divisor (denominator) BB .
DL bits

BB BBBB BBBB BBBB
DR bits

Quotient BBBB . BBBB BBBB BBBB

NL - DL +1
(5 - 2 + 1)

NR - DR - 1
(27 - 14 - 1)

4.12 format

Instruction Overview

15-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

fractional (in 1.15 format) and therefore the upper 16 bits of the dividend
must have a smaller magnitude than the divisor to avoid a quotient over-
flow beyond 16 bits. If an overflow occurs, AV0 is set. User software is able
to detect the overflow, rescale the operand, and repeat the division.

Dividing two integers (32.0 dividend by a 16.0 divisor) results in an
invalid quotient format because the result will not fit in a 16-bit register.
To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), one must shift the
dividend one bit to the left (into 31.1 format) before dividing. This
requirement to shift left limits the usable dividend range to 31 bits. Viola-
tions of this range produce an invalid result of the division operation.

The algorithm overflows if the result cannot be represented in the format
of the quotient as calculated above, or when the divisor is zero or less than
the upper 16 bits of the dividend in magnitude (which is tantamount to
multiplication).

Error Conditions

Two special cases can produce invalid or inaccurate results. Software can
trap and correct both cases.

1. The Divide Primitive instructions do not support signed division
by a negative divisor. Attempts to divide by a negative divisor result
in a quotient that is, in most cases, one LSB less than the correct
value. If division by a negative divisor is required, follow the steps
below.

• Before performing the division, save the sign of the divisor
in a scratch register.

• Calculate the absolute value of the divisor and use that value
as the divisor operand in the Divide Primitive instructions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-23

Arithmetic Operations

• After the divide sequence concludes, multiply the resulting
quotient by the original divisor sign.

• The quotient then has the correct magnitude and sign.

2. The Divide Primitive instructions do not support unsigned divi-
sion by a divisor greater than 0x7FFF. If such divisions are
necessary, prescale both operands by shifting the dividend and divi-
sor one bit to the right prior to division. The resulting quotient
will be correctly aligned.

Of course, prescaling the operands decreases their resolution, and
may introduce one LSB of error in the quotient. Such error can be
detected and corrected by the following steps.

• Save the original (unscaled) dividend and divisor in scratch
registers.

• Prescale both operands as described and perform the divi-
sion as usual.

• Multiply the resulting quotient by the unscaled divisor. Do
not corrupt the quotient by the multiplication step.

• Subtract the product from the unscaled dividend. This step
produces an error value.

• Compare the error value to the unscaled divisor.

• If error > divisor, add one LSB to the quotient.

• If error < divisor, subtract one LSB from the
quotient.

• If error = divisor, do nothing.

Tested examples of these solutions are planned to be added in a later edi-
tion of this document.

Instruction Overview

15-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

This instruction affects flags as follows.

• AQ equals dividend_MSB Exclusive-OR divisor_MSB where dividend
is a 32-bit value and divisor is a 16-bit value.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

/* Evaluate given a signed integer dividend and divisor */

p0 = 15 ; /* Evaluate the quotient to 16 bits. */

r0 = 70 ; /* Dividend, or numerator */

r1 = 5 ; /* Divisor, or denominator */

r0 <<= 1 ; /* Left shift dividend by 1 needed for integer divi-

sion */

divs (r0, r1) ; /* Evaluate quotient MSB. Initialize AQ flag

and dividend for the DIVQ loop. */

loop .div_prim lc0=p0 ; /* Evaluate DIVQ p0=15 times. */

loop_begin .div_prim ;

divq (r0, r1) ;

loop_end .div_prim ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-25

Arithmetic Operations

r0 = r0.l (x) ; /* Sign extend the 16-bit quotient to 32bits.

*/

/* r0 contains the quotient (70/5 = 14). */

Also See

LSETUP, LOOP, Multiply 32-Bit Operands

Special Applications

None

Instruction Overview

15-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

EXPADJ

General Form

dest_reg = EXPADJ (sample_register, exponent_register)

Syntax

Dreg_lo = EXPADJ (Dreg, Dreg_lo) ; /* 32-bit sample (b) */

Dreg_lo = EXPADJ (Dreg_lo_hi, Dreg_lo) ; /* one 16-bit sam-

ple (b) */

Dreg_lo = EXPADJ (Dreg, Dreg_lo) (V) ; /* two 16-bit samples

(b) */

Syntax Terminology

Dreg_lo_hi: R7–0.L, R7–0.H

Dreg_lo: R7–0.L

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Exponent Detection instruction identifies the largest magnitude of
two or three fractional numbers based on their exponents. It compares the
magnitude of one or two sample values to a reference exponent and
returns the smallest of the exponents.

The exponent is the number of sign bits minus one. In other words, the
exponent is the number of redundant sign bits in a signed number.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-27

Arithmetic Operations

Exponents are unsigned integers. The Exponent Detection instruction
accommodates the two special cases (0 and –1) and always returns the
smallest exponent for each case.

The reference exponent and destination exponent are 16-bit half-word
unsigned values. The sample number can be either a word or half-word.
The Exponent Detection instruction does not implicitly modify input val-
ues. The dest_reg and exponent_register can be the same D-register.
Doing this explicitly modifies the exponent_register.

The valid range of exponents is 0 through 31, with 31 representing the
smallest 32-bit number magnitude and 15 representing the smallest 16-bit
number magnitude.

Exponent Detection supports three types of samples—one 32-bit sample,
one 16-bit sample (either upper-half or lower-half word), and two 16-bit
samples that occupy the upper-half and lower-half words of a single 32-bit
register.

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Instruction Overview

15-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

r5.l = expadj (r4, r2.l) ;

• Assume R4 = 0x0000 0052 and R2.L = 12. Then R5.L becomes 12.

• Assume R4 = 0xFFFF 0052 and R2.L = 12. Then R5.L becomes 12.

• Assume R4 = 0x0000 0052 and R2.L = 27. Then R5.L becomes 24.

• Assume R4 = 0xF000 0052 and R2.L = 27. Then R5.L becomes 3.

r5.l = expadj (r4.l, r2.l) ;

• Assume R4.L = 0x0765 and R2.L = 12. Then R5.L becomes 4.

• Assume R4.L = 0xC765 and R2.L = 12. Then R5.L becomes 1.

r5.l = expadj (r4.h, r2.l) ;

• Assume R4.H = 0x0765 and R2.L = 12. Then R5.L becomes 4.

• Assume R4.H = 0xC765 and R2.L = 12. Then R5.L becomes 1.

r5.l = expadj (r4, r2.l)(v) ;

• Assume R4.L = 0x0765, R4.H = 0xFF74 and R2.L = 12. Then R5.L
becomes 4.

• Assume R4.L = 0x0765, R4.H = 0xE722 and R2.L = 12. Then R5.L
becomes 2.

Also See

SIGNBITS

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-29

Arithmetic Operations

Special Applications

EXPADJ detects the exponent of the largest magnitude number in an array.
The detected value may then be used to normalize the array on a subse-
quent pass with a shift operation. Typically, use this feature to implement
block floating-point capabilities.

Instruction Overview

15-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

MAX

General Form

dest_reg = MAX (src_reg_0, src_reg_1)

Syntax

Dreg = MAX (Dreg , Dreg) ; /* 32-bit operands (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Maximum instruction returns the maximum, or most positive, value
of the source registers. The operation subtracts src_reg_1 from src_reg_0
and selects the output based on the signs of the input values and the arith-
metic flags.

The Maximum instruction does not implicitly modify input values. The
dest_reg can be the same D-register as one of the source registers. Doing
this explicitly modifies the source register.

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-31

Arithmetic Operations

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r5 = max (r2, r3) ;

• Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 =
0x0000000F.

• Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 =
0x0000000F.

• Assume R2 = 0xFFFFFFFF and R3 = 0x0000000F, then R5 =
0x0000000F.

Also See

MIN, Vector MAX, Vector MIN, VIT_MAX (Compare-Select)

Special Applications

None

Instruction Overview

15-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

MIN

General Form

dest_reg = MIN (src_reg_0, src_reg_1)

Syntax

Dreg = MIN (Dreg , Dreg) ; /* 32-bit operands (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Minimum instruction returns the minimum value of the source regis-
ters to the dest_reg. (The minimum value of the source registers is the
value closest to – ∞.) The operation subtracts src_reg_1 from src_reg_0
and selects the output based on the signs of the input values and the arith-
metic flags.

The Minimum instruction does not implicitly modify input values. The
dest_reg can be the same D-register as one of the source registers. Doing
this explicitly modifies the source register.

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-33

Arithmetic Operations

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r5 = min (r2, r3) ;

• Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 =
0x00000000.

• Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 =
0x80000000.

• Assume R2 = 0xFFFFFFFF and R3 = 0x0000000F, then R5 =
0xFFFFFFFF.

Also See

MAX, Vector MAX, Vector MIN

Special Applications

None

Instruction Overview

15-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Modify – Decrement

General Form

dest_reg -= src_reg

Syntax

40-Bit Accumulators

A0 -= A1 ; /* dest_reg_new = dest_reg_old - src_reg, saturate

the result at 40 bits (b) */

A0 -= A1 (W32) ; /* dest_reg_new = dest_reg_old - src_reg, dec-

rement and saturate the result at 32 bits, sign extended (b) */

32-Bit Registers

Preg -= Preg ; /* dest_reg_new = dest_reg_old - src_reg (a) */

Ireg -= Mreg ; /* dest_reg_new = dest_reg_old - src_reg (a) */

Syntax Terminology

Preg: P5–0, SP, FP

Ireg: I3–0

Mreg: M3–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Modify – Decrement instruction decrements a register by a
user-defined quantity.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-35

Arithmetic Operations

See “Saturation” on page 1-17 for a description of saturation behavior.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Flags Affected

The Accumulator versions of this instruction affect the flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is set if the operation generates a carry; cleared if no carry.

• AV0 is set if result saturates; cleared if no saturation.

• AV0S is set if AV0 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The P-register and I-register versions do not affect any flags.

Instruction Overview

15-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction and the 16-bit versions that use
Ireg can be issued in parallel with specific other 16-bit instructions. For
details, see “Issuing Parallel Instructions” on page 20-1.

All other 16-bit versions of this instruction cannot be issued in parallel
with other instructions.

Example

a0 -= a1 ;

a0 -= a1 (w32) ;

p3 -= p0 ;

i1 -= m2 ;

Also See

Modify – Increment, Subtract, Shift with Add

Special Applications

Typically, use the Index Register and Pointer Register versions of the
Modify – Decrement instruction to decrement indirect address pointers
for load or store operations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-37

Arithmetic Operations

Modify – Increment

General Form

dest_reg += src_reg

dest_reg = (src_reg_0 += src_reg_1)

Syntax

40-Bit Accumulators

A0 += A1 ; /* dest_reg_new = dest_reg_old + src_reg, saturate

the result at 40 bits (b) */

A0 += A1 (W32) ; /* dest_reg_new = dest_reg_old + src_reg,

signed saturate the result at 32 bits, sign extended (b) */

32-Bit Registers

Preg += Preg (BREV) ; /* dest_reg_new = dest_reg_old +

src_reg, bit reversed carry, only (a) */

Ireg += Mreg (opt_brev) ; /* dest_reg_new = dest_reg_old +

src_reg, optional bit reverse (a) */

Dreg = (A0 += A1) ; /* increment 40-bit A0 by A1 with satura-

tion at 40 bits, then extract the result into a 32-bit register

with saturation at 32 bits (b) */

16-Bit Half-Word Data Registers

Dreg_lo_hi = (A0 += A1) ; /* Increment 40-bit A0 by A1 with

saturation at 40 bits, then extract the result into a half regis-

ter. The extraction step involves first rounding the 40-bit

Instruction Overview

15-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

result at bit 16 (according to the RND_MOD bit in the ASTAT reg-

ister), then saturating at 32 bits and moving bits 31:16 into the

half register. (b) */

Syntax Terminology

Dreg: R7–0

Preg: P5–0, SP, FP

Ireg: I3–0

Mreg: M3–0

opt_brev: optional bit reverse syntax; replace with (brev)

Dreg_lo_hi: R7–0.L, R7–0.H

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Modify – Increment instruction increments a register by a
user-defined quantity. In some versions, the instruction copies the result
into a third register.

The 16-bit Half-Word Data Register version increments the 40-bit A0 by
A1 with saturation at 40 bits, then extracts the result into a half register.
The extraction step involves first rounding the 40-bit result at bit 16
(according to the RND_MOD bit in the ASTAT register), then saturating at 32
bits and moving bits 31–16 into the half register.

See “Saturation” on page 1-17 for a description of saturation behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-39

Arithmetic Operations

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.
Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

Options

(BREV)–bit reverse carry adder. When specified, the carry bit is propagated
from left to right, as shown in Figure 15-1, instead of right to left.

When bit reversal is used on the Index Register version of this instruction,
circular buffering is disabled to support operand addressing for FFT,
DCT and DFT algorithms. The Pointer Register version does not support
circular buffering in any case.

Table 15-1. Bit Addition Flow for the Bit Reverse (BREV) Case

an
| cn

a2
| c2

a1
| c1

a0
|

+ + + + c0

|
bn

|
b2

|
b1

|
b0

Instruction Overview

15-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

The versions of the Modify – Increment instruction that store the results
in an Accumulator affect flags as follows.

• AZ is set if Accumulator result is zero; cleared if nonzero.

• AN is set if Accumulator result is negative; cleared if non-negative.

• AC0 is set if the operation generates a carry; cleared if no carry.

• V is set if result saturates and the dest_reg is a Dreg; cleared if no
saturation.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result saturates and the dest_reg is A0; cleared if no
saturation.

• AV0S is set if AV0 is set; unaffected otherwise.

• All other flags are unaffected.

The versions of the Modify – Increment instruction that store the results
in a Data Register affect flags as follows.

• AZ is set if Data Register result is zero; cleared if nonzero.

• AN is set if Data Register result is negative; cleared if non-negative.

• AC0 is set if the operation generates a carry; cleared if no carry.

• V is set if result saturates and the dest_reg is a Dreg; cleared if no
saturation.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result saturates and the dest_reg is A0; cleared if no
saturation.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-41

Arithmetic Operations

• AV0S is set if AV0 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

The Pointer Register, Index Register, and Modify Register versions of the
instruction do not affect the flags.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction and the 16-bit versions that use
Ireg can be issued in parallel with specific other 16-bit instructions. For
details, see “Issuing Parallel Instructions” on page 20-1.

All other 16-bit versions of this instruction cannot be issued in parallel
with other instructions.

Example

a0 += a1 ;

a0 += a1 (w32) ;

p3 += p0 (brev) ;

i1 += m1 ;

i0 += m0 (brev) ; /* optional carry bit reverse mode */

r5 = (a0 += a1) ;

r2.l = (a0 += a1) ;

r5.h = (a0 += a1) ;

Instruction Overview

15-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Modify – Decrement, Add, Shift with Add

Special Applications

Typically, use the Index Register and Pointer Register versions of the
Modify – Increment instruction to increment indirect address pointers for
load or store operations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-43

Arithmetic Operations

Multiply 16-Bit Operands

General Form

dest_reg = src_reg_0 * src_reg_1 (opt_mode)

Syntax

Multiply-And-Accumulate Unit 0 (MAC0)

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (opt_mode_1) ; /* 16-bit

result into the destination lower half-word register (b) */

Dreg_even = Dreg_lo_hi * Dreg_lo_hi (opt_mode_2) ; /* 32-bit

result (b) */

Multiply-And-Accumulate Unit 1 (MAC1)

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (opt_mode_1) ; /* 16-bit

result into the destination upper half-word register (b) */

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (opt_mode_2) ; /* 32-bit

result (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Dreg_hi: R7–0.H

Dreg_lo_hi: R7–0.L, R7–0.H

opt_mode_1: Optionally (FU), (IS), (IU), (T), (TFU), (S2RND), (ISS2) or
(IH). Optionally, (M) can be used with MAC1 versions either alone or
with any of these other options. When used together, the option flags
must be enclosed in one set of parentheses and separated by a comma.
Example: (M, IS)

Instruction Overview

15-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

opt_mode_2: Optionally (FU), (IS), or (ISS2). Optionally, (M) can be
used with MAC1 versions either alone or with any of these other options.
When used together, the option flags must be enclosed in one set of
parenthesis and separated by a comma. Example: (M, IS)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply 16-Bit Operands instruction multiplies the two 16-bit oper-
ands and stores the result directly into the destination register with
saturation.

The instruction is like the Multiply-Accumulate instructions, except that
Multiply 16-Bit Operands does not affect the Accumulators.

Operations performed by the Multiply-and-Accumulate Unit 0 (MAC0)
portion of the architecture load their 16-bit results into the lower half of
the destination data register; 32-bit results go into an even numbered
Dreg. Operations performed by MAC1 load their results into the upper
half of the destination data register or an odd numbered Dreg.

In 32-bit result syntax, the MAC performing the operation will be deter-
mined by the destination Dreg. Even-numbered Dregs (R6, R4, R2, R0)
invoke MAC0. Odd-numbered Dregs (R7, R5, R3, R1) invoke MAC1.
Therefore, 32-bit result operations using the (M) option can only be per-
formed on odd-numbered Dreg destinations.

In 16-bit result syntax, the MAC performing the operation will be deter-
mined by the destination Dreg half. Low-half Dregs (R7–0.L) invoke
MAC0. High-half Dregs (R7–0.H) invoke MAC1. Therefore, 16-bit result
operations using the (M) option can only be performed on high-half Dreg
destinations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-45

Arithmetic Operations

The versions of this instruction that produce 16-bit results are affected by
the RND_MOD bit in the ASTAT register when they copy the results into the
16-bit destination register. RND_MOD determines whether biased or unbi-
ased rounding is used. RND_MOD controls rounding for all versions of this
instruction that produce 16-bit results except the (IS), (IU) and (ISS2)
options.

See “Saturation” on page 1-17 for a description of saturation behavior.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

The versions of this instruction that produce 32-bit results do not perform
rounding and are not affected by the RND_MOD bit in the ASTAT register.

Options

The Multiply 16-Bit Operands instruction supports the following
options. Saturation is supported for every option.

To truncate the result, the operation eliminates the least significant bits
that do not fit into the destination register.

In fractional mode, the product of the smallest representable fraction
times itself (for example, 0x8000 times 0x8000) is saturated to the maxi-
mum representable positive fraction (0x7FFF).

Instruction Overview

15-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 15-2. Multiply 16-Bit Operands Options

Option Description for
Register Half Destination

Description for
32-Bit Register Destination

Default Signed fraction. Multiply 1.15 * 1.15 to
produce 1.31 results after left-shift cor-
rection. Round 1.31 format value at bit
16. (RND_MOD bit in the ASTAT
register controls the rounding.) Saturate
the result to 1.15 precision in destina-
tion register half. Result is between
minimum -1 and maximum 1-2-15 (or,
expressed in hex, between minimum
0x8000 and maximum 0x7FFF).

Signed fraction. Multiply 1.15 * 1.15 to
produce 1.31 results after left-shift cor-
rection. Saturate results between mini-
mum -1 and maximum 1-2-31.
The resulting hexadecimal range is mini-
mum 0x8000 0000 through maximum
0x7FFF FFFF.

(FU) Unsigned fraction. Multiply 0.16 *
0.16 to produce 0.32 results. No shift
correction. Round 0.32 format value at
bit 16. (RND_MOD bit in the ASTAT
register controls the rounding.) Satu-
rate the result to 0.16 precision in desti-
nation register half. Result is between
minimum 0 and maximum 1-2-16 (or,
expressed in hex, between minimum
0x0000 and maximum 0xFFFF).

Unsigned fraction. Multiply 0.16 * 0.16
to produce 0.32 results. No shift correc-
tion. Saturate results between minimum
0 and maximum 1-2-32.
Unsigned integer. Multiply 16.0 * 16.0 to
produce 32.0 results. No shift correction.
Saturate results between minimum 0 and
maximum 232-1.
In either case, the resulting hexadecimal
range is minimum 0x0000 0000 through
maximum 0xFFFF FFFF.

(IS) Signed integer. Multiply 16.0 * 16.0 to
produce 32.0 results. No shift correc-
tion. Extract the lower 16 bits. Saturate
for 16.0 precision in destination register
half. Result is between minimum -215
and maximum 215-1 (or, expressed in
hex, between minimum 0x8000 and
maximum 0x7FFF).

Signed integer. Multiply 16.0 * 16.0 to
produce 32.0 results. No shift correction.
Saturate integer results between mini-
mum -231 and maximum 231-1.

(IU) Unsigned integer. Multiply 16.0 * 16.0
to produce 32.0 results. No shift correc-
tion. Extract the lower 16 bits. Saturate
for 16.0 precision in destination register
half. Result is between minimum 0 and
maximum 216-1 (or, expressed in hex,
between minimum 0x0000 and maxi-
mum 0xFFFF).

Not applicable. Use (IS).

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-47

Arithmetic Operations

(T) Signed fraction with truncation. Trun-
cate Accumulator 9.31 format value at
bit 16. (Perform no rounding.) Satu-
rate the result to 1.15 precision in desti-
nation register half. Result is between
minimum -1 and maximum 1-2-15 (or,
expressed in hex, between minimum
0x8000 and maximum 0x7FFF).

Not applicable. Truncation is meaning-
less for 32-bit register destinations.

(TFU) Unsigned fraction with truncation.
Multiply 1.15 * 1.15 to produce 1.31
results after left-shift correction. (Iden-
tical to Default.) Truncate 1.32 format
value at bit 16. (Perform no rounding.)
Saturate the result to 0.16 precision in
destination register half. Result is
between minimum 0 and maximum
1-2-16 (or, expressed in hex, between
minimum 0x0000 and maximum
0xFFFF).

Not applicable.

(S2RND) Signed fraction with scaling and round-
ing. Multiply 1.15 * 1.15 to produce
1.31 results after left-shift correction.
(Identical to Default.) Shift the result
one place to the left (multiply x 2).
Round 1.31 format value at bit 16.
(RND_MOD bit in the ASTAT register
controls the rounding.) Saturate the
result to 1.15 precision in destination
register half. Result is between mini-
mum -1 and maximum 1-2-15 (or,
expressed in hex, between minimum
0x8000 and maximum 0x7FFF).

Not applicable.

Table 15-2. Multiply 16-Bit Operands Options (Cont’d)

Option Description for
Register Half Destination

Description for
32-Bit Register Destination

Instruction Overview

15-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

(ISS2) Signed integer with scaling. Multiply
16.0 * 16.0 to produce 32.0 results. No
shift correction. Extract the lower 16
bits. Shift them one place to the left
(multiply x 2). Saturate the result for
16.0 format in destination register half.
Result is between minimum -215 and
maximum 215-1 (or, expressed in hex,
between minimum 0x8000 and maxi-
mum 0x7FFF).

Signed integer with scaling. Multiply
16.0 * 16.0 to produce 32.0 results. No
shift correction. Shift the results one
place to the left (multiply x 2). Saturate
result to 32.0 format. Copy to destina-
tion register. Results range between min-
imum -1 and maximum 231-1.
The resulting hexadecimal range is mini-
mum 0x8000 0000 through maximum
0x7FFF FFFF.

(IH) Signed integer, high word extract. Mul-
tiply 16.0 * 16.0 to produce 32.0
results. No shift correction. Round 32.0
format value at bit 16. (RND_MOD
bit in the ASTAT register controls the
rounding.) Saturate to 32.0 result.
Extract the upper 16 bits of that value
to the destination register half. Result is
between minimum -215 and maximum
215-1 (or, expressed in hex, between
minimum 0x8000 and maximum
0x7FFF).

Not applicable.

(M) Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.
When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.
No shift correction in either case. Src_reg_0 is the signed operand and Src_reg_1 is
the unsigned operand.
All other operations proceed according to the other mode flag or Default.

Table 15-2. Multiply 16-Bit Operands Options (Cont’d)

Option Description for
Register Half Destination

Description for
32-Bit Register Destination

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-49

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

• V is set if result saturates; cleared if no saturation.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3.l=r3.h*r2.h ; /* MAC0. Both operands are signed

fractions. */

r3.h=r6.h*r4.l (fu) ; /* MAC1. Both operands are unsigned frac-

tions. */

r6=r3.h*r4.h ; /* MAC0. Signed fraction operands, results saved

as 32 bits. */

Instruction Overview

15-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Multiply 32-Bit Operands, Multiply and Multiply-Accumulate to Accu-
mulator, Multiply and Multiply-Accumulate to Half-Register, Multiply
and Multiply-Accumulate to Data Register, Vector Multiply, Vector Mul-
tiply and Multiply-Accumulate

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-51

Arithmetic Operations

Multiply 32-Bit Operands

General Form

dest_reg *= multiplier_register

Syntax

Dreg *= Dreg ; /* 32 x 32 integer multiply (a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Multiply 32-Bit Operands instruction multiplies two 32-bit data reg-
isters (dest_reg and multiplier_register) and saves the product in
dest_reg. The instruction mimics multiplication in the C language and
effectively performs Dreg1 = (Dreg1 * Dreg2) modulo 232. Since the
integer multiply is modulo 232, the result always fits in a 32-bit dest_reg,
and overflows are possible but not detected. The overflow flag in the
ASTAT register is never set.

Users are required to limit input numbers to ensure that the resulting
product does not exceed the 32-bit dest_reg capacity. If overflow notifi-
cation is required, users should write their own multiplication macro with
that capability.

Accumulators A0 and A1 are unchanged by this instruction.

The Multiply 32-Bit Operands instruction does not implicitly modify the
number in multiplier_register.

Instruction Overview

15-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

This instruction might be used to implement the congruence method of
random number generation according to:

where:

• X[n] is the seed value,

• a is a large integer, and

• X[n+1] is the result that can be multiplied again to further the
pseudo-random sequence.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with any other instructions.

Example

r3 *= r0 ;

Also See

DIVS, DIVQ (Divide Primitive), Arithmetic Shift, Shift with Add, Add
with Shift, Vector Multiply and Multiply-Accumulate, Vector Multiply

Special Applications

None

X n a+[] a X n[]×()mod 232
=

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-53

Arithmetic Operations

Multiply and Multiply-Accumulate to Accumulator

General Form

accumulator = src_reg_0 * src_reg_1 (opt_mode)

accumulator += src_reg_0 * src_reg_1 (opt_mode)

accumulator –= src_reg_0 * src_reg_1 (opt_mode)

Syntax

Multiply-And-Accumulate Unit 0 (MAC0) Operations

A0 =Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

store (b) */

A0 += Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

add (b) */

A0 –= Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

subtract (b) */

Multiply-And-Accumulate Unit 1 (MAC1) Operations

A1 = Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

store (b) */

A1 += Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

add (b) */

A1 –= Dreg_lo_hi * Dreg_lo_hi (opt_mode) ; /* multiply and

subtract (b) */

Syntax Terminology

Dreg_lo_hi: R7–0.L, R7–0.H

opt_mode: Optionally (FU), (IS), or (W32). Optionally, (M) can be used
on MAC1 versions either alone or with (W32). If multiple options are
specified together for a MAC, the options must be separated by commas
and enclosed within a single set of parenthesis. Example: (M, W32)

Instruction Overview

15-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply and Multiply-Accumulate to Accumulator instruction mul-
tiplies two 16-bit half-word operands. It stores, adds or subtracts the
product into a designated Accumulator with saturation.

The Multiply-and-Accumulate Unit 0 (MAC0) portion of the architecture
performs operations that involve Accumulator A0. MAC1 performs A1
operations.

By default, the instruction treats both operands of both MACs as signed
fractions with left-shift correction as required.

Options

The Multiply and Multiply-Accumulate to Accumulator instruction sup-
ports the following options. Saturation is supported for every option.

When the (M) and (W32) options are used together, both MACs saturate
their Accumulator products at 32 bits. MAC1 multiplies signed fractions
by unsigned fractions and MAC0 multiplies signed fractions.

When used together, the order of the options in the syntax makes no
difference.

In fractional mode, the product of the most negative representable frac-
tion times itself (for example, 0x8000 times 0x8000) is saturated to the
maximum representable positive fraction (0x7FFF) before accumulation.

See “Saturation” on page 1-17 for a description of saturation behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-55

Arithmetic Operations

Table 15-3. Multiply and Multiply-Accumulate to Accumulator Options

Option Description

Default Signed fraction. Multiply 1.15 x 1.15 to produce 1.31 format data after shift correc-
tion. Sign extend the result to 9.31 format before passing it to the Accumulator. Sat-
urate the Accumulator after copying or accumulating to maintain 9.31 precision.
Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex, between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF).

(FU) Unsigned fraction. Multiply 0.16 x 0.16 to produce 0.32 format data. Perform no
shift correction. Zero extend the result to 8.32 format before passing it to the Accu-
mulator. Saturate the Accumulator after copying or accumulating to maintain 8.32
precision.
Unsigned integer. Multiply 16.0 x 16.0 to produce 32.0 format data. Perform no
shift correction. Zero extend the result to 40.0 format before passing it to the Accu-
mulator. Saturate the Accumulator after copying or accumulating to maintain 40.0
precision.
In either case, the resulting hexadecimal range is minimum 0x00 0000 0000 through
maximum 0xFF FFFF FFFF.

(IS) Signed integer. Multiply 16.0 x 16.0 to produce 32.0 format data. Perform no shift
correction. Sign extend the result to 40.0 format before passing it to the Accumulator.
Saturate the Accumulator after copying or accumulating to maintain 40.0 precision.
Result is between minimum -239 and maximum 239-1 (or, expressed in hex, between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF).

(W32) Signed fraction with 32-bit saturation. Multiply 1.15 x 1.15 to produce 1.31 format
data after shift correction. Sign extend the result to 9.31 format before passing it to
the Accumulator. Saturate the Accumulator after copying or accumulating at bit 31
to maintain 1.31 precision. Result is between minimum -1 and maximum 1-2-31
(or, expressed in hex, between minimum 0xFF 8000 0000 and maximum 0x00 7FFF
FFFF).

(M) Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.
When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.
No shift correction in either case. Src_reg_0 is the signed operand and Src_reg_1 is
the unsigned operand.
Accumulation and extraction proceed according to the other mode flag or Default.

Instruction Overview

15-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

This instruction affects flags as follows.

• AV0 is set if result in Accumulator A0 (MAC0 operation) saturates;
cleared if A0 result does not saturate.

• AV0S is set if AV0 is set; unaffected otherwise.

• AV1 is set if result in Accumulator A1 (MAC1 operation) saturates;
cleared if A1 result does not saturate.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

a0=r3.h*r2.h ; /* MAC0, only. Both operands are signed frac-

tions. Load the product into A0. */

a1+=r6.h*r4.l (fu) ; /* MAC1, only. Both operands are unsigned

fractions. Accumulate into A1 */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-57

Arithmetic Operations

Also See

Multiply 16-Bit Operands, Multiply 32-Bit Operands, Multiply and Mul-
tiply-Accumulate to Half-Register, Multiply and Multiply-Accumulate to
Data Register, Vector Multiply, Vector Multiply and
Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate
to Accumulator instruction to calculate the dot product between two sig-
nal vectors.

Instruction Overview

15-58 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Half-Register

General Form

dest_reg_half = (accumulator = src_reg_0 * src_reg_1) (opt_mode)

dest_reg_half = (accumulator += src_reg_0 * src_reg_1) (opt_mode)

dest_reg_half = (accumulator –= src_reg_0 * src_reg_1) (opt_mode)

Syntax

Multiply-And-Accumulate Unit 0 (MAC0)

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and store (b) */

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* multi-

ply and add (b) */

Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and subtract (b) */

Multiply-And-Accumulate Unit 1 (MAC1)

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and store (b) */

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and add (b) */

Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and subtract (b) */

Syntax Terminology

Dreg_lo_hi: R7–0.L, R7–0.H

Dreg_lo: R7–0.L

Dreg_hi: R7–0.H

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-59

Arithmetic Operations

opt_mode: Optionally (FU), (IS), (IU), (T), (TFU), (S2RND), (ISS2) or
(IH). Optionally, (M) can be used with MAC1 versions either alone or
with any of these other options. If multiple options are specified together
for a MAC, the options must be separated by commas and enclosed within
a single set of parentheses. Example: (M, TFU)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Multiply and Multiply-Accumulate to Half-Register instruction mul-
tiplies two 16-bit half-word operands. The instruction stores, adds or
subtracts the product into a designated Accumulator. It then copies 16
bits (saturated at 16 bits) of the Accumulator into a data half-register.

The fraction versions of this instruction (the default and “(FU)” options)
transfer the Accumulator result to the destination register according to the
diagrams in Figure 15-1.

The integer versions of this instruction (the “(IS)” and “(IU)” options)
transfer the Accumulator result to the destination register according to the
diagrams in Figure 15-2.

The Multiply-and-Accumulate Unit 0 (MAC0) portion of the architecture
performs operations that involve Accumulator A0 and loads the results
into the lower half of the destination data register. MAC1 performs A1
operations and loads the results into the upper half of the destination data
register.

All versions of this instruction that support rounding are affected by the
RND_MOD bit in the ASTAT register when they copy the results into the desti-
nation register. RND_MOD determines whether biased or unbiased rounding
is used.

Instruction Overview

15-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 15-1. Result to Destination Register (Default and (FU) Options)

Figure 15-2. Result to Destination Register ((IS) and (IU) Options)

A0 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-61

Arithmetic Operations

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Options

The Multiply and Multiply-Accumulate to Half-Register instruction sup-
ports operand and Accumulator copy options.

The options are listed in Table 15-4.

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options

Option Description

Default Signed fraction format. Multiply 1.15 * 1.15 formats to produce 1.31 results after
shift correction. The special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF
to fit the 1.31 result.
Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract to half-register, round Accumulator 9.31 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the result
to 1.15 precision and copy it to the destination register half. Result is between
minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum
0x8000 and maximum 0x7FFF).

(FU) Unsigned fraction format. Multiply 0.16* 0.16 formats to produce 0.32 results.
No shift correction. The special case of 0x8000 * 0x8000 yields 0x4000 0000. No
saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 8.32 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF.
To extract to half-register, round Accumulator 8.32 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate the result
to 0.16 precision and copy it to the destination register half. Result is between
minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum 0x0000
and maximum 0xFFFF).

Instruction Overview

15-62 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

(IS) Signed integer format. Multiply 16.0 * 16.0 formats to produce 32.0 results. No
shift correction.
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
Extract the lower 16 bits of the Accumulator. Saturate for 16.0 precision and copy
to the destination register half. Result is between minimum -215 and maximum
215-1 (or, expressed in hex, between minimum 0x8000 and maximum 0x7FFF).

(IU) Unsigned integer format. Multiply 16.0 * 16.0 formats to produce 32.0 results.
No shift correction.
Zero extend 32.0 result to 40.0 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF.
Extract the lower 16 bits of the Accumulator. Saturate for 16.0 precision and copy
to the destination register half. Result is between minimum 0 and maximum 216-1
(or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

(T) Signed fraction with truncation. Multiply 1.15 * 1.15 formats to produce 1.31
results after shift correction. The special case of 0x8000 * 0x8000 is saturated to
0x7FFF FFFF to fit the 1.31 result. (Same as the Default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract to half-register, truncate Accumulator 9.31 format value at bit 16. (Per-
form no rounding.) Saturate the result to 1.15 precision and copy it to the destina-
tion register half. Result is between minimum -1 and maximum 1-2-15 (or,
expressed in hex, between minimum 0x8000 and maximum 0x7FFF).

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options (Cont’d)

Option Description

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-63

Arithmetic Operations

(TFU) Unsigned fraction with truncation. Multiply 0.16* 0.16 formats to produce 0.32
results. No shift correction. The special case of 0x8000 * 0x8000 yields 0x4000
0000. No saturation is necessary since no shift correction occurs. (Same as the FU
mode.)
Zero extend 0.32 result to 8.32 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 8.32 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF.
To extract to half-register, truncate Accumulator 8.32 format value at bit 16. (Per-
form no rounding.) Saturate the result to 0.16 precision and copy it to the destina-
tion register half. Result is between minimum 0 and maximum 1-2-16 (or,
expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

(S2RND) Signed fraction with scaling and rounding. Multiply 1.15 * 1.15 formats to pro-
duce 1.31 results after shift correction. The special case of 0x8000 * 0x8000 is sat-
urated to 0x7FFF FFFF to fit the 1.31 result. (Same as the Default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract to half-register, shift the Accumulator contents one place to the left
(multiply x 2). Round Accumulator 9.31 format value at bit 16. (RND_MOD bit
in the ASTAT register controls the rounding.) Saturate the result to 1.15 precision
and copy it to the destination register half. Result is between minimum -1 and
maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).

(ISS2) Signed integer with scaling. Multiply 16.0 * 16.0 formats to produce 32.0 results.
No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
Extract the lower 16 bits of the Accumulator. Shift them one place to the left
(multiply x 2). Saturate the result for 16.0 format and copy to the destination reg-
ister half. Result is between minimum -215 and maximum 215-1 (or, expressed in
hex, between minimum 0x8000 and maximum 0x7FFF).

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options (Cont’d)

Option Description

Instruction Overview

15-64 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

To truncate the result, the operation eliminates the least significant bits
that do not fit into the destination register.

When necessary, saturation is performed after the rounding.

The accumulator is unaffected by extraction.

If you want to keep the unaltered contents of the Accumulator, use a sim-
ple Move instruction to copy An.X or An.W to or from a register.

See “Saturation” on page 1-17 for a description of saturation behavior.

(IH) Signed integer, high word extract. Multiply 16.0 * 16.0 formats to produce 32.0
results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 32.0 precision; Accumulator result
is between minimum 0x00 8000 0000 and maximum 0x00 7FFF FFFF.
To extract to half-register, round Accumulator 40.0 format value at bit 16.
(RND_MOD bit in the ASTAT register controls the rounding.) Saturate to 32.0
result. Copy the upper 16 bits of that value to the destination register half. Result
is between minimum -215 and maximum 215-1 (or, expressed in hex, between min-
imum 0x8000 and maximum 0x7FFF).

(M) Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.
When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.
No shift correction in either case. Src_reg_0 is the signed operand and Src_reg_1
is the unsigned operand.
Accumulation and extraction proceed according to the other mode flag or Default.

Table 15-4. Multiply and Multiply-Accumulate to Half-Register
Options (Cont’d)

Option Description

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-65

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

• V is set if the result extracted to the Dreg saturates; cleared if no
saturation.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result in Accumulator A0 (MAC0 operation) saturates;
cleared if A0 result does not saturate.

• AV0S is set if AV0 is set; unaffected otherwise.

• AV1 is set if result in Accumulator A1 (MAC1 operation) saturates;
cleared if A1 result does not saturate.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Instruction Overview

15-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

r3.l=(a0=r3.h*r2.h) ; /* MAC0, only. Both operands are signed

fractions. Load the product into A0, then copy to r3.l. */

r3.h=(a1+=r6.h*r4.l) (fu) ; /* MAC1, only. Both operands are

unsigned fractions. Add the product into A1, then copy to r3.h */

Also See

Multiply 32-Bit Operands, Multiply and Multiply-Accumulate to Accu-
mulator, Multiply and Multiply-Accumulate to Data Register, Vector
Multiply, Vector Multiply and Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate
to Half-Register instruction to calculate the dot product between two sig-
nal vectors.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-67

Arithmetic Operations

Multiply and Multiply-Accumulate to Data Register

General Form

dest_reg = (accumulator = src_reg_0 * src_reg_1) (opt_mode)

dest_reg = (accumulator += src_reg_0 * src_reg_1) (opt_mode)

dest_reg = (accumulator –= src_reg_0 * src_reg_1) (opt_mode)

Syntax

Multiply-And-Accumulate Unit 0 (MAC0)

Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and store (b) */

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /*

multiply and add (b) */

Dreg_even = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /*

multiply and subtract (b) */

Multiply-And-Accumulate Unit 1 (MAC1)

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and store (b) */

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and add (b) */

Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (opt_mode) ; /* mul-

tiply and subtract (b) */

Syntax Terminology

Dreg_lo_hi: R7–0.L, R7–0.H

Dreg_even: R0, R2, R4, R6

Dreg_odd: R1, R3, R5, R7

Instruction Overview

15-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

opt_mode: Optionally (FU), (IS), (S2RND), or (ISS2). Optionally, (M) can
be used with MAC1 versions either alone or with any of these other
options. If multiple options are specified together for a MAC, the options
must be separated by commas and enclosed within a single set of parenthe-
sis. Example: (M, IS)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

This instruction multiplies two 16-bit half-word operands. The instruc-
tion stores, adds or subtracts the product into a designated Accumulator.
It then copies 32 bits of the Accumulator into a data register. The 32 bits
are saturated at 32 bits.

The Multiply-and-Accumulate Unit 0 (MAC0) portion of the architecture
performs operations that involve Accumulator A0; it loads the results into
an even-numbered data register. MAC1 performs A1 operations and loads
the results into an odd-numbered data register.

Combinations of these instructions can be combined into a single instruc-
tion. See “Vector Multiply and Multiply-Accumulate” on page 19-41.

Options

The Multiply and Multiply-Accumulate to Data Register instruction sup-
ports operand and Accumulator copy options.

These options are as shown in Table 15-5.

The syntax supports only biased rounding. The RND_MOD bit in the ASTAT
register has no bearing on the rounding behavior of this instruction.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-69

Arithmetic Operations

Table 15-5. Multiply and Multiply-Accumulate to Data Register
Options

Option Description

Default Signed fraction format. Multiply 1.15 * 1.15 formats to produce 1.31 results after
shift correction. The special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF
to fit the 1.31 result.
Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract, saturate the result to 1.31 precision and copy it to the destination regis-
ter. Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

(FU) Unsigned fraction format. Multiply 0.16* 0.16 formats to produce 0.32 results.
No shift correction. The special case of 0x8000 * 0x8000 yields 0x4000 0000. No
saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to Accu-
mulator. Then, saturate Accumulator to maintain 8.32 precision; Accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF.
To extract, saturate the result to 0.32 precision and copy it to the destination regis-
ter. Result is between minimum 0 and maximum 1-2-32 (or, expressed in hex,
between minimum 0x0000 0000 and maximum 0xFFFF FFFF).

(IS) Signed integer format. Multiply 16.0 * 16.0 formats to produce 32.0 results. No
shift correction.
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract, saturate for 32.0 precision and copy to the destination register. Result
is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum 0x7FFF FFFF).

(S2RND) Signed fraction with scaling and rounding. Multiply 1.15 * 1.15 formats to pro-
duce 1.31 results after shift correction. The special case of 0x8000 * 0x8000 is sat-
urated to 0x7FFF FFFF to fit the 1.31 result. (Same as the Default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 9.31 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract, shift the Accumulator contents one place to the left (multiply x 2), sat-
urate the result to 1.31 precision, and copy it to the destination register. Result is
between minimum -1 and maximum 1-2-31 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

Instruction Overview

15-70 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The accumulator is unaffected by extraction.

In fractional mode, the product of the most negative representable frac-
tion times itself (for example, 0x8000 times 0x8000) is saturated to the
maximum representable positive fraction (0x7FFF) before accumulation.

If you want to keep the unaltered contents of the Accumulator, use a sim-
ple Move instruction to copy An.X or An.W to or from a register.

See “Saturation” on page 1-17 for a description of saturation behavior.

(ISS2) Signed integer with scaling. Multiply 16.0 * 16.0 formats to produce 32.0 results.
No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumu-
lator. Then, saturate Accumulator to maintain 40.0 precision; Accumulator result
is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF.
To extract, shift the Accumulator contents one place to the left (multiply x 2), sat-
urate the result for 32.0 format, and copy to the destination register. Result is
between minimum -231 and maximum 231-1 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

(M) Mixed mode multiply (valid only for MAC1). When issued in a fraction mode
instruction (with Default, FU, T, TFU, or S2RND mode), multiply 1.15 * 0.16 to
produce 1.31 results.
When issued in an integer mode instruction (with IS, ISS2, or IH mode), multiply
16.0 * 16.0 (signed * unsigned) to produce 32.0 results.
No shift correction in either case. Src_reg_0 is the signed operand and Src_reg_1
is the unsigned operand.
Accumulation and extraction proceed according to the other mode flag or Default.

Table 15-5. Multiply and Multiply-Accumulate to Data Register
Options (Cont’d)

Option Description

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-71

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

• V is set if the result extracted to the Dreg saturates; cleared if no
saturation.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result in Accumulator A0 (MAC0 operation) saturates;
cleared if A0 result does not saturate.

• AV0S is set if AV0 is set; unaffected otherwise.

• AV1 is set if result in Accumulator A1 (MAC1 operation) saturates;
cleared if A1 result does not saturate.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Instruction Overview

15-72 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

r4=(a0=r3.h*r2.h) ; /* MAC0, only. Both operands are signed

fractions. Load the product into A0, then into r4. */

r3=(a1+=r6.h*r4.l) (fu) ; /* MAC1, only. Both operands are

unsigned fractions. Add the product into A1, then into r3. */

Also See

Move Register, Move Register Half, Multiply 32-Bit Operands, Multiply
and Multiply-Accumulate to Accumulator, Multiply and Multiply-Accu-
mulate to Half-Register, Vector Multiply, Vector Multiply and
Multiply-Accumulate

Special Applications

DSP filter applications often use the Multiply and Multiply-Accumulate
to Data Register instruction or the vector version (“Vector Multiply and
Multiply-Accumulate” on page 19-41) to calculate the dot product
between two signal vectors.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-73

Arithmetic Operations

Negate (Two’s Complement)

General Form

dest_reg = – src_reg

dest_accumulator = – src_accumulator

Syntax

Dreg = – Dreg ; /* (a) */

Dreg = – Dreg (sat_flag) ; /* (b) */

A0 = – A0 ; /* (b) */

A0 = – A1 ; /* (b) */

A1 = – A0 ; /* (b) */

A1 = – A1 ; /* (b) */

A1 = – A1, A0 = – A0 ; /* negate both Accumulators simulta-

neously in one 32-bit length instruction (b) */

Syntax Terminology

Dreg: R7–0

sat_flag: nonoptional saturation flag, (S) or (NS)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Negate (Two’s Complement) instruction returns the same magnitude
with the opposite arithmetic sign. The Accumulator versions saturate the
result at 40 bits. The instruction calculates by subtracting from zero.

Instruction Overview

15-74 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The Dreg version of the Negate (Two’s Complement) instruction is
offered with or without saturation. The only case where the nonsaturating
Negate would overflow is when the input value is 0x8000 0000. The satu-
rating version returns 0x7FFF FFFF; the nonsaturating version returns
0x8000 0000.

In the syntax, where sat_flag appears, substitute one of the following
values.

• (S) saturate the result

• (NS) no saturation

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

This instruction affects the flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is set if result overflows or saturates and the dest_reg is a Dreg;
cleared if no overflow or saturation.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result saturates and the dest_reg is A0; cleared if no
saturation.

• AV0S is set if AV0 is set; unaffected otherwise.

• AV1 is set if result saturates and the dest_reg is A1; cleared if no
saturation.

• AV1S is set if AV1 is set; unaffected otherwise.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-75

Arithmetic Operations

• AC0 is set if src_reg is zero; otherwise it is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r5 =-r0 ;

a0 =-a0 ;

a0 =-a1 ;

a1 =-a0 ;

a1 =-a1 ;

a1 =-a1, a0=-a0 ;

Instruction Overview

15-76 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Vector Negate (Two’s Complement)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-77

Arithmetic Operations

RND (Round to Half-Word)

General Form

dest_reg = src_reg (RND)

Syntax

Dreg_lo_hi =Dreg (RND) ; /* round and saturate the source to

16 bits. (b) */

Syntax Terminology

Dreg: R7– 0

Dreg_lo_hi: R7–0.L, R7–0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Round to Half-Word instruction rounds a 32-bit, normalized-frac-
tion number into a 16-bit, normalized-fraction number by extracting and
saturating bits 31–16, then discarding bits 15–0. The instruction supports
only biased rounding, which adds a half LSB (in this case, bit 15) before
truncating bits 15–0. The ALU performs the rounding. The RND_MOD bit
in the ASTAT register has no bearing on the rounding behavior of this
instruction.

Fractional data types such as the operands used in this instruction are
always signed.

See “Saturation” on page 1-17 for a description of saturation behavior.

See “Rounding and Truncating” on page 1-19 for a description of round-
ing behavior.

Instruction Overview

15-78 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

The following flags are affected by this instruction.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• V is set if result saturates; cleared if no saturation.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

/* If r6 = 0xFFFC FFFF, then rounding to 16-bits with . . . */

r1.l = r6 (rnd) ; // . . . produces r1.l = 0xFFFD

// If r7 = 0x0001 8000, then rounding . . .

r1.h = r7 (rnd) ; // . . . produces r1.h = 0x0002

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-79

Arithmetic Operations

Also See

Add, Add/Subtract – Prescale Up, Add/Subtract – Prescale Down

Special Applications

None

Instruction Overview

15-80 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Saturate

General Form

dest_reg = src_reg (S)

Syntax

A0 = A0 (S) ; /* (b) */

A1 = A1 (S) ; /* (b) */

A1 = A1 (S), A0 = A0 (S) ; /* signed saturate both Accumula-

tors at the 32-bit boundary (b) */

Syntax Terminology

None

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Saturate instruction saturates the 40-bit Accumulators at 32 bits. The
resulting saturated value is sign extended into the Accumulator extension
bits.

See “Saturation” on page 1-17 for a description of saturation behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-81

Arithmetic Operations

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero. In the case of two
simultaneous operations, AZ represents the logical “OR” of the two.

• AN is set if result is negative; cleared if non-negative. In the case of
two simultaneous operations, AN represents the logical “OR” of the
two.

• AV0 is set if result saturates and the dest_reg is A0; cleared if no
overflow.

• AV0S is set if AV0 is set; unaffected otherwise.

• AV1 is set if result saturates and the dest_reg is A1; cleared if no
overflow.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Instruction Overview

15-82 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

a0 = a0 (s) ;

a1 = a1 (s) ;

a1 = a1 (s), a0 = a0 (s) ;

Also See

Subtract (saturate options), Add (saturate options)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-83

Arithmetic Operations

SIGNBITS

General Form

dest_reg = SIGNBITS sample_register

Syntax

Dreg_lo = SIGNBITS Dreg ; /* 32-bit sample (b) */

Dreg_lo = SIGNBITS Dreg_lo_hi ; /* 16-bit sample (b) */

Dreg_lo = SIGNBITS A0 ; /* 40-bit sample (b) */

Dreg_lo = SIGNBITS A1 ; /* 40-bit sample (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Dreg_lo_hi: R7–0.L, R7–0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Sign Bit instruction returns the number of sign bits in a number, and
can be used in conjunction with a shift to normalize numbers. This
instruction can operate on 16-bit, 32-bit, or 40-bit input numbers.

• For a 16-bit input, Sign Bit returns the number of leading sign bits
minus one, which is in the range 0 through 15. There are no spe-
cial cases. An input of all zeros returns +15 (all sign bits), and an
input of all ones also returns +15.

Instruction Overview

15-84 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• For a 32-bit input, Sign Bit returns the number of leading sign bits
minus one, which is in the range 0 through 31. An input of all
zeros or all ones returns +31 (all sign bits).

• For a 40-bit Accumulator input, Sign Bit returns the number of
leading sign bits minus 9, which is in the range –8 through +31. A
negative number is returned when the result in the Accumulator
has expanded into the extension bits; the corresponding normaliza-
tion will shift the result down to a 32-bit quantity (losing
precision). An input of all zeros or all ones returns +31.

The result of the SIGNBITS instruction can be used directly as the argu-
ment to ASHIFT to normalize the number. Resultant numbers will be in
the following formats (S == signbit, M == magnitude bit).

In addition, the SIGNBITS instruction result can be subtracted directly to
form the new exponent.

The Sign Bit instruction does not implicitly modify the input value. For
32-bit and 16-bit input, the dest_reg and sample_register can be the
same D-register. Doing this explicitly modifies the sample_register.

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

16-bit: S.MMM MMMM MMMM MMMM

32-bit: S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

40-bit: SSSS SSSS S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-85

Arithmetic Operations

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r2.l = signbits r7 ;

r1.l = signbits r5.l ;

r0.l = signbits r4.h ;

r6.l = signbits a0 ;

r5.l = signbits a1 ;

Also See

EXPADJ

Special Applications

You can use the exponent as shift magnitude for array normalization. You
can accomplish normalization by using the ASHIFT instruction directly,
without using special normalizing instructions, as required on other
architectures.

Instruction Overview

15-86 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Subtract

General Form

dest_reg = src_reg_1 - src_reg_2

Syntax

32-Bit Operands, 32-Bit Result

Dreg = Dreg - Dreg ; /* no saturation support but shorter

instruction length (a) */

Dreg = Dreg - Dreg (sat_flag) ; /* saturation optionally sup-

ported, but at the cost of longer instruction length (b) */

16-Bit Operands, 16-Bit Result

Dreg_lo_hi = Dreg_lo_hi – Dreg_lo_hi (sat_flag) ; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo_hi: R7–0.L, R7–0.H

sat_flag: nonoptional saturation flag, (S) or (NS)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The Subtract instruction subtracts src_reg_2 from src_reg_1 and places
the result in a destination register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-87

Arithmetic Operations

There are two ways to specify subtraction on 32-bit data. One instruction
that is 16-bit instruction length does not support saturation. The other
instruction, which is 32-bit instruction length, optionally supports satura-
tion. The larger DSP instruction can sometimes save execution time
because it can be issued in parallel with certain other instructions. See
“Parallel Issue” on page 15-5.

The instructions for 16-bit data use half-word data register operands and
store the result in a half-word data register.

All the instructions for 16-bit data are 32-bit instruction length.

In the syntax, where sat_flag appears, substitute one of the following
values.

• (S) saturate the result

• (NS) no saturation

See “Saturation” on page 1-17 for a description of saturation behavior.

The Subtract instruction has no subtraction equivalent of the addition
syntax for P-registers.

Flags Affected

This instruction affects flags as follows.

• AZ is set if result is zero; cleared if nonzero.

• AN is set if result is negative; cleared if non-negative.

• AC0 is set if the operation generates a carry; cleared if no carry.

• V is set if result overflows; cleared if no overflow.

Instruction Overview

15-88 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

The 32-bit versions of this instruction can be issued in parallel with spe-
cific other 16-bit instructions. For details, see “Issuing Parallel
Instructions” on page 20-1.

The 16-bit versions of this instruction cannot be issued in parallel with
other instructions.

Example

r5 = r2 - r1 ; /* 16-bit instruction length subtract, no

saturation */

r5 = r2 - r1(ns) ; /* same result as above, but 32-bit

instruction length */

r5 = r2 - r1(s) ; /* saturate the result */

r4.l = r0.l - r7.l (ns) ;

r4.l = r0.l - r7.h (s) ; /* saturate the result */

r0.l = r2.h - r4.l(ns) ;

r1.l = r3.h - r7.h(ns) ;

r4.h = r0.l - r7.l (ns) ;

r4.h = r0.l - r7.h (ns) ;

r0.h = r2.h - r4.l(s) ; /* saturate the result */

r1.h = r3.h - r7.h(ns) ;

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-89

Arithmetic Operations

Also See

Modify – Decrement, Vector Add / Subtract

Special Applications

None

Instruction Overview

15-90 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Subtract Immediate

General Form

register -= constant

Syntax

Ireg -= 2 ; /* decrement Ireg by 2, half-word address pointer

increment (a) */

Ireg -= 4 ; /* word address pointer decrement (a) */

Syntax Terminology

Ireg: I3–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Subtract Immediate instruction subtracts a constant value from an
Index register without saturation.

The instruction versions that explicitly modify Ireg support
optional circular buffering. See “Automatic Circular Addressing”
on page 1-21 for more details. Unless circular buffering is desired,
disable it prior to issuing this instruction by clearing the Length
Register (Lreg) corresponding to the Ireg used in this instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 15-91

Arithmetic Operations

Example: If you use I2 to increment your address pointer, first
clear L2 to disable circular buffering. Failure to explicitly clear Lreg
beforehand can result in unexpected Ireg values.

The circular address buffer registers (Index, Length, and Base) are
not initialized automatically by Reset. Traditionally, user software
clears all the circular address buffer registers during boot-up to dis-
able circular buffering, then initializes them later, if needed.

To subtract immediate values from D-registers or P-registers, use a
negative constant in the Add Immediate instruction.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other instructions.
For details, see “Issuing Parallel Instructions” on page 20-1.

Example

i0 -= 4 ;

i2 -= 2 ;

Also See

Add Immediate, Subtract

Special Applications

None

Instruction Overview

15-92 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-1

16 EXTERNAL EVENT
MANAGEMENT

Instruction Summary

• “Idle” on page 16-3

• “Core Synchronize” on page 16-5

• “System Synchronize” on page 16-8

• “EMUEXCPT (Force Emulation)” on page 16-11

• “Disable Interrupts” on page 16-13

• “Enable Interrupts” on page 16-15

• “RAISE (Force Interrupt / Reset)” on page 16-17

• “EXCPT (Force Exception)” on page 16-20

• “Test and Set Byte (Atomic)” on page 16-22

• “No Op” on page 16-25

Instruction Overview
This chapter discusses the instructions that manage external events. Users
can take advantage of these instructions to enable interrupts, force a spe-
cific interrupt or reset to occur, or put the processor in idle state. The
Core Synchronize instruction resolves all pending operations and flushes
the core store buffer before proceeding to the next instruction. The Sys-
tem Synchronize instruction forces all speculative, transient states in the

Instruction Overview

16-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

core and system to complete before processing continues. Other instruc-
tions in this chapter force an emulation exception, placing the processor in
Emulation mode; test the value of a specific, indirectly-addressed byte; or
increment the Program Counter (PC) without performing useful work.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-3

External Event Management

Idle

General Form

IDLE

Syntax

IDLE ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

Typically, the Idle instruction is part of a sequence to place the Blackfin
processor in a quiescent state so that the external system can switch
between core clock frequencies.

The IDLE instruction requests an idle state by setting the idle_req bit in
SEQSTAT register. Setting the idle_req bit precedes placing the Blackfin
processor in a quiescent state. If you intend to place the processor in Idle
mode, the IDLE instruction must immediately precede an SSYNC
instruction.

The first instruction following the SSYNC is the first instruction to execute
when the processor recovers from Idle mode.

The Idle instruction is the only way to set the idle_req bit in SEQSTAT.
The architecture does not support explicit writes to SEQSTAT.

Flags Affected

None

Instruction Overview

16-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Required Mode

The Idle instruction executes only in Supervisor mode. If execution is
attempted in User mode, the instruction produces an Illegal Use of Pro-
tected Resource exception.

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

idle ;

Also See

System Synchronize

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-5

External Event Management

Core Synchronize

General Form

CSYNC

Syntax

CSYNC ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Core Synchronize (CSYNC) instruction ensures resolution of all pend-
ing core operations and the flushing of the core store buffer before
proceeding to the next instruction. Pending core operations include any
speculative states (for example, branch prediction) or exceptions. The core
store buffer lies between the processor and the L1 cache memory.

CCYNC is typically used after core MMR writes to prevent imprecise
behavior.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

16-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The Core Synchronize instruction cannot be issued in parallel with other
instructions.

Example

Consider the following example code sequence.

if cc jump away_from_here ; /* produces speculative branch

prediction */

csync ;

r0 = [p0] ; /* load */

In this example, the CSYNC instruction ensures that the load instruction is
not executed speculatively. CSYNC ensures that the conditional branch is
resolved and any entries in the processor store buffer have been flushed. In
addition, all speculative states or exceptions complete processing before
CSYNC completes.

Also See

System Synchronize

Special Applications

Use CSYNC to enforce a strict execution sequence on loads and stores or to
conclude all transitional core states before reconfiguring the core modes.
For example, issue CSYNC before configuring memory-mapped registers
(MMRs). CSYNC should also be issued after stores to MMRs to make sure
the data reaches the MMR before the next instruction is fetched.

Typically, the Blackfin processor executes all load instructions strictly in
the order that they are issued and all store instructions in the order that
they are issued. However, for performance reasons, the architecture relaxes
ordering between load and store operations. It usually allows load opera-
tions to access memory out of order with respect to store operations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-7

External Event Management

Further, it usually allows loads to access memory speculatively. The core
may later cancel or restart speculative loads. By using the Core Synchro-
nize or System Synchronize instructions and managing interrupts
appropriately, you can restrict out-of-order and speculative behavior.

Stores never access memory speculatively.

Instruction Overview

16-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

System Synchronize

General Form

SSYNC

Syntax

SSYNC ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The System Synchronize (SSYNC) instruction forces all speculative, tran-
sient states in the core and system to complete before processing
continues. Until SSYNC completes, no further instructions can be issued to
the pipeline.

The SSYNC instruction performs the same function as Core Synchronize
(CSYNC). In addition, SSYNC flushes any write buffers (between the L1
memory and the system interface) and generates a Synch request signal to
the external system. The operation requires an acknowledgement
Synch_Ack signal by the system before completing the instruction.

If the idle_req bit of the SEQSTAT register is set when SSYNC is executed,
the processor enters Idle state and asserts the external Idle signal after
receiving the external Synch_Ack signal. After the external Idle signal is
asserted, exiting the Idle state requires an external Wakeup signal.

SSYNC should be issued immediately before and after writing to a system
MMR. Otherwise, the MMR change can take effect at an indeterminate
time while other instructions are executing, resulting in imprecise
behavior.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-9

External Event Management

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The SSYNC instruction cannot be issued in parallel with other instructions.

Example

Consider the following example code sequence.

if cc jump away_from_here ; /* produces speculative branch

prediction */

ssync ;

r0 = [p0] ; /* load */

In this example, SSYNC ensures that the load instruction will not be exe-
cuted speculatively. The instruction ensures that the conditional branch is
resolved and any entries in the processor store buffer and write buffer have
been flushed. In addition, all exceptions complete processing before SSYNC
completes.

Also See

Core Synchronize, Idle

Instruction Overview

16-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Special Applications

Typically, SSYNC prepares the architecture for clock cessation or frequency
change. In such cases, the following instruction sequence is typical.

:

instruction...

instruction...

CLI r0 ; /* disable interrupts */

idle ; /* enable Idle state */

ssync ; /* conclude all speculative states, assert external

Sync signal, await Synch_Ack, then assert external Idle signal

and stall in the Idle state until the Wakeup signal. Clock input

can be modified during the stall. */

sti r0 ; /* re-enable interrupts when Wakeup occurs */

instruction...

instruction...

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-11

External Event Management

EMUEXCPT (Force Emulation)

General Form

EMUEXCPT

Syntax

EMUEXCPT ; /* (a) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Force Emulation instruction forces an emulation exception, thus
allowing the processor to enter emulation mode.

When emulation is enabled, the processor immediately takes an exception
into emulation mode. When emulation is disabled, EMUEXCPT generates an
illegal instruction exception.

An emulation exception is the highest priority event in the processor.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Force Emulation instruction cannot be issued in parallel with other
instructions.

Instruction Overview

16-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

emuexcpt ;

Also See

RAISE (Force Interrupt / Reset)

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-13

External Event Management

Disable Interrupts

General Form

CLI

Syntax

CLI Dreg ; /* previous state of IMASK moved to Dreg (a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Disable Interrupts instruction globally disables general interrupts by
setting IMASK to all zeros. In addition, the instruction copies the previous
contents of IMASK into a user-specified register in order to save the state of
the interrupt system.

The Disable Interrupts instruction does not mask NMI, reset, exceptions
and emulation.

Flags Affected

None

Required Mode

The Disable Interrupts instruction executes only in Supervisor mode. If
execution is attempted in User mode, the instruction produces an Illegal
Use of Protected Resource exception.

Instruction Overview

16-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The Disable Interrupts instruction cannot be issued in parallel with other
instructions.

Example

cli r3 ;

Also See

Enable Interrupts

Special Applications

This instruction is often issued immediately before an IDLE instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-15

External Event Management

Enable Interrupts

General Form

STI

Syntax

STI Dreg ; /* previous state of IMASK restored from Dreg

(a) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Enable Interrupts instruction globally enables interrupts by restoring
the previous state of the interrupt system back into IMASK.

Flags Affected

None

Required Mode

The Enable Interrupts instruction executes only in Supervisor mode. If
execution is attempted in User mode, the instruction produces an Illegal
Use of Protected Resource exception.

Instruction Overview

16-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The Enable Interrupts instruction cannot be issued in parallel with other
instructions.

Example

sti r3 ;

Also See

Disable Interrupts

Special Applications

This instruction is often located after an IDLE instruction so that it will
execute after a wake-up event from the idle state.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-17

External Event Management

RAISE (Force Interrupt / Reset)

General Form

RAISE

Syntax

RAISE uimm4 ; /* (a) */

Syntax Terminology

uimm4: 4-bit unsigned field, with the range of 0 through 15

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Force Interrupt / Reset instruction forces a specified interrupt or reset
to occur. Typically, it is a software method of invoking a hardware event
for debug purposes.

When the RAISE instruction is issued, the processor sets a bit in the ILAT
register corresponding to the interrupt vector specified by the uimm4 con-
stant in the instruction. The interrupt executes when its priority is high
enough to be recognized by the processor. The RAISE instruction causes
these events to occur given the uimm4 arguments shown in Table 16-1.

Table 16-1. uimm4 Arguments and Events

uimm4 Event

0 <reserved>

1 RST

2 NMI

Instruction Overview

16-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The Force Interrupt / Reset instruction cannot invoke Exception (EXC)
or Emulation (EMU) events; use the EXCPT and EMUEXCPT instructions,
respectively, for those events.

The RAISE instruction does not take effect before the write-back stage in
the pipeline.

Flags Affected

None

3 <reserved>

4 <reserved>

5 IVHW

6 IVTMR

7 IVG7

8 IVG8

9 IVG9

10 IVG10

11 IVG11

12 IVG12

13 IVG13

14 IVG14

15 IVG15

Table 16-1. uimm4 Arguments and Events (Cont’d)

uimm4 Event

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-19

External Event Management

Required Mode

The Force Interrupt / Reset instruction executes only in Supervisor mode.
If execution is attempted in User mode, the Force Interrupt / Reset
instruction produces an Illegal Use of Protected Resource exception.

Parallel Issue

The Force Interrupt / Reset instruction cannot be issued in parallel with
other instructions.

Example

raise 1 ; /* Invoke RST */

raise 6 ; /* Invoke IVTMR timer interrupt */

Also See

EXCPT (Force Exception), EMUEXCPT (Force Emulation)

Special Applications

None

Instruction Overview

16-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

EXCPT (Force Exception)

General Form

EXCPT

Syntax

EXCPT uimm4 ; /* (a) */

Syntax Terminology

uimm4: 4-bit unsigned field, with the range of 0 through 15

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Force Exception instruction forces an exception with code uimm4.
When the EXCPT instruction is issued, the sequencer vectors to the excep-
tion handler that the user provides.

Application-level code uses the Force Exception instruction for operating
system calls. The instruction does not set the EVSW bit (bit 3) of the ILAT
register.

Flags Affected

None

Required Mode

User & Supervisor

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-21

External Event Management

Parallel Issue

The Force Exception instruction cannot be issued in parallel with other
instructions.

Example

excpt 4 ;

Also See

None

Special Applications

None

Instruction Overview

16-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Test and Set Byte (Atomic)

General Form

TESTSET

Syntax

TESTSET (Preg) ; /* (a) */

Syntax Terminology

Preg: P5–0 (SP and FP are not allowed as the register for this instruction)

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Test and Set Byte (Atomic) instruction loads an indirectly addressed
memory byte, tests whether it is zero, then sets the most significant bit of
the memory byte without affecting any other bits. If the byte is originally
zero, the instruction sets the CC bit. If the byte is originally nonzero the
instruction clears the CC bit. The sequence of this memory transaction is
atomic.

TESTSET accesses the entire logical memory space except the core Mem-
ory-Mapped Register (MMR) address region. The system design must
ensure atomicity for all memory regions that TESTSET may access. The
hardware does not perform atomic access to L1 memory space configured
as SRAM. Therefore, semaphores must not reside in on-core memory.

The memory architecture always treats atomic operations as cache-inhib-
ited accesses, even if the CPLB descriptor for the address indicates a
cache-enabled access. If a cache hit is detected, the operation flushes and
invalidates the line before allowing the TESTSET to proceed.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-23

External Event Management

The software designer is responsible for executing atomic operations in the
proper cacheable / non-cacheable memory space. Typically, these opera-
tions should execute in non-cacheable, off-core memory. In a chip
implementation that requires tight temporal coupling between processors
or processes, the design should implement a dedicated, non-cacheable
block of memory that meets the data latency requirements of the system.

TESTSET can be interrupted before the load portion of the instruction
completes. If interrupted, the TESTSET will be re-executed upon return
from the interrupt. After the test or load portion of the TESTSET com-
pletes, the TESTSET sequence cannot be interrupted. For example, any
exceptions associated with the CPLB lookup for both the load and store
operations must be completed before the load of the TESTSET completes.

The integrity of the TESTSET atomicity depends on the L2 memory
resource-locking mechanism. If the L2 memory does not support atomic
locking for the address region you are accessing, your software has no
guarantee of correct semaphore behavior. See the processor L2 memory
documentation for more on the locking support.

Flags Affected

This instruction affects flags as follows.

• CC is set if addressed value is zero; cleared if nonzero.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Instruction Overview

16-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The TESTSET instruction cannot be issued in parallel with other
instructions.

Example

testset (p1) ;

The TESTSET instruction may be preceded by a CSYNC or SSYNC instruction
to ensure that all previous exceptions or interrupts have been processed
before the atomic operation begins.

Also See

Core Synchronize, System Synchronize

Special Applications

Typically, use TESTSET as a semaphore sampling method between copro-
cessors or coprocesses.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 16-25

External Event Management

No Op

General Form

NOP

MNOP

Syntax

NOP ; /* (a) */

MNOP ; /* (b) */

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length. Comment
(b) identifies 32-bit instruction length.

Functional Description

The No Op instruction increments the PC and does nothing else.

Typically, the No Op instruction allows previous instructions time to
complete before continuing with subsequent instructions. Other uses are
to produce specific delays in timing loops or to act as hardware event tim-
ers and rate generators when no timers and rate generators are available.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

16-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

The 16-bit versions of this instruction can be issued in parallel with spe-
cific other instructions. For details, see “Issuing Parallel Instructions” on
page 20-1.

Example

nop ;

mnop ;

mnop || /* a 16-bit instr. */ || /* a 16-bit instr. */ ;

Also See

None

Special Applications

MNOP can be used to issue loads or store instructions in parallel without
invoking a 32-bit MAC or ALU operation. Refer to “Issuing Parallel
Instructions” on page 20-1 for more information.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-1

17 CACHE CONTROL

Instruction Summary

• “PREFETCH” on page 17-3

• “FLUSH” on page 17-5

• “FLUSHINV” on page 17-7

• “IFLUSH” on page 17-9

Instruction Overview
This chapter discusses the instructions that are used to flush, invalidate,
and prefetch data cache lines as well as the instruction used to invalidate a
line in the instruction cache.

As part of the data-cache related instructions, the PREFETCH instruction
can be used to improve performance by initiating a data cache-line fill in
advance of when the desired data is actually required for processing. The
FLUSH instruction is useful when data cache is configured in the write-back
mode (which is described in further detail in the “Memory” chapter). This
instruction forces data in the cache line that has been changed by the pro-
cessor (and thus has been marked as “dirty”) to be written to its source
memory.

There is no single instruction that can be used to invalidate a data
cache-line. The FLUSHINV instruction provides a way to directly flush and
invalidate a data cache-line. The FLUSHINV instruction is commonly used

Instruction Overview

17-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

to invalidate a buffer, but the instruction also performs a flush of data
marked as “dirty.” The ITEST and DTEST registers, which are described in
the “Memory” chapter, can also be used to directly invalidate a line in
cache. Buffers in source memory need to be invalidated when a DMA
channel is filling the buffer and data cache has been enabled and the
source memory has been defined as cacheable. By invalidating the
cache-lines associated with the buffer, “coherency” is maintained between
the contents stored in cache and the actual values in source memory.
When the buffer size is less than or equal in size to the actual cache on the
processor, it is better to use the FLUSHINV instruction in a loop to invali-
date the cache-lines. When the buffer is larger in size than the cache, it is
better to use the DTEST registers described in the “Memory” chapter to
invalidate the cache-lines.

The IFLUSH instruction is used to invalidate an instruction cache-line.

On the Blackfin processors, the cache-line size is 32 bytes.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-3

Cache Control

PREFETCH

General Form

PREFETCH

Syntax

PREFETCH [Preg] ; /* indexed (a) */

PREFETCH [Preg ++] ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5–0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Data Cache Prefetch instruction causes the data cache to prefetch the
cache line that is associated with the effective address in the P-register.
The operation causes the line to be fetched if it is not currently in the data
cache and if the address is cacheable (that is, if bit CPLB_L1_CHBL = 1). If
the line is already in the cache or if the cache is already fetching a line, the
prefetch instruction performs no action, like a NOP.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

Instruction Overview

17-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

prefetch [p2] ;

prefetch [p0 ++] ;

Also See

None

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-5

Cache Control

FLUSH

General Form

FLUSH

Syntax

FLUSH [Preg] ; /* indexed (a) */

FLUSH [Preg ++] ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5–0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Data Cache Flush instruction causes the data cache to synchronize
the specified cache line with higher levels of memory. This instruction
selects the cache line corresponding to the effective address contained in
the P-register. If the cached data line is dirty, the instruction writes the
line out and marks the line clean in the data cache. If the specified data
cache line is already clean or the cache does not contain the address in the
P-register, this instruction performs no action, like a NOP.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

Instruction Overview

17-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The instruction cannot be issued in parallel with other instructions.

Example

flush [p2] ;

flush [p0 ++] ;

Also See

None

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-7

Cache Control

FLUSHINV

General Form

FLUSHINV

Syntax

FLUSHINV [Preg] ; /* indexed (a) */

FLUSHINV [Preg ++] ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5–0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Data Cache Line Invalidate instruction causes the data cache to inval-
idate a specific line in the cache. The contents of the P-register specify the
line to invalidate. If the line is in the cache and dirty, the cache line is
written out to the next level of memory in the hierarchy. If the line is not
in the cache, the instruction performs no action, like a NOP.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

Instruction Overview

17-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

The Data Cache Line Invalidate instruction cannot be issued in parallel
with other instructions.

Example

flushinv [p2] ;

flushinv [p0 ++] ;

Also See

None

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 17-9

Cache Control

IFLUSH

General Form

IFLUSH

Syntax

IFLUSH [Preg] ; /* indexed (a) */

IFLUSH [Preg ++] ; /* indexed, post increment (a) */

Syntax Terminology

Preg: P5–0, SP, FP

Instruction Length

In the syntax, comment (a) identifies 16-bit instruction length.

Functional Description

The Instruction Cache Flush instruction causes the instruction cache to
invalidate a specific line in the cache. The contents of the P-register spec-
ify the line to invalidate. The instruction cache contains no dirty bit.
Consequently, the contents of the instruction cache are never flushed to
higher levels.

This instruction does not cause address exception violations. If a protec-
tion violation associated with the address occurs, the instruction acts as a
NOP and does not cause a protection violation exception.

Options

The instruction can post-increment the line pointer by the cache line size.

Instruction Overview

17-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction cannot be issued in parallel with other instructions.

Example

iflush [p2] ;

iflush [p0 ++] ;

Also See

None

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-1

18 VIDEO PIXEL OPERATIONS

Instruction Summary

• “ALIGN8, ALIGN16, ALIGN24” on page 18-3

• “DISALGNEXCPT” on page 18-6

• “BYTEOP3P (Dual 16-Bit Add / Clip)” on page 18-8

• “Dual 16-Bit Accumulator Extraction with Addition” on
page 18-13

• “BYTEOP16P (Quad 8-Bit Add)” on page 18-15

• “BYTEOP1P (Quad 8-Bit Average – Byte)” on page 18-19

• “BYTEOP2P (Quad 8-Bit Average – Half-Word)” on page 18-24

• “BYTEPACK (Quad 8-Bit Pack)” on page 18-30

• “BYTEOP16M (Quad 8-Bit Subtract)” on page 18-32

• “SAA (Quad 8-Bit Subtract-Absolute-Accumulate)” on page 18-36

• “BYTEUNPACK (Quad 8-Bit Unpack)” on page 18-41

Instruction Overview

18-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Overview
This chapter discusses the instructions that manipulate video pixels. Users
can take advantage of these instructions to align bytes, disable exceptions
that result from misaligned 32-bit memory accesses, and perform dual and
quad 8- and 16-bit add, subtract, and averaging operations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-3

Video Pixel Operations

ALIGN8, ALIGN16, ALIGN24

General Form

dest_reg = ALIGN8 (src_reg_1, src_reg_0)

dest_reg = ALIGN16 (src_reg_1, src_reg_0)

dest_reg = ALIGN24 (src_reg_1, src_reg_0)

Syntax

Dreg = ALIGN8 (Dreg, Dreg) ; /* overlay 1 byte (b) */

Dreg = ALIGN16 (Dreg, Dreg) ; /* overlay 2 bytes (b) */

Dreg = ALIGN24 (Dreg, Dreg) ; /* overlay 3 bytes (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Byte Align instruction copies a contiguous four-byte unaligned word
from a combination of two data registers. The instruction version deter-
mines the bytes that are copied; in other words, the byte alignment of the
copied word. Alignment options are shown in Table 18-1.

The ALIGN16 version performs the same operation as the Vector Pack
instruction using the dest_reg = PACK (Dreg_lo, Dreg_hi) syntax.

Use the Byte Align instruction to align data bytes for subsequent sin-
gle-instruction, multiple-data (SIMD) instructions.

Instruction Overview

18-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The input values are not implicitly modified by this instruction. The des-
tination register can be the same D-register as one of the source registers.
Doing this explicitly modifies that source register.

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Table 18-1. Byte Alignment Options

src_reg_1 src_reg_0

byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

dest_reg for ALIGN8: byte4 byte3 byte2 byte1

dest_reg for ALIGN16: byte5 byte4 byte3 byte2

dest_reg for ALIGN24: byte6 byte5 byte4 byte3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-5

Video Pixel Operations

Example

// If r3 = 0xABCD 1234 and r4 = 0xBEEF DEAD, then . . .

r0 = align8 (r3, r4) ; /* produces r0 = 0x34BE EFDE, */

r0 = align16 (r3, r4) ; /* produces r0 = 0x1234 BEEF, and */

r0 = align24 (r3, r4) ; /* produces r0 = 0xCD12 34BE, */

Also See

Vector PACK

Special Applications

None

Instruction Overview

18-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

DISALGNEXCPT

General Form

DISALGNEXCPT

Syntax

DISALGNEXCPT ; /* (b) */

Syntax Terminology

None

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Disable Alignment Exception for Load (DISALGNEXCPT) instruction
prevents exceptions that would otherwise be caused by misaligned 32-bit
memory loads issued in parallel. This instruction only affects misaligned
32-bit load instructions that use I-register indirect addressing.

In order to force address alignment to a 32-bit boundary, the two LSBs of
the address are cleared before being sent to the memory system. The I-reg-
ister is not modified by the DISALIGNEXCPT instruction. Also, any
modifications performed to the I-register by a parallel instruction are not
affected by the DISALIGNEXCPT instruction.

Flags Affected

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-7

Video Pixel Operations

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

disalgnexcpt || r1 = [i0++] || r3 = [i1++] ; /* three instruc-

tions in parallel */

disalgnexcpt || [p0 ++ p1] = r5 || r3 = [i1++] ; /* alignment

exception is prevented only for the load */

disalgnexcpt || r0 = [p2++] || r3 = [i1++] ; /* alignment

exception is prevented only for the I-reg load */

Also See

Any Quad 8-Bit instructions, ALIGN8, ALIGN16, ALIGN24

Special Applications

Use the DISALGNEXCPT instruction when priming data registers for Quad
8-Bit single-instruction, multiple-data (SIMD) instructions.

Quad 8-Bit SIMD instructions require as many as sixteen 8-bit operands,
four D-registers worth, to be preloaded with operand data. The operand
data is 8 bits and not necessarily word aligned in memory. Thus, use DIS-
ALGNEXCPT to prevent spurious exceptions for these potentially misaligned
accesses.

During execution, when Quad 8-Bit SIMD instructions perform 8-bit
boundary accesses, they automatically prevent exceptions for misaligned
accesses. No user intervention is required.

Instruction Overview

18-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BYTEOP3P (Dual 16-Bit Add / Clip)

General Form

dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (LO)

dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (HI)

dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (LO, R)

dest_reg = BYTEOP3P (src_reg_0, src_reg_1) (HI, R)

Syntax

/* forward byte order operands */

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO) ; /* sum into low

bytes (b) */

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI) ; /* sum into high

bytes (b) */

/* reverse byte order operands */

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO, R) ; /* sum into

low bytes (b) */

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI, R) ; /* sum into

high bytes (b) */

Syntax Terminology

Dreg: R7–0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Dual 16-Bit Add / Clip instruction adds two 8-bit unsigned values to
two 16-bit signed values, then limits (or “clips”) the result to the 8-bit
unsigned range 0 through 255, inclusive. The instruction loads the results

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-9

Video Pixel Operations

as bytes on half-word boundaries in one 32-bit destination register. Some
syntax options load the upper byte in the half-word and others load the
lower byte, as shown in Table 18-2, Table 18-4, and Table 18-4.

In either case, the unused bytes in the destination register are filled with
0x00.

The 8-bit and 16-bit addition is performed as a signed operation. The
16-bit operand is sign-extended to 32 bits before adding.

The only valid input source register pairs are R1:0 and R3:2.

Table 18-2. Assuming the source registers contain:

31................24 23................16 15..................8 7....................0

aligned_src_reg_0: y1 y0

aligned_src_reg_1: z3 z2 z1 z0

Table 18-3. The versions that load the result into the lower byte–“(LO)”–
produce:

31................24 23................16 15..................8 7....................0

dest_reg: 0 0 y1 + z3 clipped
to 8 bits

0 0 y0 + z1 clipped
to 8 bits

Table 18-4. And the versions that load the result into the higher byte–
“(HI)”–produce:

31................24 23................16 15..................8 7....................0

dest_reg: y1 + z2 clipped
to 8 bits

00 y0 + z0 clipped
to 8 bits

00

Instruction Overview

18-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The Dual 16-Bit Add / Clip instruction provides byte alignment directly
in the source register pairs src_reg_0 and src_reg_1 based on index regis-
ters I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

• The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated in Table 18-5.

In the default source order case (for example, not the (– , R) syntax),
assuming a source register pair contains the following.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The (– , R) syntax reverses the order of the source registers within each
register pair. Typical high performance applications cannot afford the
overhead of reloading both register pair operands to maintain byte order
for every calculation. Instead, they alternate and load only one register
pair operand each time and alternate between the forward and reverse byte

Table 18-5. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-11

Video Pixel Operations

order versions of this instruction. By default, the low order bytes come
from the low register in the register pair. The (– , R) option causes the
low order bytes to come from the high register.

In the optional reverse source order case (for example, using the (– , R)
syntax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-6.

Flags Affected

None

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3 = byteop3p (r1:0, r3:2) (lo) ;

r3 = byteop3p (r1:0, r3:2) (hi) ;

Table 18-6. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Instruction Overview

18-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

r3 = byteop3p (r1:0, r3:2) (lo, r) ;

r3 = byteop3p (r1:0, r3:2) (hi, r) ;

Also See

BYTEOP16P (Quad 8-Bit Add)

Special Applications

This instruction is primarily intended for video motion compensation
algorithms. The instruction supports the addition of the residual to a
video pixel value, followed by unsigned byte saturation.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-13

Video Pixel Operations

Dual 16-Bit Accumulator Extraction with Addition

General Form

dest_reg_1 = A1.L + A1.H, dest_reg_0 = A0.L + A0.H

Syntax

Dreg = A1.L + A1.H, Dreg = A0.L + A0.H ; /* (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Dual 16-Bit Accumulator Extraction with Addition instruction adds
together the upper half-words (bits 31through 16) and lower half-words
(bits 15 through 0) of each Accumulator and loads each result into a
32-bit destination register.

Each 16-bit half-word in each Accumulator is sign extended before being
added together.

Flags Affected

None

Required Mode

User & Supervisor

Instruction Overview

18-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r4=a1.l+a1.h, r7=a0.l+a0.h ;

Also See

SAA (Quad 8-Bit Subtract-Absolute-Accumulate)

Special Applications

Use the Dual 16-Bit Accumulator Extraction with Addition instruction
for motion estimation algorithms in conjunction with the Quad 8-Bit
Subtract-Absolute-Accumulate instruction.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-15

Video Pixel Operations

BYTEOP16P (Quad 8-Bit Add)

General Form

(dest_reg_1, dest_reg_0) = BYTEOP16P (src_reg_0, src_reg_1)

(dest_reg_1, dest_reg_0) = BYTEOP16P (src_reg_0, src_reg_1) (R)

Syntax

/* forward byte order operands */

(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair) ; /* (b) */

/* reverse byte order operands */

(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair) (R)

; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Add instruction adds two unsigned quad byte number
sets byte-wise, adjusting for byte alignment. It then loads the byte-wise
results as 16-bit, zero-extended, half-words in two destination registers, as
shown inTable 18-7 and Table 18-8.

The only valid input source register pairs are R1:0 and R3:2.

Instruction Overview

18-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The Quad 8-Bit Add instruction provides byte alignment directly in the
source register pairs src_reg_0 and src_reg_1 based on index registers I0
and I1.

• The two LSBs of the I0 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

• The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated below.

In the default source order case (for example, not the (R) syntax), assume
that a source register pair contains the data shown in Table 18-9.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The (R) syntax reverses the order of the source registers within each regis-
ter pair. Typical high performance applications cannot afford the
overhead of reloading both register pair operands to maintain byte order

Table 18-7. Source Registers Contain

31................24 23................16 15..................8 7....................0

aligned_src_reg_0: y3 y2 y1 y0

aligned_src_reg_1: z3 z2 z1 z0

Table 18-8. Destination Registers Receive

31................24 23................16 15..................8 7....................0

aligned_src_reg_0: y1 + z1 y0 + z0

aligned_src_reg_1: y3 + z3 y2 + z2

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-17

Video Pixel Operations

for every calculation. Instead, they alternate and load only one register
pair operand each time and alternate between the forward and reverse byte
order versions of this instruction. By default, the low order bytes come
from the low register in the register pair. The (R) option causes the low
order bytes to come from the high register.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-10.

The mnemonic derives its name from the fact that the operands are bytes,
the result is 16 bits, and the arithmetic operation is “plus” for addition.

Table 18-9. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Table 18-10. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Instruction Overview

18-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

(r1,r2)= byteop16p (r3:2,r1:0) ;

(r1,r2)= byteop16p (r3:2,r1:0) (r) ;

Also See

BYTEOP16M (Quad 8-Bit Subtract)

Special Applications

This instruction provides packed data arithmetic typical of video and
image processing applications.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-19

Video Pixel Operations

BYTEOP1P (Quad 8-Bit Average – Byte)

General Form

dest_reg = BYTEOP1P (src_reg_0, src_reg_1)

dest_reg = BYTEOP1P (src_reg_0, src_reg_1) (T)

dest_reg = BYTEOP1P (src_reg_0, src_reg_1) (R)

dest_reg = BYTEOP1P (src_reg_0, src_reg_1) (T, R)

Syntax

/* forward byte order operands */

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) ; /* (b) */

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (T) ; /* truncated (b)

*/

/* reverse byte order operands */

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (R) ; /* (b) */

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (T, R) ; /* truncated (b)

*/

Syntax Terminology

Dreg: R7–0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Average – Byte instruction computes the arithmetic aver-
age of two unsigned quad byte number sets byte wise, adjusting for byte
alignment. This instruction loads the byte-wise results as concatenated
bytes in one 32-bit destination register, as shown in Table 18-11 and
Table 18-12.

Instruction Overview

18-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic average (or mean) is calculated by summing the two operands,
then shifting right one place to divide by two.

The user has two options to bias the result–truncation or rounding up. By
default, the architecture rounds up the mean when the sum is odd. How-
ever, the syntax supports optional truncation.

See “Rounding and Truncating” on page 1-19 for a description of biased
rounding and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding
behavior of this instruction.

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Average – Byte instruction provides byte alignment
directly in the source register pairs src_reg_0 and src_reg_1 based on
index registers I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

• The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

Table 18-11. Source Registers Contain

31................24 23................16 15..................8 7....................0

aligned_src_reg_0: y3 y2 y1 y0

aligned_src_reg_1: z3 z2 z1 z0

Table 18-12. Destination Registers Receive

31................24 23................16 15..................8 7....................0

dest_reg: avg(y3, z3) avg(y2, z2) avg(y1, z1) avg(y0, z0)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-21

Video Pixel Operations

The relationship between the I-register bits and the byte alignment is
illustrated below.

In the default source order case (for example, not the (R) syntax), assume a
source register pair contains the data shown in Table 18-13.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The Quad 8-Bit Average – Byte instruction supports the following
options.

Table 18-13. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Table 18-14. Options for Quad 8-Bit Average – Byte

Option Description

Default Rounds up the arithmetic mean.

(T) Truncates the arithmetic mean.

Instruction Overview

18-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-15.

The mnemonic derives its name from the fact that the operands are bytes,
the result is one word, and the basic arithmetic operation is “plus” for
addition. The single destination register indicates that averaging is
performed.

(R) Reverses the order of the source registers within each register pair. Typical
high performance applications cannot afford the overhead of reloading
both register pair operands to maintain byte order for every calculation.
Instead, they alternate and load only one register pair operand each time
and alternate between the forward and reverse byte order versions of this
instruction. By default, the low order bytes come from the low register in
the register pair. The (R) option causes the low order bytes to come from
the high register.

(T, R) Combines both of the above options.

Table 18-15. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Table 18-14. Options for Quad 8-Bit Average – Byte (Cont’d)

Option Description

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-23

Video Pixel Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3 = byteop1p (r1:0, r3:2) ;

r3 = byteop1p (r1:0, r3:2) (r) ;

r3 = byteop1p (r1:0, r3:2) (t) ;

r3 = byteop1p (r1:0, r3:2) (t,r) ;

Also See

BYTEOP16P (Quad 8-Bit Add)

Special Applications

This instruction supports binary interpolation used in fractional motion
search and motion compensation algorithms.

Instruction Overview

18-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BYTEOP2P (Quad 8-Bit Average – Half-Word)

General Form

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (RNDL)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (RNDH)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (TL)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (TH)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (RNDL, R)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (RNDH, R)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (TL, R)

dest_reg = BYTEOP2P (src_reg_0, src_reg_1) (TH, R)

Syntax

/* forward byte order operands */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDL) ;

/* round into low bytes (b) */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDH) ;

/* round into high bytes (b) */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TL) ;

/* truncate into low bytes (b) */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TH) ;

/* truncate into high bytes (b) */

/* reverse byte order operands */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDL, R) ;

/* round into low bytes (b) */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDH, R) ;

/* round into high bytes (b) */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TL, R) ;

/* truncate into low bytes (b) */

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TH, R) ;

/* truncate into high bytes (b) */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-25

Video Pixel Operations

Syntax Terminology

Dreg: R7–0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Average – Half-Word instruction finds the arithmetic
average of two unsigned quad byte number sets byte wise, adjusting for
byte alignment. This instruction averages four bytes together. The instruc-
tion loads the results as bytes on half-word boundaries in one 32-bit
destination register. Some syntax options load the upper byte in the
half-word and others load the lower byte, as shown in Table 18-16,
Table 18-17, and Table 18-18.

In either case, the unused bytes in the destination register are filled with
0x00.

Table 18-16. Source Registers Contain

31................24 23................16 15..................8 7....................0

aligned_src_reg_0: y3 y2 y1 y0

aligned_src_reg_1: z3 z2 z1 z0

Table 18-17. The versions that load the result into the lower byte – RNDL
and TL – produce:

31................24 23................16 15..................8 7....................0

dest_reg: 0 0 avg(y3, y2, z3,
z2)

0 0 avg(y1, y0, z1,
z0)

Instruction Overview

18-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic average (or mean) is calculated by summing the four byte oper-
ands, then shifting right two places to divide by four.

When the intermediate sum is not evenly divisible by 4, precision may be
lost.

The user has two options to bias the result–truncation or biased rounding.

See “Rounding and Truncating” on page 1-19 for a description of unbi-
ased rounding and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding
behavior of this instruction.

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Average – Half-Word instruction provides byte align-
ment directly in the source register pairs src_reg_0 (typically R1:0) and
src_reg_1 (typically R3:2) based only on the I0 register. The byte align-
ment in both source registers must be identical since only one register
specifies the byte alignment for them both.

The relationship between the I-register bits and the byte alignment is
illustrated in Table 18-19.

In the default source order case (for example, not the (R) syntax), assume a
source register pair contains the data shown in Table 18-19.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Table 18-18. And the versions that load the result into the higher byte –
RNDH and TH – produce:

31................24 23................16 15..................8 7....................0

dest_reg: avg(y3, y2, z3,
z2)

0 0 avg(y1, y0, z1,
z0)

0 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-27

Video Pixel Operations

Options

The Quad 8-Bit Average – Half-Word instruction supports the following
options.

When used together, the order of the options in the syntax makes no
difference.

Table 18-19. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Table 18-20. Options for Quad 8-Bit Average – Half-Word

Option Description

(RND—) Rounds up the arithmetic mean.

(T—) Truncates the arithmetic mean.

(—L) Loads the results into the lower byte of each destination half-word.

(—H) Loads the results into the higher byte of each destination half-word.

(,R) Reverses the order of the source registers within each register pair. Typical
high performance applications cannot afford the overhead of reloading both
register pair operands to maintain byte order for every calculation. Instead,
they alternate and load only one register pair operand each time and alternate
between the forward and reverse byte order versions of this instruction. By
default, the low order bytes come from the low register in the register pair.
The (R) option causes the low order bytes to come from the high register.

Instruction Overview

18-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume a source register pair contains
the data shown in Table 18-21.

The mnemonic derives its name from the fact that the operands are bytes,
the result is two half-words, and the basic arithmetic operation is “plus”
for addition. The single destination register indicates that averaging is
performed.

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Table 18-21. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-29

Video Pixel Operations

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3 = byteop2p (r1:0, r3:2) (rndl) ;

r3 = byteop2p (r1:0, r3:2) (rndh) ;

r3 = byteop2p (r1:0, r3:2) (tl) ;

r3 = byteop2p (r1:0, r3:2) (th) ;

r3 = byteop2p (r1:0, r3:2) (rndl, r) ;

r3 = byteop2p (r1:0, r3:2) (rndh, r) ;

r3 = byteop2p (r1:0, r3:2) (tl, r) ;

r3 = byteop2p (r1:0, r3:2) (th, r) ;

Also See

BYTEOP1P (Quad 8-Bit Average – Byte)

Special Applications

This instruction supports binary interpolation used in fractional motion
search and motion compensation algorithms.

Instruction Overview

18-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BYTEPACK (Quad 8-Bit Pack)

General Form

dest_reg = BYTEPACK (src_reg_0, src_reg_1)

Syntax

Dreg = BYTEPACK (Dreg, Dreg) ; /* (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Pack instruction packs four 8-bit values, half-word
aligned, contained in two source registers into one register, byte aligned as
shown in Table 18-22 and Table 18-23.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Table 18-22. Source Registers Contain

31................24 23................16 15..................8 7....................0

src_reg_0: byte1 byte0

src_reg_1: byte3 byte2

Table 18-23. Destination Register Receives

dest_reg: byte3 byte2 byte1 byte0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-31

Video Pixel Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r2 = bytepack (r4,r5) ;

• Assuming:

• R4 = 0xFEED FACE

• R5 = 0xBEEF BADD

then this instruction returns:

• R2 = 0xEFDD EDCE

Also See

BYTEUNPACK (Quad 8-Bit Unpack)

Special Applications

None

Instruction Overview

18-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

BYTEOP16M (Quad 8-Bit Subtract)

General Form

(dest_reg_1, dest_reg_0) = BYTEOP16M (src_reg_0, src_reg_1)

(dest_reg_1, dest_reg_0) = BYTEOP16M (src_reg_0, src_reg_1) (R)

Syntax

/* forward byte order operands */

(Dreg, Dreg) = BYTEOP16M (Dreg_pair, Dreg_pair) ; /* (b */)

/* reverse byte order operands */

(Dreg, Dreg) = BYTEOP16M (Dreg-pair, Dreg-pair) (R) ; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Subtract instruction subtracts two unsigned quad byte
number sets byte wise, adjusting for byte alignment. The instruction loads
the byte-wise results as sign-extended half-words in two destination regis-
ters, as shown in Table 18-24 and Table 18-25.

Table 18-24. Source Registers Contain

31................24 23................16 15..................8 7....................0

aligned_src_reg_0: y3 y2 y1 y0

aligned_src_reg_1: z3 z2 z1 z0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-33

Video Pixel Operations

The only valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Subtract instruction provides byte alignment directly in
the source register pairs src_reg_0 and src_reg_1 based on index registers
I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

• The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated shown in Table 18-26.

In the default source order case (for example, not the (R) syntax), assume a
source register pair contains the data shown in Table 18-26.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Table 18-25. Destination Registers Receive

31................24 23................16 15..................8 7....................0

dest_reg_0: y1 - z1 y0 - z0

dest_reg_1: y3 - z3 y2 - z2

Table 18-26. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Instruction Overview

18-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Options

The (R) syntax reverses the order of the source registers within each regis-
ter pair. Typical high performance applications cannot afford the
overhead of reloading both register pair operands to maintain byte order
for every calculation. Instead, they alternate and load only one register
pair operand each time and alternate between the forward and reverse byte
order versions of this instruction. By default, the low order bytes come
from the low register in the register pair. The (R) option causes the low
order bytes to come from the high register.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places within the
register pair in their byte ordering. Assume that a source register pair con-
tains the data shown in Table 18-27.

The mnemonic derives its name from the fact that the operands are bytes,
the result is 16 bits, and the arithmetic operation is “minus” for
subtraction.

Table 18-27. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-35

Video Pixel Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

(r1,r2)= byteop16m (r3:2,r1:0) ;

(r1,r2)= byteop16m (r3:2,r1:0) (r) ;

Also See

BYTEOP16P (Quad 8-Bit Add)

Special Applications

This instruction provides packed data arithmetic typical of video and
image processing applications.

Instruction Overview

18-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

SAA (Quad 8-Bit Subtract-Absolute-Accumulate)

General Form

SAA (src_reg_0, src_reg_1)

SAA (src_reg_0, src_reg_1) (R)

Syntax

SAA (Dreg_pair, Dreg_pair) ; /* forward byte order operands

(b) */

SAA (Dreg_pair, Dreg_pair) (R) ; /* reverse byte order oper-

ands (b) */

Syntax Terminology

Dreg_pair: R1:0, R3:2 (This instruction only supports register pairs R1:0
and R3:2.)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Subtract-Absolute-Accumulate instruction subtracts four
pairs of values, takes the absolute value of each difference, and accumu-
lates each result into a 16-bit Accumulator half. The results are placed in
the upper- and lower-half Accumulators A0.H, A0.L, A1.H, and A1.L.

Saturation is performed if an operation overflows a 16-bit Accumulator
half.

Only register pairs R1:0 and R3:2 are valid sources for this instruction.

This instruction supports the following byte-wise Sum of Absolute Differ-
ence (SAD) calculations.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-37

Video Pixel Operations

Typical values for N are 8 and 16, corresponding to the video block size of
8x8 and 16x16 pixels, respectively. The 16-bit Accumulator registers limit
the pixel region or block size to 32x32 pixels.

The SAA instruction behavior is shown below.

The Quad 8-Bit Subtract-Absolute-Accumulate instruction provides byte
alignment directly in the source register pairs src_reg_0 and src_reg_1
based on index registers I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for
source register pair src_reg_0 (typically R1:0).

• The two LSBs of the I1 register determine the byte alignment for
source register pair src_reg_1 (typically R3:2).

The relationship between the I-register bits and the byte alignment is
illustrated in Table 18-29.

Figure 18-1. Absolute Difference (SAD) Calculations

Table 18-28. SAA Instruction Behavior

src_reg_0 a(i, j+3) a(i, j+2) a(i, j+1) a(i, j)

src_reg_1 b(i, j+3) b(i, j+2) b(i, j+1) b(i, j)

A1.H +=| a(i, j+3)
-b(i, j+3) |

A1.L +=| a(i, j+2)
- b(i, j+2) |

A0.H +=| a(i, j+1)
- b(i, j+1) |

A0.L +=| a(i, j)
- b(i, j) |

SAD a i j(,) b i j(,)–

j 0=

N 1–

∑
i 0=

N 1–

∑=

Instruction Overview

18-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In the default source order case (for example, not the (R) syntax), assume a
source register pair contain the data shown in Table 18-29.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Options

The (R) syntax reverses the order of the source registers within each pair.
Typical high performance applications cannot afford the overhead of
reloading both register pair operands to maintain byte order for every cal-
culation. Instead, they alternate and load only one register pair operand
each time and alternate between the forward and reverse byte order ver-
sions of this instruction. By default, the low order bytes come from the
low register in the register pair. The (R) option causes the low order bytes
to come from the high register.

When reversing source order by using the (R) syntax, the source registers
swap places within the register pair in their byte ordering. If a source reg-
ister pair contains the data shown in Table 18-30, then the SAA
instruction computes 12 pixel operations simultaneously–the three-opera-
tion subtract-absolute-accumulate on four pairs of operand bytes in
parallel.

Table 18-29. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-39

Video Pixel Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

saa (r1:0, r3:2) || r0 = [i0++] || r2 = [i1++] ; /* parallel fill

instructions */

saa (r1:0, r3:2) (R) || r1 = [i0++] || r3 = [i1++] ; /* reverse,

parallel fill instructions */

saa (r1:0, r3:2) ; /* last SAA in a loop, no more fill

required */

Table 18-30. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Instruction Overview

18-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

DISALGNEXCPT, Load Data Register

Special Applications

Use the Quad 8-Bit Subtract-Absolute-Accumulate instruction for
block-based video motion estimation algorithms using block Sum of
Absolute Difference (SAD) calculations to measure distortion.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-41

Video Pixel Operations

BYTEUNPACK (Quad 8-Bit Unpack)

General Form

(dest_reg_1, dest_reg_0) = BYTEUNPACK src_reg_pair

(dest_reg_1, dest_reg_0) = BYTEUNPACK src_reg_pair (R)

Syntax

(Dreg , Dreg) = BYTEUNPACK Dreg_pair ; /* (b) */

(Dreg , Dreg) = BYTEUNPACK Dreg_pair (R) ; /* reverse source

order (b) */

Syntax Terminology

Dreg: R7–0

Dreg_pair: R1:0, R3:2, only

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Quad 8-Bit Unpack instruction copies four contiguous bytes from a
pair of source registers, adjusting for byte alignment. The instruction
loads the selected bytes into two arbitrary data registers on half-word
alignment.

The two LSBs of the I0 register determine the source byte alignment, as
illustrated in Table 18-31.

In the default source order case (for example, not the (R) syntax), assume
the source register pair contains the data shown in Table 18-31.

This instruction prevents exceptions that would otherwise be caused by
misaligned 32-bit memory loads issued in parallel.

Instruction Overview

18-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Options

The (R) syntax reverses the order of the source registers within the pair.
Typical high performance applications cannot afford the overhead of
reloading both register pair operands to maintain byte order for every cal-
culation. Instead, they alternate and load only one register pair operand
each time and alternate between the forward and reverse byte order ver-
sions of this instruction. By default, the low order bytes come from the
low register in the register pair. The (R) option causes the low order bytes
to come from the high register.

In the optional reverse source order case (for example, using the (R) syn-
tax), the only difference is the source registers swap places in their byte
ordering. Assume the source register pair contains the data shown in
Table 18-32.

Table 18-31. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_HI src_reg_pair_LO

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

Table 18-32. I-register Bits and the Byte Alignment

The bytes selected are src_reg_pair_LO src_reg_pair_HI

Two LSB’s of I0 or I1 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

00b: byte3 byte2 byte1 byte0

01b: byte4 byte3 byte2 byte1

10b: byte5 byte4 byte3 byte2

11b: byte6 byte5 byte4 byte3

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-43

Video Pixel Operations

The four bytes, now byte aligned, are copied into the destination registers
on half-word alignment, as shown in Table 18-33 and Table 18-34.

Only register pairs R1:0 and R3:2 are valid sources for this instruction.

Misaligned access exceptions are disabled during this instruction.

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Table 18-33. Source Register Contains

31................24 23................16 15..................8 7....................0

Aligned bytes: byte_D byte_C byte_B byte_A

Table 18-34. Destination Registers Receive

31................24 23................16 15..................8 7....................0

dest_reg_0: byte_B byte_A

dest_reg_1: byte_D byte_C

Instruction Overview

18-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

(r6,r5) = byteunpack r1:0 ; /* non-reversing sources */

• Assuming:

• register I0’s two LSBs = 00b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00BE 00EF

• R5 = 0x00BA 00DD

• Assuming:

• register I0’s two LSBs = 01b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00CE 00BE

• R5 = 0x00EF 00BA

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-45

Video Pixel Operations

• Assuming:

• register I0’s two LSBs = 10b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00FA 00CE

• R5 = 0x00BE 00EF

• Assuming:

• register I0’s two LSBs = 11b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00ED 00FA

• R5 = 0x00CE 00BE

(r6,r5) = byteunpack r1:0 (R) ; /* reversing sources case */

Instruction Overview

18-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• Assuming:

• register I0’s two LSBs = 00b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00FE 00ED

• R5 = 0x00FA 00CE

• Assuming:

• register I0’s two LSBs = 01b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00DD 00FE

• R5 = 0x00ED 00FA

• Assuming:

• register I0’s two LSBs = 10b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00BA 00DD

• R5 = 0x00FE 00ED

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 18-47

Video Pixel Operations

• Assuming:

• register I0’s two LSBs = 11b,

• R1 = 0xFEED FACE

• R0 = 0xBEEF BADD

then this instruction returns:

• R6 = 0x00EF 00BA

• R5 = 0x00DD 00FE

Also See

BYTEPACK (Quad 8-Bit Pack)

Special Applications

None

Instruction Overview

18-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-1

19 VECTOR OPERATIONS

Instruction Summary

• “Add on Sign” on page 19-3

• “VIT_MAX (Compare-Select)” on page 19-8

• “Vector ABS” on page 19-15

• “Vector Add / Subtract” on page 19-18

• “Vector Arithmetic Shift” on page 19-23

• “Vector Logical Shift” on page 19-28

• “Vector MAX” on page 19-32

• “Vector MIN” on page 19-35

• “Vector Multiply” on page 19-38

• “Vector Multiply and Multiply-Accumulate” on page 19-41

• “Vector Negate (Two’s Complement)” on page 19-46

• “Vector PACK” on page 19-48

• “Vector SEARCH” on page 19-50

Instruction Overview

19-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Overview
This chapter discusses the instructions that control vector operations.
Users can take advantage of these instructions to perform simultaneous
operations on multiple 16-bit values, including add, subtract, multiply,
shift, negate, pack, and search. Compare-Select and Add-On-Sign are also
included in this chapter.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-3

Vector Operations

Add on Sign

General Form

dest_hi = dest_lo = SIGN (src0_hi) * src1_hi

+ SIGN (src0_lo) * src1_lo

Syntax

Dreg_hi = Dreg_lo = SIGN (Dreg_hi) * Dreg_hi

+ SIGN (Dreg_lo) * Dreg_lo ;

/* (b) */

Register Consistency

The destination registers dest_hi and dest_lo must be halves of the same
data register. Similarly, src0_hi and src0_lo must be halves of the same
register and src1_hi and src1_lo must be halves of the same register.

Syntax Terminology

Dreg_hi: R7–0.H

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Instruction Overview

19-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Functional Description

The Add on Sign instruction performs a two step function, as follows.

1. Multiply the arithmetic sign of a 16-bit half-word number in src0
by the corresponding half-word number in src1. The arithmetic
sign of src0 is either (+1) or (–1), depending on the sign bit of
src0. The instruction performs this operation on the upper and
lower half-words of the same data registers.

The results of this step obey the signed multiplication rules sum-
marized in Table 19-1. Y is the number in src0, and Z is the
number in src1. The numbers in src0 and src1 may be positive or
negative.

Note the result always bears the magnitude of Z with only the sign
affected.

2. Then, add the sign-adjusted src1 upper and lower half-word
results together and store the same 16-bit sum in the upper and
lower halves of the destination register, as shown in Table 19-2 and
Table 19-3.

The sum is not saturated if the addition exceeds 16 bits.

Table 19-1. Signed Multiplication Rules

SRC0 SRC1 Sign-Adjusted SRC1

+Y +Z +Z

+Y –Z –Z

–Y +Z –Z

–Y –Z +Z

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-5

Vector Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Table 19-2. Source Registers Contain

31................24 23................16 15..................8 7....................0

src0: a1 a0

src1: b1 b0

Table 19-3. Destination Register Receives

31................24 23................16 15..................8 7....................0

dest: (sign_adjusted_b1) +
(sign_adjusted_b0)

(sign_adjusted_b1) +
(sign_adjusted_b0)

Instruction Overview

19-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Example

r7.h=r7.l=sign(r2.h)*r3.h+sign(r2.l)*r3.l ;

• If

• R2.H = 2

• R3.H = 23

• R2.L = 2001

• R3.L = 1234

then

• R7.H = 1257 (or 1234 + 23)

• R7.L = 1257

• If

• R2.H = –2

• R3.H = 23

• R2.L = 2001

• R3.L = 1234

then

• R7.H = 1211 (or 1234 – 23)

• R7.L = 1211

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-7

Vector Operations

• If

• R2.H = 2

• R3.H = 23

• R2.L = –2001

• R3.L = 1234

then

• R7.H = –1211 (or (–1234) + 23)

• R7.L = –1211

• If

• R2.H = –2

• R3.H = 23

• R2.L = –2001

• R3.L = 1234

then

• R7.H = –1257 (or (–1234) – 23)

• R7.L = –1257

Also See

None

Special Applications

Use the Sum on Sign instruction to compute the branch metric used by
each Viterbi Butterfly.

Instruction Overview

19-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

VIT_MAX (Compare-Select)

General Form

dest_reg = VIT_MAX (src_reg_0, src_reg_1) (ASL)

dest_reg = VIT_MAX (src_reg_0, src_reg_1) (ASR)

dest_reg_lo = VIT_MAX (src_reg) (ASL)

dest_reg_lo = VIT_MAX (src_reg) (ASR)

Syntax

Dual 16-Bit Operation

Dreg = VIT_MAX (Dreg , Dreg) (ASL) ; /* shift history bits

left (b) */

Dreg = VIT_MAX (Dreg , Dreg) (ASR) ; /* shift history bits

right (b) */

Single 16-Bit Operation

Dreg_lo = VIT_MAX (Dreg) (ASL) ; /* shift history bits left

(b) */

Dreg_lo = VIT_MAX (Dreg) (ASR) ; /* shift history bits right

(b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-9

Vector Operations

Functional Description

The Compare-Select (VIT_MAX) instruction selects the maximum values of
pairs of 16-bit operands, returns the largest values to the destination regis-
ter, and serially records in A0.W the source of the maximum.This operation
performs signed operations. The operands are compared as two’s
complements.

Versions are available for dual and single 16-bit operations. Whereas the
dual versions compare four operands to return two maxima, the single ver-
sions compare only two operands to return one maximum.

The Accumulator extension bits (bits 39–32) must be cleared before exe-
cuting this instruction.

This operation is illustrated in Table 19-4 and Table 19-5.

Dual 16-Bit Operand Behavior

The ASL version shifts A0 left two bit positions and appends two LSBs to
indicate the source of each maximum as shown in Table 19-6 and
Table 19-7.

Table 19-4. Source Registers Contain

31................24 23................16 15..................8 7....................0

src_reg_0 y1 y0

src_reg_1 z1 z0

Table 19-5. Destination Register Contains

31................24 23................16 15..................8 7....................0

dest_reg Maximum, y1 or y0 Maximum, z1 or z0

Instruction Overview

19-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Conversely, the ASR version shifts A0 right two bit positions and appends
two MSBs to indicate the source of each maximum as shown in
Table 19-8 and Table 19-9.

Table 19-6. ASL Version Shifts

A0.X A0.W

A0 00000000 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXBB

Table 19-7. Where

BB Indicates

00 z0 and y0 are maxima

01 z0 and y1 are maxima

10 z1 and y0 are maxima

11 z1 and y1 are maxima

Table 19-8. ASR Version Shifts

A0.X A0.W

A0 00000000 BBXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Table 19-9. Where

BB Indicates

00 y0 and z0 are maxima

01 y0 and z1 are maxima

10 y1 and z0 are maxima

11 y1 and z1 are maxima

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-11

Vector Operations

Notice that the history bit code depends on the A0 shift direction. The bit
for src_reg_1 is always shifted onto A0 first, followed by the bit for
src_reg_0.

The single operand versions behave similarly.

Single 16-Bit Operand Behavior

If the dual source register contains the data shown in Table 19-10 the des-
tination register receives the data shown in Table 19-11.

The ASL version shifts A0 left one bit position and appends an LSB to
indicate the source of the maximum.

Conversely, the ASR version shifts A0 right one bit position and appends
an MSB to indicate the source of the maximum.

Table 19-10. Source Registers Contain

31................24 23................16 15..................8 7....................0

src_reg y1 y0

Table 19-11. Destination Register Contains

31................24 23................16 15..................8 7....................0

dest_reg_lo Maximum, y1 or y0

Table 19-12. ASL Version Shifts

A0.X A0.W

A0 00000000 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXB

Instruction Overview

19-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The path metrics are allowed to overflow, and maximum comparison is
done on the two’s complement circle. Such comparison gives a better indi-
cation of the relative magnitude of two large numbers when a small
number is added/subtracted to both.

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Table 19-13. ASR Version Shifts

A0.X A0.W

A0 00000000 BXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Table 19-14. Where

B Indicates

0 y0 is the maximum

1 y1 is the maximum

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-13

Vector Operations

Example

r5 = vit_max(r3, r2)(asl) ; /* shift left, dual operation */

• Assume:

• R3 = 0xFFFF 0000

• R2 = 0x0000 FFFF

• A0 = 0x00 0000 0000

This example produces:

• R5 = 0x0000 0000

• A0 = 0x00 0000 0002

r7 = vit_max (r1, r0) (asr) ; /* shift right, dual operation */

• Assume:

• R1 = 0xFEED BEEF

• R0 = 0xDEAF 0000

• A0 = 0x00 0000 0000

This example produces:

• R7 = 0xFEED 0000

• A0 = 0x00 8000 0000

Instruction Overview

19-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

r3.l = vit_max (r1)(asl) ; /* shift left, single operation */

• Assume:

• R1 = 0xFFFF 0000

• A0 = 0x00 0000 0000

This example produces:

• R3.L = 0x0000

• A0 = 0x00 0000 0000

r3.l = vit_max (r1)(asr) ; /* shift right, single operation */

• Assume:

• R1 = 0x1234 FADE

• A0 = 0x00 FFFF FFFF

This example produces:

• R3.L = 0x1234

• A0 = 0x00 7FFF FFFF

Also See

MAX

Special Applications

The Compare-Select (VIT_MAX) instruction is a key element of the
Add-Compare-Select (ACS) function for Viterbi decoders. Combine it
with a Vector Add instruction to calculate a trellis butterfly used in ACS
functions.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-15

Vector Operations

Vector ABS

General Form

dest_reg = ABS source_reg (V)

Syntax

Dreg = ABS Dreg (V) ; /* (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Absolute Value instruction calculates the individual absolute
values of the upper and lower halves of a single 32-bit data register. The
results are placed into a 32-bit dest_reg, using the following rules.

• If the input value is positive or zero, copy it unmodified to the
destination.

• If the input value is negative, subtract it from zero and store the
result in the destination.

For example, if the source register contains the data shown in Table 19-15
the destination register receives the data shown in Table 19-16.

Table 19-15. Source Registers Contain

31................24 23................16 15..................8 7....................0

src_reg: x.h x.l

Instruction Overview

19-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

This instruction saturates the result.

Flags Affected

This instruction affects flags as follows.

• AZ is set if either or both result is zero; cleared if both are nonzero.

• AN is cleared.

• V is set if either or both result saturates; cleared if both are no
saturation.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Table 19-16. Destination Register Contains

31................24 23................16 15..................8 7....................0

dest_reg: | x.h| | x.l |

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-17

Vector Operations

Example

/* If r1 = 0xFFFF 7FFF, then . . . */

r3 = abs r1 (v) ;

/* . . . produces 0x0001 7FFF */

Also See

ABS

Special Applications

None

Instruction Overview

19-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract

General Form

dest = src_reg_0 +|+ src_reg_1

dest = src_reg_0 –|+ src_reg_1

dest = src_reg_0 +|– src_reg_1

dest = src_reg_0 –|– src_reg_1

dest_0 = src_reg_0 +|+ src_reg_1,

dest_1 = src_reg_0 –|– src_reg_1

dest_0 = src_reg_0 +|– src_reg_1,

dest_1 = src_reg_0 –|+ src_reg_1

dest_0 = src_reg_0 + src_reg_1,

dest_1 = src_reg_0 – src_reg_1

dest_0 = A1 + A0, dest_1 = A1 – A0

dest_0 = A0 + A1, dest_1 = A0 – A1

Syntax

Dual 16-Bit Operations

Dreg = Dreg +|+ Dreg (opt_mode_0) ; /* add | add (b) */

Dreg = Dreg –|+ Dreg (opt_mode_0) ; /* subtract | add (b) */

Dreg = Dreg +|– Dreg (opt_mode_0) ; /* add | subtract (b) */

Dreg = Dreg –|– Dreg (opt_mode_0) ; /* subtract | subtract (b) */

Quad 16-Bit Operations

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (opt_mode_0,

opt_mode_2) ;

/* add | add, subtract | subtract; the set of source registers

must be the same for each operation (b) */

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (opt_mode_0,

opt_mode_2) ;

/* add | subtract, subtract | add; the set of source registers

must be the same for each operation (b) */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-19

Vector Operations

Dual 32-Bit Operations

Dreg = Dreg + Dreg, Dreg = Dreg – Dreg (opt_mode_1) ;

/* add, subtract; the set of source registers must be the same

for each operation (b) */

Dual 40-Bit Accumulator Operations

Dreg = A1 + A0, Dreg = A1 – A0 (opt_mode_1) ; /* add, sub-

tract Accumulators; subtract A0 from A1 (b) */

Dreg = A0 + A1, Dreg = A0 – A1 (opt_mode_1) ; /* add, sub-

tract Accumulators; subtract A1 from A0 (b) */

Syntax Terminology

Dreg: R7–0

opt_mode_0: optional (S), (CO), or (SCO)

opt_mode_1: optional (S)

opt_mode_2: optional (ASR), or (ASL)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Add / Subtract instruction simultaneously adds and/or sub-
tracts two pairs of registered numbers. It then stores the results of each
operation into a separate 32-bit data register or 16-bit half register,
according to the syntax used. The destination register for each of the quad
or dual versions must be unique.

Instruction Overview

19-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Options

The Vector Add / Subtract instruction provides three option modes.

• opt_mode_0 supports the Dual and Quad 16-Bit Operations ver-
sions of this instruction.

• opt_mode_1 supports the Dual 32-bit and 40-bit operations.

• opt_mode_2 supports the Quad 16-Bit Operations versions of this
instruction.

Table 19-17 describes the options that the three opt_modes support.

The options shown for opt_mode_2 are scaling options.

Table 19-17. Options for Opt_Mode 0

Mode Option Description

opt_mode_0 S Saturate the results at 16 bits.

CO Cross option. Swap the order of the results in the destination regis-
ter.

SCO Saturate and cross option. Combination of (S) and (CO) options.

opt_mode_1 S Saturate the results at 16 or 32 bits, depending on the operand size.

opt_mode_2 ASR Arithmetic shift right. Halve the result (divide by 2) before storing
in the destination register. If specified with the S (saturation) flag in
Quad 16-Bit Operand versions of this instruction, the scaling is per-
formed before saturation for the ADSP-BF533 processor, and the
scaling is performed after saturation for the ADSP-BF535 processor.

ASL Arithmetic shift left. Double the result (multiply by 2, truncated)
before storing in the destination register. If specified with the S (sat-
uration) flag in Quad 16-Bit Operand versions of this instruction,
the scaling is performed before saturation for the ADSP-BF533 pro-
cessor, and the scaling is performed after saturation for the
ADSP-BF535 processor.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-21

Vector Operations

Flags Affected

This instruction affects the following flags.

• AZ is set if any results are zero; cleared if all are nonzero.

• AN is set if any results are negative; cleared if all non-negative.

• AC0 is set if the right-hand side of a dual operation generates a
carry; cleared if no carry; unaffected if a quad operation.

• AC1 is set if the left-hand side of a dual operation generates a carry;
cleared if no carry; unaffected if a quad operation.

• V is set if any results overflow; cleared if none overflows.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r5=r3 +|+ r4 ; /* dual 16-bit operations, add|add */

r6=r0 -|+ r1(s) ; /* same as above, subtract|add with

saturation */

Instruction Overview

19-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

r0=r2 +|- r1(co) ; /* add|subtract with half-word results

crossed over in the destination register */

r7=r3 -|- r6(sco) ; /* subtract|subtract with saturation and

half-word results crossed over in the destination register */

r5=r3 +|+ r4, r7=r3-|-r4 ; /* quad 16-bit operations, add|add,

subtract|subtract */

r5=r3 +|- r4, r7=r3 -|+ r4 ; /* quad 16-bit operations,

add|subtract, subtract|add */

r5=r3 +|- r4, r7=r3 -|+ r4(asr) ; /* quad 16-bit operations,

add|subtract, subtract|add, with all results divided by 2 (right

shifted 1 place) before storing into destination register */

r5=r3 +|- r4, r7=r3 -|+ r4(asl) ; /* quad 16-bit operations,

add|subtract, subtract|add, with all results multiplied by 2

(left shifted 1 place) before storing into destination register

dual */

r2=r0+r1, r3=r0-r1 ; /* 32-bit operations */

r2=r0+r1, r3=r0-r1(s) ; /* dual 32-bit operations with

saturation */

r4=a1+a0, r6=a1-a0 ; /* dual 40-bit Accumulator operations, A0

subtracted from A1 */

r4=a0+a1, r6=a0-a1(s) ; /* dual 40-bit Accumulator operations

with saturation, A1 subtracted from A0 */

Also See

Add, Subtract

Special Applications

FFT butterfly routines in which each of the registers is considered a single
complex number often use the Vector Add / Subtract instruction.

/* If r1 = 0x0003 0004 and r2 = 0x0001 0002, then . . . */

r0 = r2 +|- r1(co) ;

/* . . . produces r0 = 0xFFFE 0004 */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-23

Vector Operations

Vector Arithmetic Shift

General Form

dest_reg = src_reg >>> shift_magnitude (V)

dest_reg = ASHIFT src_reg BY shift_magnitude (V)

Syntax

Constant Shift Magnitude

Dreg = Dreg >>> uimm4 (V) ; /* arithmetic shift right, immedi-

ate (b) */

Dreg = Dreg << uimm4 (V,S) ; /* arithmetic shift left, immedi-

ate with saturation (b) */

Registered Shift Magnitude

Dreg = ASHIFT Dreg BY Dreg_lo (V) ; /* arithmetic shift (b) */

Dreg = ASHIFT Dreg BY Dreg_lo (V, S) ; /* arithmetic shift

with saturation (b) */

Arithmetic Left Shift Immediate

There is no syntax specific to a vector arithmetic left shift immediate
instruction. Use the Vector Logical Shift syntax for vector left shifting,
which accomplishes the same function for sign-extended numbers in num-
ber-normalizing routines. See ““>>>” and “<<” Syntax” notes for caveats.

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

uimm4: unsigned 4-bit field, with a range of 0 through 15

Instruction Overview

19-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Arithmetic Shift instruction arithmetically shifts a pair of
half-word registered numbers a specified distance and direction. Though
the two half-word registers are shifted at the same time, the two numbers
are kept separate.

Arithmetic right shifts preserve the sign of the preshifted value. The sign
bit value backfills the left-most bit position vacated by the arithmetic right
shift. For positive numbers, this behavior is equivalent to the logical right
shift for unsigned numbers.

Only arithmetic right shifts are supported. Left shifts are performed as
logical left shifts that may not preserve the sign of the original number. In
the default case—without the optional saturation option—numbers can
be left shifted so far that all the sign bits overflow and are lost. However,
when the saturation option is enabled, a left shift that would otherwise
shift nonsign bits off the left side saturates to the maximum positive or
negative value instead. So, with saturation enabled, the result always keeps
the same sign as the original number.

See “Saturation” on page 1-17 for a description of saturation behavior.

“>>>” and “<<” Syntax

The two half-word registers in dest_reg are right shifted by the number of
places specified by shift_magnitude, and the result stored into dest_reg.
The data is always a pair of 16-bit half-registers. Valid shift_magnitude
values are 0 through 15.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-25

Vector Operations

“ASHIFT” Syntax

Both half-word registers in src_reg are shifted by the number of places
prescribed in shift_magnitude, and the result stored into dest_reg.

The sign of the shift magnitude determines the direction of the shift for
the ASHIFT versions.

• Positive shift magnitudes without the saturation flag (– , S) pro-
duce Logical Left shifts.

• Positive shift magnitudes with the saturation flag (– , S) produce
Arithmetic Left shifts.

• Negative shift magnitudes produce Arithmetic Right shifts.

In essence, the magnitude is the power of 2 multiplied by the src_reg
number. Positive magnitudes cause multiplication (N x 2n), whereas neg-
ative magnitudes produce division (N x 2-n or N / 2n).

The dest_reg and src_reg are both pairs of 16-bit half registers. Satura-
tion of the result is optional.

Valid shift magnitudes for 16-bit src_reg are –16 through +15, zero
included. If a number larger than these is supplied, the instruction masks
and ignores the more significant bits.

This instruction does not implicitly modify the src_reg values. Option-
ally, dest_reg can be the same D-register as src_reg. Using the same
D-register for the dest_reg and the src_reg explicitly modifies the source
register.

Options

The ASHIFT instruction supports the (– , S) option, which saturates the
result.

Instruction Overview

19-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

This instruction affects flags as follows.

• AZ is set if either result is zero; cleared if both are nonzero.

• AN is set if either result is negative; cleared if both are non-negative.

• V is set if either result overflows; cleared if neither overflows.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-27

Vector Operations

Example

r4=r5>>>3 (v) ; /* arithmetic right shift immediate R5.H and

R5.L by 3 bits (divide each half-word by 8) If r5 = 0x8004 000F

then the result is r4 = 0xF000 0001 */

r4=r5>>>3 (v, s) ; /* same as above, but saturate the result */

r2=ashift r7 by r5.l (v) ; /* arithmetic shift (right or left,

depending on sign of r5.l) R7.H and R7.L by magnitude of R5.L */

r2=ashift r7 by r5.l (v, s) ; /* same as above, but saturate

the result */

r2=r5<<7 (v,s) ; /* logical left shift immediate R5.H and R5.L

by 7 bits, saturated */

Also See

Vector Logical Shift, Arithmetic Shift, Logical Shift

Special Applications

None

Instruction Overview

19-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Logical Shift

General Form

dest_reg = src_reg >> shift_magnitude (V)

dest_reg = src_reg << shift_magnitude (V)

dest_reg = LSHIFT src_reg BY shift_magnitude (V)

Syntax

Constant Shift Magnitude

Dreg = Dreg >> uimm4 (V) ; /* logical shift right, immediate

(b) */

Dreg = Dreg << uimm4 (V) ; /* logical shift left, immediate

(b) */

Registered Shift Magnitude

Dreg = LSHIFT Dreg BY Dreg_lo (V) ; /* logical shift (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo: R7–0.L

uimm4: unsigned 4-bit field, with a range of 0 through 15

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Logical Shift logically shifts a pair of half-word registered
numbers a specified distance and direction. Though the two half-word
registers are shifted at the same time, the two numbers are kept separate.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-29

Vector Operations

Logical shifts discard any bits shifted out of the register and backfill
vacated bits with zeros.

“>>” AND “<<” Syntax

The two half-word registers in dest_reg are shifted by the number of
places specified by shift_magnitude and the result stored into dest_reg.
The data is always a pair of 16-bit half-registers. Valid shift_magnitude
values are 0 through 15.

“LSHIFT” Syntax

Both half-word registers in src_reg are shifted by the number of places
prescribed in shift_magnitude, and the result is stored into dest_reg.

For the LSHIFT versions, the sign of the shift magnitude determines the
direction of the shift.

• Positive shift magnitudes produce left shifts.

• Negative shift magnitudes produce right shifts.

The dest_reg and src_reg are both pairs of 16-bit half-registers.

Valid shift magnitudes for 16-bit src_reg are –16 through +15, zero
included. If a number larger than these is supplied, the instruction masks
and ignores the more significant bits.

This instruction does not implicitly modify the src_reg values. Option-
ally, dest_reg can be the same D-register as src_reg. Using the same
D-register for the dest_reg and the src_reg explicitly modifies the source
register at your discretion.

Instruction Overview

19-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

This instruction affects flags as follows.

• AZ is set if either result is zero; cleared if both are nonzero.

• AN is set if either result is negative; cleared if both are non-negative.

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-31

Vector Operations

Example

r4=r5>>3 (v) ;

/* logical right shift immediate R5.H and R5.L by 3 bits */

r4=r5<<3 (v) ;

/* logical left shift immediate R5.H and R5.L by 3 bits */

r2=lshift r7 by r5.l (v) ;

/* logically shift (right or left, depending on sign of r5.l)

R7.H and R7.L by magnitude of R5.L */

Also See

Vector Arithmetic Shift, Arithmetic Shift, Logical Shift

Special Applications

None

Instruction Overview

19-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector MAX

General Form

dest_reg = MAX (src_reg_0, src_reg_1) (V)

Syntax

Dreg = MAX (Dreg , Dreg) (V) ; /* dual 16-bit operations

(b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Maximum instruction returns the maximum value (meaning
the largest positive value, nearest to 0x7FFF) of the 16-bit half-word
source registers to the dest_reg.

The instruction compares the upper half-words of src_reg_0 and
src_reg_1 and returns that maximum to the upper half-word of dest_reg.
It also compares the lower half-words of src_reg_0 and src_reg_1 and
returns that maximum to the lower half-word of dest_reg. The result is a
concatenation of the two 16-bit maximum values.

The Vector Maximum instruction does not implicitly modify input val-
ues. The dest_reg can be the same D-register as one of the source
registers. Doing this explicitly modifies that source register.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-33

Vector Operations

Flags Affected

This instruction affects flags as follows.

• AZ is set if either or both result is zero; cleared if both are nonzero.

• AN is set if either or both result is negative; cleared if both are
non-negative.

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r7 = max (r1, r0) (v) ;

• Assume R1 = 0x0007 0000 and R0 = 0x0000 000F, then R7 =
0x0007 000F.

• Assume R1 = 0xFFF7 8000 and R0 = 0x000A 7FFF, then R7 =
0x000A 7FFF.

• Assume R1 = 0x1234 5678 and R0 = 0x0000 000F, then R7 =
0x1234 5678.

Instruction Overview

19-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Also See

Vector SEARCH, Vector MIN, MAX, MIN

Special Applications

None

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-35

Vector Operations

Vector MIN

General Form

dest_reg = MIN (src_reg_0, src_reg_1) (V)

Syntax

Dreg = MIN (Dreg , Dreg) (V) ; /* dual 16-bit operation

(b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Minimum instruction returns the minimum value (the most
negative value or the value closest to 0x8000) of the 16-bit half-word
source registers to the dest_reg.

This instruction compares the upper half-words of src_reg_0 and
src_reg_1 and returns that minimum to the upper half-word of dest_reg.
It also compares the lower half-words of src_reg_0 and src_reg_1 and
returns that minimum to the lower half-word of dest_reg. The result is a
concatenation of the two 16-bit minimum values.

The input values are not implicitly modified by this instruction. The
dest_reg can be the same D-register as one of the source registers. Doing
this explicitly modifies that source register.

Instruction Overview

19-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

This instruction affects flags as follows.

• AZ is set if either or both result is zero; cleared if both are nonzero.

• AN is set if either or both result is negative; cleared if both are
non-negative.

• V is cleared.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r7 = min (r1, r0) (v) ;

• Assume R1 = 0x0007 0000 and R0 = 0x0000 000F, then R7 =
0x0000 0000.

• Assume R1 = 0xFFF7 8000 and R0 = 0x000A 7FFF, then R7 =
0xFFF7 8000.

• Assume R1 = 0x1234 5678 and R0 = 0x0000 000F, then R7 =
0x0000 000F.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-37

Vector Operations

Also See

Vector SEARCH, Vector MAX, MAX, MIN

Special Applications

None

Instruction Overview

19-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply

Simultaneous Issue and Execution

A pair of compatible, scalar (individual) Multiply 16-Bit Operands
instructions from “Multiply 16-Bit Operands” on page 15-43 can be com-
bined into a single Vector Multiply instruction. The vector instruction
executes the two scalar operations simultaneously and saves the results as a
vector couplet.

See the Arithmetic Operations “Multiply 16-Bit Operands” on
page 15-43 for the scalar instruction details.

Any MAC0 scalar Multiply 16-Bit Operands instruction can be combined
with a compatible MAC1 scalar Multiply 16-Bit Operands instruction
under the following conditions.

• Both scalar instructions must share the same mode option (for
example, default, IS, IU, T). Exception: the MAC1 instruction can
optionally employ the mixed mode (M) that does not apply to
MAC0.

• Both scalar instructions must share the same pair of source regis-
ters, but can reference different halves of those registers.

• Both scalar operations (if they are writes) must write to the same
sized destination registers, either 16 or 32 bits.

• The destination registers for both scalar operations must form a
vector couplet, as described below.

• 16-bit: store results in the upper- and lower-halves of the
same 32-bit Dreg. MAC0 writes to the lower half and
MAC1 writes to the upper half.

• 32-bit: store results in valid Dreg pairs. MAC0 writes to the
pair’s lower (even-numbered) Dreg and MAC1 writes to the
upper (odd-numbered) Dreg.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-39

Vector Operations

Valid Dreg pairs are R7:6, R5:4, R3:2, and R1:0.

Syntax

Separate the two compatible scalar instructions with a comma to produce
a vector instruction. Add a semicolon to the end of the combined instruc-
tion, as usual. The order of the MAC operations on the command line is
arbitrary.

Instruction Length

This instruction is 32 bits long.

Flags Affected

This instruction affects the following flags.

• V is set if any result saturates; cleared if none saturates.

• VS is set if V is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Example

r2.h=r7.l*r6.h, r2.l=r7.h*r6.h ;

/* simultaneous MAC0 and MAC1 execution, 16-bit results. Both

results are signed fractions. */

r4.l=r1.l*r0.l, r4.h=r1.h*r0.h ;

/* same as above. MAC order is arbitrary. */

r0.h=r3.h*r2.l (m), r0.l=r3.l*r2.l ;

Instruction Overview

19-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

/* MAC1 multiplies a signed fraction by an unsigned fraction.

MAC0 multiplies two signed fractions. */

r5.h=r3.h*r2.h (m), r5.l=r3.l*r2.l (fu) ;

/* MAC1 multiplies signed fraction by unsigned fraction. MAC0

multiplies two unsigned fractions. */

r0.h=r3.h*r2.h, r0.l=r3.l*r2.l (is) ;

/* both MACs perform signed integer multiplication. */

r3.h=r0.h*r1.h, r3.l=r0.l*r1.l (s2rnd) ;

/* MAC1 and MAC0 multiply signed fractions. Both scale the result

on the way to the destination register. */

r0.l=r7.l*r6.l, r0.h=r7.h*r6.h (iss2) ;

/* both MACs process signed integer operands and scale and round

the result on the way to the destination half-registers. */

r7=r2.l*r5.l, r6=r2.h*r5.h ;

/* both operations produce 32-bit results and save in a Dreg

pair. */

r0=r4.l*r7.l, r1=r4.h*r7.h (s2rnd) ;

/* same as above, but with signed fraction scaling mode. Order of

the MAC instructions makes no difference. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-41

Vector Operations

Vector Multiply and Multiply-Accumulate

Simultaneous Issue and Execution

A pair of compatible, scalar (individual) instructions from

• “Multiply and Multiply-Accumulate to Accumulator” on
page 15-53

• “Multiply and Multiply-Accumulate to Half-Register” on
page 15-58

• “Multiply and Multiply-Accumulate to Data Register” on
page 15-67

can be combined into a single vector instruction. The vector instruction
executes the two scalar operations simultaneously and saves the results as a
vector couplet.

See the Arithmetic Operations sections listed above for the scalar instruc-
tion details.

Any MAC0 scalar instruction from the list above can be combined with a
compatible MAC1 scalar instruction under the following conditions.

• Both scalar instructions must share the same mode option (for
example, default, IS, IU, T). Exception: the MAC1 instruction can
optionally employ the mixed mode (M) that does not apply to
MAC0.

• Both scalar instructions must share the same pair of source regis-
ters, but can reference different halves of those registers.

• If both scalar operations write to destination D-registers, they must
write to the same sized destination D-registers, either 16 or 32 bits.

Instruction Overview

19-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• The destination D-registers (if applicable) for both scalar opera-
tions must form a vector couplet, as described below.

• 16-bit: store the results in the upper- and lower-halves of
the same 32-bit Dreg. MAC0 writes to the lower half, and
MAC1 writes to the upper half.

• 32-bit: store the results in valid Dreg pairs. MAC0 writes to
the pair’s lower (even-numbered) Dreg, and MAC1 writes to
the upper (odd-numbered) Dreg.

Valid Dreg pairs are R7:6, R5:4, R3:2, and R1:0.

Syntax

Separate the two compatible scalar instructions with a comma to produce
a vector instruction. Add a semicolon to the end of the combined instruc-
tion, as usual. The order of the MAC operations on the command line is
arbitrary.

Instruction Length

This instruction is 32 bits long.

Flags Affected

The flags reflect the results of the two scalar operations.This instruction
affects flags as follows.

• V is set if any result extracted to a Dreg saturates; cleared if no Dregs
saturate.

• VS is set if V is set; unaffected otherwise.

• AV0 is set if result in Accumulator A0 (MAC0 operation) saturates;
cleared if A0 result does not saturate.

• AV0S is set if AV0 is set; unaffected otherwise.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-43

Vector Operations

• AV1 is set if result in Accumulator A1 (MAC1 operation) saturates;
cleared if A1 result does not saturate.

• AV1S is set if AV1 is set; unaffected otherwise.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Example

Result is 40-bit Accumulator

a1=r2.l*r3.h, a0=r2.h*r3.h ;

/* both multiply signed fractions into separate Accumulators */

a0=r1.l*r0.l, a1+=r1.h*r0.h ;

/* same as above, but sum result into A1. MAC order is arbitrary.

*/

a1+=r3.h*r3.l, a0-=r3.h*r3.h ;

/* sum product into A1, subtract product from A0 */

a1=r3.h*r2.l (m), a0+=r3.l*r2.l ;

/* MAC1 multiplies a signed fraction in r3.h by an unsigned frac-

tion in r2.l. MAC0 multiplies two signed fractions. */

a1=r7.h*r4.h (m), a0+=r7.l*r4.l (fu) ;

/* MAC1 multiplies signed fraction by unsigned fraction. MAC0

multiplies and accumulates two unsigned fractions. */

a1+=r3.h*r2.h, a0=r3.l*r2.l (is) ;

/* both MACs perform signed integer multiplication */

a1=r6.h*r7.h, a0+=r6.l*r7.l (w32) ;

/* both MACs multiply signed fractions, sign extended, and satu-

rate both Accumulators at bit 31 */

Instruction Overview

19-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Result is 16-bit half D-register

r2.h=(a1=r7.l*r6.h), r2.l=(a0=r7.h*r6.h) ; /* simultaneous MAC0

and MAC1 execution, both are signed fractions, both products load

into the Accumulators,MAC1 into half-word registers. */

r4.l=(a0=r1.l*r0.l), r4.h=(a1+=r1.h*r0.h) ; /* same as above,

but sum result into A1. ; MAC order is arbitrary. */

r7.h=(a1+=r6.h*r5.l), r7.l=(a0=r6.h*r5.h) ; /* sum into A1,

subtract into A0 */

r0.h=(a1=r7.h*r4.l) (m), r0.l=(a0+=r7.l*r4.l) ; /* MAC1 multi-

plies a signed fraction by an unsigned fraction. MAC0 multiplies

two signed fractions. */

r5.h=(a1=r3.h*r2.h) (m), r5.l=(a0+=r3.l*r2.l) (fu) ; /* MAC1

multiplies signed fraction by unsigned fraction. MAC0 multiplies

two unsigned fractions. */

r0.h=(a1+=r3.h*r2.h), r0.l=(a0=r3.l*r2.l) (is) ; /* both MACs

perform signed integer multiplication. */

r5.h=(a1=r2.h*r1.h), a0+=r2.l*r1.l ; /* both MACs multiply

signed fractions. MAC0 does not copy the accum result. */

r3.h=(a1=r2.h*r1.h) (m), a0=r2.l*r1.l ; /* MAC1 multiplies

signed fraction by unsigned fraction and uses all 40 bits of A1.

MAC0 multiplies two signed fractions. */

r3.h=a1, r3.l=(a0+=r0.l*r1.l) (s2rnd) ; /* MAC1 copies Accumu-

lator to register half. MAC0 multiplies signed fractions. Both

scale the result and round on the way to the destination regis-

ter. */

r0.l=(a0+=r7.l*r6.l), r0.h=(a1+=r7.h*r6.h) (iss2) ; /* both

MACs process signed integer the way to the destination half-reg-

isters. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-45

Vector Operations

Result is 32-bit D-register

r3=(a1=r6.h*r7.h), r2=(a0=r6.l*r7.l) ; /* simultaneous MAC0 and

MAC1 execution, both are signed fractions, both products load

into the Accumulators */

r4=(a0=r6.l*r7.l), r5=(a1+=r6.h*r7.h) ; /* same as above, but

sum result into A1. MAC order is arbitrary. */

r7=(a1+=r3.h*r5.h), r6=(a0-=r3.l*r5.l) ; /* sum into A1, sub-

tract into A0 */

r1=(a1=r7.l*r4.l) (m), r0=(a0+=r7.h*r4.h) ; /* MAC1 multiplies

a signed fraction by an unsigned fraction. MAC0 multiplies two

signed fractions. */

r5=(a1=r3.h*r7.h) (m), r4=(a0+=r3.l*r7.l) (fu) ; /* MAC1 multi-

plies signed fraction by unsigned fraction. MAC0 multiplies two

unsigned fractions. */

r1=(a1+=r3.h*r2.h), r0=(a0=r3.l*r2.l) (is) ; /* both MACs per-

form signed integer multiplication */

r5=(a1-=r6.h*r7.h), a0+=r6.l*r7.l ; /* both MACs multiply

signed fractions. MAC0 does not copy the accum result */

r3=(a1=r6.h*r7.h) (m), a0-=r6.l*r7.l ; /* MAC1 multiplies

signed fraction by unsigned fraction and uses all 40 bits of A1.

MAC0 multiplies two signed fractions. */

r3=a1, r2=(a0+=r0.l*r1.l) (s2rnd) ; /* MAC1 moves Accumulator

to register. MAC0 multiplies signed fractions. Both scale the

result and round on the way to the destination register. */

r0=(a0+=r7.l*r6.l), r1=(a1+=r7.h*r6.h) (iss2) ; /* both MACs

process signed integer operands and scale the result on the way

to the destination registers. */

Instruction Overview

19-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Negate (Two’s Complement)

General Form

dest_reg = – source_reg (V)

Syntax

Dreg = – Dreg (V) ; /* dual 16-bit operation (b) */

Syntax Terminology

Dreg: R7–0

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Negate instruction returns the same magnitude with the
opposite arithmetic sign, saturated for each 16-bit half-word in the source.
The instruction calculates by subtracting the source from zero.

See “Saturation” on page 1-17 for a description of saturation behavior.

Flags Affected

This instruction affects flags as follows.

• AZ is set if either or both results are zero; cleared if both are
nonzero.

• AN is set if either or both results are negative; cleared if both are
non-negative.

• V is set if either or both results saturate; cleared if neither saturates.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-47

Vector Operations

• VS is set if V is set; unaffected otherwise.

• AC0 is set if carry occurs from either or both results; cleared if nei-
ther produces a carry.

• All other flags are unaffected.

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r5 =–r3 (v) ; /* R5.H becomes the negative of R3.H and R5.L

becomes the negative of R3.L If r3 = 0x0004 7FFF the result is r5

= 0xFFFC 8001 */

Also See

Negate (Two’s Complement)

Special Applications

None

Instruction Overview

19-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector PACK

General Form

Dest_reg = PACK (src_half_0, src_half_1)

Syntax

Dreg = PACK (Dreg_lo_hi , Dreg_lo_hi) ; /* (b) */

Syntax Terminology

Dreg: R7–0

Dreg_lo_hi: R7–0.L, R7–0.H

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

The Vector Pack instruction packs two 16-bit half-word numbers into the
halves of a 32-bit data register as shown in Table 19-18 and Table 19-19.

Table 19-18. Source Registers Contain

15..................8 7....................0

src_half_0 half_word_0

src_half_1 half_word_1

Table 19-19. Destination Register Contains

31................24 23................16 15..................8 7....................0

dest_reg: half_word_0 half_word_1

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-49

Vector Operations

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with specific other 16-bit
instructions. For details, see “Issuing Parallel Instructions” on page 20-1.

Example

r3=pack(r4.l, r5.l) ; /* pack low / low half-words */

r1=pack(r6.l, r4.h) ; /* pack low / high half-words */

r0=pack(r2.h, r4.l) ; /* pack high / low half-words */

r5=pack(r7.h, r2.h) ; /* pack high / high half-words */

Also See

BYTEPACK (Quad 8-Bit Pack)

Special Applications

/* If r4.l = 0xDEAD and r5.l = 0xBEEF, then . . . */

r3 = pack (r4.l, r5.l) ;

/* . . . produces r3 = 0xDEAD BEEF */

Instruction Overview

19-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector SEARCH

General Form

(dest_pointer_hi, dest_pointer_lo) = SEARCH src_reg (searchmode)

Syntax

(Dreg, Dreg) = SEARCH Dreg (searchmode) ; /* (b) */

Syntax Terminology

Dreg: R7–0

searchmode: (GT), (GE), (LE), or (LT)

Instruction Length

In the syntax, comment (b) identifies 32-bit instruction length.

Functional Description

This instruction is used in a loop to locate a maximum or minimum ele-
ment in an array of 16-bit packed data. Two values are tested at a time.

The Vector Search instruction compares two 16-bit, signed half-words to
values stored in the Accumulators. Then, it conditionally updates each
Accumulator and destination pointer based on the comparison.

Pointer register P0 is always the implied array pointer for the elements
being searched.

More specifically, the signed high half-word of src_reg is compared in
magnitude with the 16 low-order bits in A1. If src_reg_hi meets the com-
parison criterion, then A1 is updated with src_reg_hi, and the value in
pointer register P0 is stored in dest_pointer_hi. The same operation is
performed for src_reg_low and A0.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-51

Vector Operations

Based on the search mode specified in the syntax, the instruction tests for
maximum or minimum signed values.

Values are sign extended when copied into the Accumulator(s).

See “Example” for one way to implement the search loop. After the vector
search loop concludes, A1 and A0 hold the two surviving elements, and
dest_pointer_hi and dest_pointer_lo contain their respective addresses.
The next step is to select the final value from these two surviving elements.

Modes

The four supported compare modes are specified by the mandatory
searchmode flag.

Summary

Assumed Pointer P0

src_reg_hi Compared to least significant 16 bits of A1. If com-
pare condition is met, overwrites lower 16 bits of A1
and copies P0 into dest_pointer_hi.

src_reg_lo Compared to least significant 16 bits of A0. If com-
pare condition is met, overwrites lower 16 bits of A0
and copies P0 into dest_pointer_lo.

Table 19-20. Compare Modes

Mode Description

(GT) Greater than. Find the location of the first maximum number in an array.

(GE) Greater than or equal. Find the location of the last maximum number in an array.

(LT) Less than. Find the location of the first minimum number in an array.

(LE) Less than or equal. Find the location of the last minimum number in an array.

Instruction Overview

19-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Flags Affected

None

The ADSP-BF535 processor has fewer ASTAT flags and some flags
operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status flags, see Table A-1
on page A-3.

Required Mode

User & Supervisor

Parallel Issue

This instruction can be issued in parallel with the combination of one
16-bit length load instruction to the P0 register and one 16-bit NOP. No
other instructions can be issued in parallel with the Vector Search instruc-
tion. Note the following legal and illegal forms.

(r1, r0) = search r2 (LT) || r2 = [p0++p3]; /* ILLEGAL */

(r1, r0) = search r2 (LT) || r2 = [p0++]; /* LEGAL */

(r1, r0) = search r2 (LT) || r2 = [p0+]; /* LEGAL */

Example

/* Initialize Accumulators with appropriate value for the type of

search. */

r0.l=0x7fff ;

r0.h=0 ;

a0=r0 ; /* max positive 16-bit value */

a1=r0 ; /* max positive 16-bit value */

/* Initialize R2. */

r2=[p0++] ;

/* Assume P1 is initialized to the size of the vector length. */

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 19-53

Vector Operations

LSETUP (loop_, loop_) LC0=P1>>1 ; /* set up the loop */

loop_: (r1,r0) = SEARCH R2 (LE) || R2=[P0++];

/* search for the last minimum in all but the

last element of the array */

(r1,r0) = SEARCH R2 (LE);

/* finally, search the last element */

/* The lower 16 bits of A1 and A0 contain the last minimums of the

array. R1 contains the value of P0 corresponding to the value in

A1. R0 contains the value of P0 corresponding to the value in A0.

Next, compare A1 and A0 together and R1 and R0 together to find

the single, last minimum in the array.

Note: In this example, the resulting pointers are past the actual

surviving array element due to the post-increment operation. */

cc = a0 <= a1 ;

r0 += -4 ;

r1 += -2 ;

if !cc r0 = r1 ; /* the pointer to the survivor is in r0 */

Also See

Vector MAX, Vector MIN, MAX, MIN

Special Applications

This instruction is used in a loop to locate an element in a vector accord-
ing to the element’s value.

Instruction Overview

19-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-1

20 ISSUING PARALLEL
INSTRUCTIONS

This chapter discusses the instructions that can be issued in parallel. It
identifies supported combinations for parallel issue, parallel issue syntax,
32-bit ALU/MAC instructions, 16-bit instructions, and examples.

The Blackfin processor is not superscalar; it does not execute multiple
instructions at once. However, it does permit up to three instructions to
be issued in parallel with some limitations. A multi-issue instruction is
64-bits in length and consists of one 32-bit instruction and two 16-bit
instructions. All three instructions execute in the same amount of time as
the slowest of the three.

Sections in this chapter

• “Supported Parallel Combinations” on page 20-1

• “Parallel Issue Syntax” on page 20-2

• “32-Bit ALU/MAC Instructions” on page 20-3

• “16-Bit Instructions” on page 20-6

• “Examples” on page 20-8

Supported Parallel Combinations
The diagram in Table 20-1 illustrates the combinations for parallel issue
that the Blackfin processor supports.

Parallel Issue Syntax

20-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Parallel Issue Syntax
The syntax of a parallel issue instruction is as follows.

• A 32-bit ALU/MAC instruction || A 16-bit instruction

|| A 16-bit instruction ;

The vertical bar (||) indicates the following instruction is to be
issued in parallel with the previous instruction. Note the terminat-
ing semicolon appears only at the end of the parallel issue
instruction.

It is possible to issue a 32-bit ALU/MAC instruction in parallel
with only one 16-bit instruction using the following syntax. The
result is still a 64-bit instruction with a 16-bit NOP automatically
inserted into the unused 16-bit slot.

• A 32-bit ALU/MAC instruction || A 16-bit instruction ;

Alternately, it is also possible to issue two 16-bit instructions in
parallel with one another without an active 32-bit ALU/MAC
instruction by using the MNOP instruction, shown below. Again, the
result is still a 64-bit instruction.

• MNOP || A 16-bit instruction || A 16-bit instruction ;

See the MNOP (32-bit NOP) instruction description in “No Op” on
page 16-25. The MNOP instruction does not have to be explicitly
included by the programmer; the software tools prepend it auto-
matically. The MNOP instruction will appear in disassembled parallel
16-bit instructions.

Table 20-1. Parallel Issue Combinations

32-bit ALU/MAC instruction 16-bit Instruction 16-bit Instruction

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-3

Issuing Parallel Instructions

32-Bit ALU/MAC Instructions
The list of 32-bit instructions that can be in a parallel instruction are
shown in Table 20-2.

Table 20-2. 32-Bit DSP Instructions

Instruction Name Notes

Arithmetic Operations

ABS (Absolute Value)

Add Only the versions that support
optional saturation.

Add/Subtract – Prescale Up

Add/Subtract – Prescale Down

EXPADJ (Exponent Detection)

MAX (Maximum)

MIN (Minimum)

Modify – Decrement (for Accumulators, only)

Modify – Increment (for Accumulators, only) Accumulator versions only.

Negate (Two’s Complement) Accumulator versions only.

RND (Round to Half-Word)

Saturate

SIGNBITS

Subtract Saturating versions only.

Load Store

Load Immediate Accumulator versions only.

32-Bit ALU/MAC Instructions

20-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations

DEPOSIT (Bit Field Deposit)

EXTRACT (Bit Field Extract)

BITMUX (Bit Multiplex)

ONES (One’s Population Count)

Logical Operations

^ (Exclusive-OR) (Bit-Wise XOR)

Move

Move Register 40-bit Accumulator versions only.

Move Register Half

Shift / Rotate Operations

Arithmetic Shift Saturating and Accumulator ver-
sions only.

Logical Shift 32-bit instruction size versions
only.

ROT (Rotate)

External Event Management

No Op 32-bit MNOP only

Table 20-2. 32-Bit DSP Instructions (Cont’d)

Instruction Name Notes

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-5

Issuing Parallel Instructions

Vector Operations

VIT_MAX (Compare-Select)

Add on Sign

Multiply and Multiply-Accumulate to Accumulator

Multiply and Multiply-Accumulate to Half-Register

Multiply and Multiply-Accumulate to Data Register

Vector ABS (Vector Absolute Value)

Vector Add / Subtract

Vector Arithmetic Shift

Vector Logical Shift

Vector MAX (Vector Maximum)

Vector MIN (Vector Minimum)

Multiply 16-Bit Operands

Vector Negate (Two’s Complement)

Vector PACK

Vector SEARCH

Table 20-2. 32-Bit DSP Instructions (Cont’d)

Instruction Name Notes

16-Bit Instructions

20-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

16-Bit Instructions
The two 16-bit instructions in a multi-issue instruction must each be from
Group1 and Group2 instructions shown in Table 20-3 and Table 20-4.

The following additional restrictions also apply to the 16-bit instructions
of the multi-issue instruction.

• Only one of the 16-bit instructions can be a store instruction.

• If the two 16-bit instructions are memory access instructions, then
both cannot use P-registers as address registers. In this case, at least
one memory access instruction must be an I-register version.

Video Pixel Operations

ALIGN8, ALIGN16, ALIGN24 (Byte Align)

DISALGNEXCPT (Disable Alignment Exception for
Load)

SAA (Quad 8-Bit Subtract-Absolute-Accumulate)

Dual 16-Bit Accumulator Extraction with Addition

BYTEOP16P (Quad 8-Bit Add)

BYTEOP16M (Quad 8-Bit Subtract)

BYTEOP1P (Quad 8-Bit Average – Byte)

BYTEOP2P (Quad 8-Bit Average – Half-Word)

BYTEOP3P (Dual 16-Bit Add / Clip)

BYTEPACK (Quad 8-Bit Pack)

BYTEUNPACK (Quad 8-Bit Unpack)

Table 20-2. 32-Bit DSP Instructions (Cont’d)

Instruction Name Notes

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-7

Issuing Parallel Instructions

Table 20-3. Group1 Compatible 16-Bit Instructions

Instruction Name Notes

Arithmetic Operations

Add Immediate Ireg versions only.

Modify – Decrement Ireg versions only.

Modify – Increment Ireg versions only.

Subtract Immediate Ireg versions only.

Load / Store

Load Pointer Register

Load Data Register

Load Half-Word – Zero-Extended

Load Half-Word – Sign-Extended

Load High Data Register Half

Load Low Data Register Half

Load Byte – Zero-Extended

Load Byte – Sign-Extended

Store Pointer Register

Store Data Register

Store High Data Register Half

Store Low Data Register Half

Store Byte

Examples

20-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Examples
Two Parallel Memory Access Instructions

/* Subtract-Absolute-Accumulate issued in parallel with the mem-

ory access instructions that fetch the data for the next SAA

instruction. This sequence is executed in a loop to flip-flop

back and forth between the data in R1 and R3, then the data in R0

and R2. */

saa (r1:0, r3:2) || r0=[i0++] || r2=[i1++] ;

saa (r1:0, r3:2)(r) || r1=[i0++] || r3=[i1++] ;

mnop || r1 = [i0++] || r3 = [i1++] ;

Table 20-4. Group2 Compatible 16-Bit Instructions

Instruction Name Notes

Load / Store

Load Data Register Ireg versions only.

Load High Data Register Half Ireg versions only.

Load Low Data Register Half Ireg versions only.

Store Data Register Ireg versions only.

Store High Data Register Half Ireg versions only.

Store Low Data Register Half Ireg versions only.

External Event Management

No Op 16-bit NOP only.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 20-9

Issuing Parallel Instructions

One Ireg and One Memory Access Instruction in Parallel

/* Add on Sign while incrementing an Ireg and loading a data reg-

ister based on the previous value of the Ireg. */

r7.h=r7.l=sign(r2.h)*r3.h + sign(r2.l)*r3.l || i0+=m3 ||

r0=[i0] ;

/* Add/subtract two vector values while incrementing an Ireg and

loading a data register. */

R2 = R2 +|+ R4, R4 = R2 -|- R4 (ASR) || I0 += M0 (BREV) || R1 =

[I0] ;

/* Multiply and accumulate to Accumulator while loading a data

register and storing a data register using an Ireg pointer. */

A1=R2.L*R1.L, A0=R2.H*R1.H || R2.H=W[I2++] || [I3++]=R3 ;

/* Multiply and accumulate while loading two data registers. One

load uses an Ireg pointer. */

A1+=R0.L*R2.H,A0+=R0.L*R2.L || R2.L=W[I2++] || R0=[I1--] ;

R3.H=(A1+=R0.L*R1.H), R3.L=(A0+=R0.L*R1.L) || R0=[P0++] ||

R1=[I0] ;

/* Pack two vector values while storing a data register using an

Ireg pointer and loading another data register. */

R1=PACK(R1.H,R0.H) || [I0++]=R0 || R2.L=W[I2++] ;

One Ireg Instruction in Parallel

/* Multiply-Accumulate to a Data register while incrementing an

Ireg. */

r6=(a0+=r3.h*r2.h)(fu) || i2-=m0 ;

/* which the assembler expands into:

r6=(a0+=r3.h*r2.h)(fu) || i2-=m0 || nop ; */

Examples

20-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-1

21 DEBUG

The Blackfin processor’s debug functionality is used for software debug-
ging. It also complements some services often found in an operating
system (OS) kernel. The functionality is implemented in the processor
hardware and is grouped into multiple levels.

A summary of available debug features is shown in Table 21-1.

Watchpoint Unit
By monitoring the addresses on both the instruction bus and the data bus,
the Watchpoint Unit provides several mechanisms for examining program
behavior. After counting the number of times a particular address is
matched, the unit schedules an event based on this count.

Table 21-1. Blackfin Debug Features

Debug Feature Description

Watchpoints Specify address ranges and conditions that halt the processor
when satisfied.

Trace History Stores the last 16 discontinuous values of the Program Counter in
an on-chip trace buffer.

Cycle Count Provides functionality for all code profiling functions.

Performance
Monitoring

Allows internal resources to be monitored and measured
non-intrusively.

Watchpoint Unit

21-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In addition, information that the Watchpoint Unit provides helps in the
optimization of code. The unit also makes it easier to maintain executables
through code patching.

The Watchpoint Unit contains these memory-mapped registers (MMRs),
which are accessible in Supervisor and Emulator modes:

• The Watchpoint Status register (WPSTAT)

• Six Instruction Watchpoint Address registers (WPIA[5:0])

• Six Instruction Watchpoint Address Count registers
(WPIACNT[5:0])

• The Instruction Watchpoint Address Control register (WPIACTL)

• Two Data Watchpoint Address registers (WPDA[1:0])

• Two Data Watchpoint Address Count registers (WPDACNT[1:0])

• The Data Watchpoint Address Control register (WPDACTL)

Two operations implement instruction watchpoints:

• The values in the six Instruction Watchpoint Address registers,
WPIA[5:0], are compared to the address on the instruction bus.

• Corresponding count values in the Instruction Watchpoint
Address Count registers, WPIACNT[5:0], are decremented on each
match.

The six Instruction Watchpoint Address registers may be further grouped
into three ranges of instruction-address-range watchpoints. The ranges are
identified by the addresses in WPIA0 to WPIA1, WPIA2 to WPIA3, and WPIA4
to WPIA5.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-3

Debug

The address ranges stored in WPIA0, WPIA1, WPIA2, WPIA3, WPIA4,
and WPIA5 must satisfy these conditions:

WPIA0 <= WPIA1

WPIA2 <= WPIA3

WPIA4 <= WPIA5

Two operations implement data watchpoints:

• The values in the two Data Watchpoint Address registers,
WPDA[1:0], are compared to the address on the data buses.

• Corresponding count values in the Data Watchpoint Address
Count registers, WPDACNT[1:0], are decremented on each match.

The two Data Watchpoint Address registers may be further grouped
together into one data-address-range watchpoint, WPDA[1:0].

The instruction and data count value registers must be loaded with the
number of times the watchpoint must match minus one. After the count
value reaches zero, the subsequent watchpoint match results in an excep-
tion or emulation event.

Note count values must be reinitialized after the event has
occurred.

An event can also be triggered on a combination of the instruction and
data watchpoints. If the WPAND bit in the WPIACTL register is set, then an
event is triggered only when both an instruction address watchpoint
matches and a data address watchpoint matches. If the WPAND bit is 0, then
an event is triggered when any of the enabled watchpoints or watchpoint
ranges match.

Watchpoint Unit

21-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

To enable the Watchpoint Unit, the WPPWR bit in the WPIACTL register
must be set. If WPPWR = 1, then the individual watchpoints and watch-
point ranges may be enabled using the specific enable bits in the WPIACTL
and WPDACTL MMRs. If WPPWR = 0, then all watchpoint activity is disabled.

Instruction Watchpoints
Each instruction watchpoint is controlled by three bits in the WPIACTL reg-
ister, as shown in Table 21-2.

When two watchpoints are associated to form a range, two additional bits
are used, as shown in Table 21-3.

Table 21-2. WPIACTL Control Bits

Bit Name Description

EMUSWx Determines whether an instruction-address match causes either an
emulation event or an exception event.

WPICNTENx Enables the 16-bit counter that counts the number of address
matches. If the counter is disabled, then every match causes an
event.

WPIAENx Enables the address watchpoint activity.

Table 21-3. WPIACTL Watchpoint Range Control Bits

Bit Name Description

WPIRENxy Indicates the two watchpoints that are to be associated to form a
range.

WPIRINVxy Determines whether an event is caused by an address within the
range identified or outside of the range identified.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-5

Debug

Code patching allows software to replace sections of existing code with
new code. The watchpoint registers are used to trigger an exception at the
start addresses of the earlier code. The exception routine then vectors to
the location in memory that contains the new code.

On the processor, code patching can be achieved by writing the start
address of the earlier code to one of the WPIAn registers and setting the cor-
responding EMUSWx bit to trigger an exception. In the exception service
routine, the WPSTAT register is read to determine which watchpoint trig-
gered the exception. Next, the code writes the start address of the new
code in the RETX register, and then returns from the exception to the new
code. Because the exception mechanism is used for code patching, event
service routines of the same or higher priority (exception, NMI, and reset
routines) cannot be patched.

A write to the WPSTAT MMR clears all the sticky status bits. The data value
written is ignored.

WPIAn Registers
When the Watchpoint Unit is enabled, the values in the Instruction
Watchpoint Address registers (WPIAn) are compared to the address on the
instruction bus. Corresponding count values in the Instruction Watch-
point Address Count registers (WPIACNTn) are decremented on each match.

Figure 21-1 shows the Instruction Watchpoint Address registers,
WPIA[5:0].

Watchpoint Unit

21-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

WPIACNTn Registers
When the Watchpoint Unit is enabled, the count values in the Instruction
Watchpoint Address Count registers (WPIACNT[5:0]) are decremented
each time the address or the address bus matches a value in the WPIAn reg-
isters. Load the WPIACNTn register with a value that is one less than the
number of times the watchpoint must match before triggering an event
(see Figure 21-2). The WPIACNTn register will decrement to 0x0000 when
the programmed count expires.

Figure 21-1. Instruction Watchpoint Address Registers

Table 21-4. Instruction Watchpoint Register Memory-mapped
Addresses

Register Name Memory-mapped Address

WPIA0 0xFFE0 7040

WPIA1 0xFFE0 7044

WPIA2 0xFFE0 7048

WPIA3 0xFFE0 704C

WPIA4 0xFFE0 7050

WPIA5 0xFFE0 7054

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Instruction Watchpoint Address Registers (WPIAn)

Reset = Undefined

WPIA (Instruction Address)[30:15]

WPIA (Instruction Address)[14:0]

For Memory-mapped
addresses, see
Table 21-4.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-7

Debug

WPIACTL Register
Three bits in the Instruction Watchpoint Address Control register
(WPIACTL) control each instruction watchpoint. Figure 21-3 describes the
upper half of the register. Figure 21-4 on page 21-9 describes the lower
half of the register. For more information about the bits in this register,
see “Instruction Watchpoints” on page 21-4.

The bits in the WPIACTL register have no effect unless the WPPWR bit
is set.

Figure 21-2. Instruction Watchpoint Address Count Registers

Table 21-5. Instruction Watchpoint Address Count Register
Memory-mapped Addresses

Register Name Memory-mapped Address

WPIACNT0 0xFFE0 7080

WPIACNT1 0xFFE0 7084

WPIACNT2 0xFFE0 7088

WPIACNT3 0xFFE0 708C

WPIACNT4 0xFFE0 7090

WPIACNT5 0xFFE0 7094

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Instruction Watchpoint Address Count Registers (WPIACNTn)

Reset = Undefined

WPIACNT (Count Value)[15:0]

For Memory-mapped
addresses, see
Table 21-5.

Watchpoint Unit

21-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Figure 21-3. Instruction Watchpoint Address Control Register
(WPIACTL)[31:16]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X 0 0 X 0

Instruction Watchpoint Address Control Register (WPIACTL)

Reset = Undefined

EMUSW3
0 - Match on WPIA3 causes an

exception event
1 - Match on WPIA3 causes an

emulation event
WPIREN45
0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPIA4,
End address = WPIA5)

WPIRINV45
Valid when WPIREN45 = 1
0 - Inclusive range comparison:

WPIA4 <IA <= WPIA5
1 - Exclusive range comparison:

IA <= WPIA4 || IA > WPIA5
WPIAEN4
Valid when WPIREN45 = 0
0 - Disable instruction address

watchpoint, WPIA4
1 - Enable instruction address

watchpoint, WPIA4
WPIAEN5
Valid when WPIREN45 = 0
0 - Disable instruction address

watchpoint, WPIA5
1 - Enable instruction address

watchpoint, WPIA5

WPAND
0 - Any enabled watchpoint triggers

an exception or emulation event
1 - Any enabled instruction address

watchpoint AND any enabled
data address watchpoint trigger
an exception or emulation event

EMUSW5

WPICNTEN4
If range comparison is enabled, this bit enables the
counter for range 45
0 - Disable watchpoint instruction address counter 4
1 - Enable watchpoint instruction address counter 4

WPICNTEN5
0 - Disable watchpoint instruction address counter 5
1 - Enable watchpoint instruction address counter 5

EMUSW4
0 - Match on WPIA4 (or range 45)

causes an exception event
1 - Match on WPIA4 (or range 45)

causes an emulation event

0 - Match on WPIA5 causes an
exception event

1 - Match on WPIA5 causes an
emulation event

In range comparisons, IA = instruction address

0xFFE0 7000

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-9

Debug

Figure 21-4. Instruction Watchpoint Address Control Register
(WPIACTL)[15:0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X 0 0 X 0 X X X X 0 0 X 0

Instruction Watchpoint Address Control Register (WPIACTL)

WPPWR
0 - Watchpoint Unit disabled
1 - Watchpoint Unit enabled
WPIREN01
0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPIA0,
End address = WPIA1)

WPIRINV01

WPIAEN0
Valid whenWPIREN01 = 0
0 - Disable instruction address

watchpoint, WPIA0
1 - Enable instruction address

watchpoint, WPIA0

WPIAEN1
Valid when WPIREN01 = 0
0 - Disable instruction address

watchpoint, WPIA1
1 - Enable instruction address

watchpoint, WPIA1
WPICNTEN0
If range comparison is enabled,
this bit enables counter for
range 01
0 - Disable watchpoint

instruction address counter 0
1 - Enable watchpoint

instruction address counter 0

WPICNTEN1
0 - Disable watchpoint

instruction address counter 1
1 - Enable watchpoint

instruction address counter 1
EMUSW0

EMUSW1
0 - Match on WPIA1 causes an

exception event
1 - Match on WPIA1 causes an

emulation event

WPIREN23
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA2,
End address = WPIA3)

WPIRINV23

WPIAEN2
Valid when WPIREN23 = 0
0 - Disable instruction address

watchpoint, WPIA2
1 - Enable instruction address

watchpoint, WPIA2

WPIAEN3
Valid when WPIREN23 = 0
0 - Disable instruction address

watchpoint, WPIA3
1 - Enable instruction address

watchpoint, WPIA3

WPICNTEN2
If range comparison is enabled,
this bit enables counter for range 23
0 - Disable watchpoint

instruction address counter 2
1 - Enable watchpoint

instruction address counter 2

WPICNTEN3
0 - Disable watchpoint

instruction address counter 3
1 - Enable watchpoint

instruction address counter 3

EMUSW2
0 - Match on WPIA2 (or

range 23) causes
an exception event

1 - Match on WPIA2 (or
range 23) causes
an emulation event

0 - Match on WPIA0 (or range 01)
causes an

exception event
1 - Match on WPIA0 (or range 01)
causes an

emulation event

Valid when WPIREN01 = 1
0 - Inclusive range comparison:

WPIA0 < IA <= WPIA1
1 - Exclusive range comparison:

IA <= WPIA0 || IA > WPIA1

In range comparisons, IA = instruction address

Valid when WPIREN23 = 1
0 - Inclusive range comparison:

WPIA2 < IA <= WPIA3
1 - Exclusive range comparison:

IA <= WPIA2 || IA > WPIA3

Reset = Undefined0xFFE0 7000

Watchpoint Unit

21-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Data Address Watchpoints
Each data watchpoint is controlled by four bits in the WPDACTL register, as
shown in Table 21-6.

When the two watchpoints are associated to form a range, two additional
bits are used. See Table 21-7.

Note data address watchpoints always trigger emulation events.

WPDAn Registers
When the Watchpoint Unit is enabled, the values in the Data Watchpoint
Address registers (WPDAn) are compared to the address on the data buses.
Corresponding count values in the Data Watchpoint Address Count regis-
ters (WPDACNTn) are decremented on each match.

Table 21-6. Data Address Watchpoints

Bit Name Description

WPDACCn Determines whether the match should be on a read or write access.

WPDSRCn Determines which DAG the unit should monitor.

WPDCNTENn Enables the counter that counts the number of address matches. If the
counter is disabled, then every match causes an event.

WPDAENn Enables the data watchpoint activity.

Table 21-7. WPDACTL Watchpoint Control Bits

Bit Name Description

WPDREN01 Indicates the two watchpoints associated to form a range.

WPDRINV01 Determines whether an event is caused by an address within the range identi-
fied or outside the range.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-11

Debug

Figure 21-5 shows the Data Watchpoint Address registers, WPDA[1:0].

WPDACNTn Registers
When the Watchpoint Unit is enabled, the count values in the Data
Watchpoint Address Count Value registers (WPDACNTn) are decremented
each time the address or the address bus matches a value in the WPDAn reg-
isters. Load this WPDACNTn register with a value that is one less than the
number of times the watchpoint must match before triggering an event.

Figure 21-5. Data Watchpoint Address Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Data Watchpoint Address Registers (WPDAn)

Reset = Undefined

WPDA (Data Address)[31:16]

WPDA (Data Address)[15:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

WPDA0: 0xFFE0 7140
WPDA1: 0xFFE0 7144

Watchpoint Unit

21-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The WPDACNTn register will decrement to 0x0000 when the programmed
count expires. Figure 21-6 shows the Data Watchpoint Address Count
Value registers, WPDACNT[1:0].

WPDACTL Register
For more information about the bits in the Data Watchpoint Address
Control register (WPDACTL), see “Data Address Watchpoints” on page
21-10.

Figure 21-6. Data Watchpoint Address Count Value Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Data Watchpoint Address Count Value Registers (WPDACNTn)

Reset = Undefined

WPDACNT (Count Value)[15:0]

WPDACNT0:
0xFFE0 7180

WPDACNT1:
0xFFE0 7184

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-13

Debug

Figure 21-7. Data Watchpoint Address Control Register

WPDACC1[1:0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X 0 0 X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Data Watchpoint Address Control Register (WPDACTL)

Reset = Undefined

00 - Reserved
01 - Match on write access only

on WPDA1
10 - Match on read access only

on WPDA1
11 - Match on either read or

write accesses on WPDA1

00 - Reserved
01 - Watch addresses on DAG0

on WPDA1
10 - Watch addresses on DAG1

on WPDA1
11 - Watch addresses on either

DAG0 or DAG1 on WPDA1

WPDSRC1[1:0]

00 - Reserved
01 - Match on write access only on WPDA0

or on the WPDA0 to WPDA1 range
10 - Match on read access only on WPDA0

or on the WPDA0 to WPDA1 range
11 - Match on either read or write accesses

on WPDA0 or on the WPDA0 to WPDA1 range

WPDACC0[1:0]

WPDREN01

0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPDA0,
End address = WPDA1)

WPDRINV01
0 - Inclusive range comparison:

inside the WPDA0 to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDA0 to WPDA1 range

WPDAEN0
Valid when WPDREN01 = 0
0 - Disable data address

watchpoint, WPDA0
1 - Enable data address

watchpoint, WPDA0
WPDAEN1
Valid when WPDREN01 = 0
0 - Disable data address

watchpoint, WPDA1
1 - Enable data address

watchpoint, WPDA1
WPDCNTEN0
If range comparison is enabled,
this bit enables the counter for
range 01
0 - Disable watchpoint

data address counter 0
1 - Enable watchpoint

data address counter 0
WPDCNTEN1
0 - Disable watchpoint

data address counter 1
1 - Enable watchpoint

data address counter 1

WPDSRC0[1:0]
00 - Reserved
01 - Watch addresses on DAG0 on WPDA0

or on the WPDA0 to WPDA1 range
10 - Watch addresses on DAG1 on WPDA0

or on the WPDA0 to WPDA1 range
11 - Watch addresses on either DAG0 or DAG1

on WPDA0 or on the WPDA0 to WPDA1 range

0xFFE0 7100

Watchpoint Unit

21-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

WPSTAT Register
The Watchpoint Status register (WPSTAT) monitors the status of the watch-
points. It may be read and written in Supervisor or Emulator modes only.
When a watchpoint or watchpoint range matches, this register reflects the
source of the watchpoint. The status bits in the WPSTAT register are sticky,
and all of them are cleared when any write, regardless of the value, is per-
formed to the register.

Figure 21-8 shows the Watchpoint Status register.

Figure 21-8. Watchpoint Status Register

XX 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Watchpoint Status Register (WPSTAT)

STATIA0

0 - Neither WPIA0 nor the
WPIA0 to WPIA1 range
matched

1 - WPIA0 matched or the
WPIA0 to WPIA1 range
matched

STATIA1
0 - WPIA1 not matched
1 - WPIA1 matched
STATIA2

STATIA3
0 - WPIA3 not matched
1 - WPIA3 matched

STATIA4

STATIA5
0 - WPIA5 not matched
1 - WPIA5 matched

STATDA1
0 - WPDA1 not matched
1 - WPDA1 matched

0 - Neither WPIA2 nor the
WPIA2 to WPIA3 range
matched

1 - WPIA2 matched or the
WPIA2 to WPIA3 range
matched

0 - Neither WPIA4 nor the
WPIA4 to WPIA5 range
matched

1 - WPIA4 matched or the
WPIA4 to WPIA5 range
matched

0 - Neither WPDA0 nor the
WPDA0 to WPDA1 range
matched

1 - WPDA0 matched or the
WPDA0 to WPDA1 range
matched

STATDA0

Reset = Undefined0xFFE0 7200

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-15

Debug

Trace Unit
The Trace Unit stores a history of the last 16 changes in program flow
taken by the program sequencer. The history allows the user to recreate
the program sequencer’s recent path.

The trace buffer can be enabled to cause an exception when full. The
exception service routine associated with the exception saves trace buffer
entries to memory. Thus, the complete path of the program sequencer
since the trace buffer was enabled can be recreated.

Changes in program flow because of zero-overhead loops are not stored in
the trace buffer. For debugging code that is halted within a zero-overhead
loop, the iteration count is available in the Loop Count registers, LC0 and
LC1.

The trace buffer can be configured to omit the recording of changes in
program flow that match either the last entry or one of the last two
entries. Omitting one of these entries from the record prevents the trace
buffer from overflowing because of loops in the program. Because
zero-overhead loops are not recorded in the trace buffer, this feature can
be used to prevent trace overflow from loops that are nested four deep.

When read, the Trace Buffer register (TBUF) returns the top value from the
Trace Unit stack, which contains as many as 16 entries. Each entry con-
tains a pair of branch source and branch target addresses. A read of TBUF
returns the newest entry first, starting with the branch destination. The
next read provides the branch source address.

Trace Unit

21-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The number of valid entries in TBUF is held in the TBUFCNT field of the
TBUFSTAT register. On every second read, TBUFCNT is decremented. Because
each entry corresponds to two pieces of data, a total of 2 x TBUFCNT reads
empties the TBUF register.

Discontinuities that are the same as either of the last two entries in
the trace buffer are not recorded.

Because reading the trace buffer is a destructive operation, it is rec-
ommended that TBUF be read in a non-interruptible section of
code.

Note, if single-level compression has occurred, the least significant bit
(LSB) of the branch target address is set. If two-level compression has
occurred, the LSB of the branch source address is set.

TBUFCTL Register
The Trace Unit is enabled by two control bits in the Trace Buffer Control
register (TBUFCTL) register. First, the Trace Unit must be activated by set-
ting the TBUFPWR bit. If TBUFPWR = 1, then setting TBUFEN to 1 enables the
Trace Unit.

Figure 21-9 describes the Trace Buffer Control register (TBUFCTL). If
TBUFOVF = 1, then the Trace Unit does not record discontinuities in the
exception, NMI, and reset routines.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-17

Debug

TBUFSTAT Register
Figure 21-10 shows the Trace Buffer Status register (TBUFSTAT). Two reads
from TBUF decrements TBUFCNT by one.

Figure 21-9. Trace Buffer Control Register

Figure 21-10. Trace Buffer Status Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Control Register (TBUFCTL)

TBUFPWR
0 - Trace buffer is off
1 - Trace buffer is active
TBUFEN
0 - Trace buffer disabled
1 - Trace buffer enabled
TBUFOVF
0 - Overflows are ignored
1 - Trace buffer overflow

causes an exception
event

CMPLP[1:0]

X

00 - Compression disabled,
Record all discontinuities

01 - Compress single-level
loops

10 - Compress two-level loops

0xFFE0 6000

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

XX

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Status Register (TBUFSTAT)

TBUFCNT[4:0]
Number of valid discontinuities
stored in the trace buffer

0xFFE0 6004

Trace Unit

21-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

TBUF Register
Figure 21-11 shows the Trace Buffer register (TBUF). The first read returns
the latest branch target address. The second read returns the latest branch
source address.

The Trace Unit does not record changes in program flow in:

• Emulator mode

• The exception or higher priority service routines (if TBUFOVF = 1)

In the exception service routine, the program flow discontinuities
may be read from TBUF and stored in memory by the code shown in
Listing 21-1.

While TBUF is being read, be sure to disable the trace buffer from
recording new discontinuities.

Code to Recreate the Execution Trace in Memory

Listing 21-1 provides code that recreates the entire execution trace in
memory.

Figure 21-11. Trace Buffer Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Trace Buffer Register (TBUF)

TBUF[15:0]

X

TBUF[31:16]

Alias to all trace buffer entries

0xFFE0 6100

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-19

Debug

Listing 21-1. Recreating the Execution Trace in Memory

[--sp] = (r7:7, p5:2); /* save registers used in this routine */

p5 = 32; /* 32 reads are needed to empty TBUF */

p2.l = buf; /* pointer to the header (first location) of the

software trace buffer */

p2.h = buf; /* the header stores the first available empty buf

location for subsequent trace dumps */

p4 = [p2++]; /* get the first available empty buf location from

the buf header */

p3.l = TBUF & 0xffff; /* low 16 bits of TBUF */

p3.h = TBUF >> 16; /* high 16 bits of TBUF */

lsetup(loop1_start, loop1_end) lc0 = p5;

loop1_start: r7 = [p3]; /* read from TBUF */

loop1_end: [p4++] = r7; /* write to memory and increment */

[p2] = p4; /* pointer to the next available buf location is

saved in the header of buf */

(r7:7, p5:3) = [sp++]; /* restore saved registers */

Performance Monitoring Unit
Two 32-bit counters, the Performance Monitor Counter registers
(PFCNTR[1:0]) and the Performance Control register (PFCTL), count the
number of occurrences of an event from within a processor core unit dur-
ing a performance monitoring period. These registers provide feedback
indicating the measure of load balancing between the various resources on
the chip so that expected and actual usage can be compared and analyzed.
In addition, events such as mispredictions and hold cycles can also be
monitored.

Performance Monitoring Unit

21-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

PFCNTRn Registers
Figure 21-12 shows the Performance Monitor Counter registers,
PFCNTR[1:0]. The PFCNTR0 register contains the count value of perfor-
mance counter 0. The PFCNTR1 register contains the count value of
performance counter 1.

PFCTL Register
To enable the Performance Monitoring Unit, set the PFPWR bit in the Per-
formance Monitor Control register (PFCTL), shown in Figure 21-13. Once
the unit is enabled, individual count-enable bits (PFCENn) take effect. Use
the PFCENx bits to enable or disable the performance monitors in User
mode, Supervisor mode, or both. Use the PEMUSWx bits to select the type of
event triggered.

Figure 21-12. Performance Monitor Counter Registers

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Performance Monitor Counter Registers (PFCNTRn)

X

PFCNTRx[31:16]

PFCNTRx[15:0]

PRCNTR0:
0xFFE0 8100

PRCNTR1:
0xFFE0 8104

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-21

Debug

Event Monitor Table
Table 21-8 identifies events that cause the Performance Monitor Counter
registers (PFMON0 or PFMON1) to increment.

Figure 21-13. Performance Monitor Control Register

0

XX X X

XXX

15 14 13 12 11 10 9 8 7 6

X X X X X X X X

X XX X X X X X X X X X

Performance Monitor Control Register (PFCTL)

Reset = Undefined

PFMON1[7:0]
Refer to Event Monitor table on
page 21-22

0

5 4 3 2 1 0

0 0 0

PFPWR
0 - Performance Monitor

disabled
1 - Performance Monitor

enabled
PEMUSW0
0 - Count down of performance

counter PFCNTR0 causes
exception event

1 - Count down of performance
counter PFCNTR0 causes
emulation event

PFCEN0[1:0]
00 - Disable Performance

Monitor 0
01 - Enable Performance

Monitor 0 in User mode
only

10 - Enable Performance
Monitor 0 in Supervisor
mode only

11 - Enable Performance
Monitor 0 in both User and
Supervisor modes

PFCEN1[1:0]

Refer to Event Monitor table on
page 21-22

PFMON0[7:0]

00 - Disable Performance
Monitor 1

01 - Enable Performance
Monitor 1 in User
mode only

10 - Enable Performance
Monitor 1 in Super-
visor mode only

11 - Enable Performance
Monitor 1 in both User
and Supervisor modes

PEMUSW1
0 - Count down of performance

counter PFCNTR1 causes
exception event

1 - Count down of performance
counter PFCNTR1 causes
emulation event

PFCNT1
0 - Count number of cycles asserted
1 - Count positive edges only
PFCNT0
0 - Count number of cycles asserted
1 - Count positive edges only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFE0 8000

Performance Monitoring Unit

21-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table 21-8. Event Monitor Table

PFMONx Fields Events That Cause the Count Value to Increment

0x00 Loop 0 iterations

0x01 Loop 1 iterations

0x02 Loop buffer 0 not optimized

0x03 Loop buffer 1 not optimized

0x04 PC invariant branches (requires trace buffer to be enabled, see “TBUFCTL
Register” on page 21-16)

0x06 Conditional branches

0x09 Total branches including calls, returns, branches, but not interrupts
(requires trace buffer to be enabled, see “TBUFCTL Register” on
page 21-16)

0x0A Stalls due to CSYNC, SSYNC

0x0B EXCPT instructions

0x0C CSYNC, SSYNC instructions

0x0D Committed instructions

0x0E Interrupts taken

0x0F Misaligned address violation exceptions

0x10 Stall cycles due to read after write hazards on DAG registers

0x13 Stall cycles due to RAW data hazards in computes

0x80 Code memory fetches postponed due to DMA collisions (minimum count
of two per event)

0x81 Code memory TAG stalls (cache misses, or FlushI operations, count of 3
per FlushI). Note code memory stall results in a processor stall only if
instruction assembly unit FIFO empties.

0x82 Code memory fill stalls (cacheable or non-cacheable). Note code memory
stall results in a processor stall only if instruction assembly unit FIFO emp-
ties.

0x83 Code memory 64-bit words delivered to processor instruction assembly
unit

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-23

Debug

Cycle Counter
The cycle counter counts CCLK cycles while the program is executing. All
cycles, including execution, wait state, interrupts, and events, are counted
while the processor is in User or Supervisor mode, but the cycle counter
stops counting in Emulator mode.

0x90 Processor stalls to memory

0x91 Data memory stalls to processor not hidden by processor stall

0x92 Data memory store buffer full stalls

0x93 Data memory write buffer full stalls due to high-to-low priority code tran-
sition

0x94 Data memory store buffer forward stalls due to lack of committed data
from processor

0x95 Data memory fill buffer stalls

0x96 Data memory array or TAG collision stalls (DAG to DAG, or DMA to
DAG)

0x97 Data memory array collision stalls (DAG to DAG or DMA to DAG)

0x98 Data memory stalls

0x99 Data memory stalls sent to processor

0x9A Data memory cache fills completed to Bank A

0x9B Data memory cache fills completed to Bank B

0x9C Data memory cache victims delivered from Bank A

0x9D Data memory cache victims delivered from Bank B

0x9E Data memory cache high priority fills requested

0x9F Data memory cache low priority fills requested

Table 21-8. Event Monitor Table (Cont’d)

PFMONx Fields Events That Cause the Count Value to Increment

Cycle Counter

21-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

The cycle counter is 64 bits and increments every cycle. The count value is
stored in two 32-bit registers, CYCLES and CYCLES2. The least significant 32
bits (LSBs) are stored in CYCLES. The most significant 32 bits (MSBs) are
stored in CYCLES2.

To ensure read coherency, first read CYCLES, then CYCLES2, and
then CYCLES again, to detect if any overflow occurred in the LSBs
during the read operations.

In User mode, these two registers may be read, but not written. In Super-
visor and Emulator modes, they are read/write registers.

To enable the cycle counters, set the CCEN bit in the SYSCFG register. The
following example shows how to use the cycle counter:

R2 = 0;

CYCLES = R2;

CYCLES2 = R2;

R2 = SYSCFG;

BITSET(R2,1);

SYSCFG = R2;

/* Insert code to be benchmarked here. */

R2 = SYSCFG;

BITCLR(R2,1);

SYSCFG = R2;

CYCLES and CYCLES2 Registers
The Execution Cycle Count registers (CYCLES and CYCLES2) are shown in
Figure 21-14. This 64-bit counter increments every CCLK cycle. The
CYCLES register contains the least significant 32 bits of the cycle counter’s
64-bit count value. The most significant 32 bits are contained by
CYCLES2.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-25

Debug

Note when single-stepping through instructions in a debug environment,
the CYCLES register increases in non-unity increments due to the interac-
tion of the debugger over JTAG.

The CYCLES and CYCLES2 registers are not system MMRs, but are
instead system registers.

Figure 21-14. Execution Cycle Count Registers

X X XX X X X X X X X X X X XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Execution Cycle Count Registers (CYCLES and CYCLES2)

CYCLES / CYCLES2[15:0]

CYCLES / CYCLES2[31:16]

RO in User mode, RW in Supervisor and Emulator modes

Cycle Counter

21-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

SYSCFG Register
The System Configuration register (SYSCFG) controls the configuration of
the processor. This register is accessible only from the Supervisor mode.

Figure 21-15. System Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Configuration Register (SYSCFG)

SNEN (Self-Nesting Interrupt Enable) SSSTEP (Supervisor Sin-
gle Step)

When set, a Supervisor
exception is taken after each
instruction is executed. It
applies only to User mode, or
when processing interrupts in
Supervisor mode. It is
ignored if the core is pro-
cessing an exception or
higher priority event. If pre-
cise exception timing is
required, CSYNC must be
used after setting this bit.

0 - Disable self-nesting of core
interrupts

1 - Enable self-nesting of core
interrupts

Reset = 0x0000 0030

CCEN (Cycle Counter Enable)
0 - Disable 64-bit, free-running

cycle counter
1 - Enable 64-bit, free-running

cycle counter

ADSP-BF53x/BF56x Blackfin Processor Programming Reference 21-27

Debug

Product Identification Register
The 32-bit DSP Device ID register (DSPID) is a core MMR that contains
core identification and revision fields for the core.

DSPID Register
The DSP Device ID register (DSPID), shown in Figure 21-16, is a
read-only register and is part of the core.

Figure 21-16. DSP Device ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 1 0 1 0 0 0 0 0 1 0

0

DSP Device ID Register (DSPID)

Reset = E504 0000

RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Major Architectural
Change[7:0]

Implementation[15:0]

Analog Devices, Inc.[7:0]

0xFFE0 5000

Product Identification Register

21-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference A-1

A ADSP-BF535
CONSIDERATIONS

The ADSP-BF535 processor operates differently from other Blackfin pro-
cessors in some areas. This chapter describes these differences.

ADSP-BF535 Operating Modes and
States

In the “Operating Modes and States” chapter, several of the descriptions
do not apply to the ADSP-BF535 processor. These are:

• In Table 3-3 on page 3-4, IDLE is also a protected instruction and
is not accessible in User mode.

• In “Idle State” on page 3-9, an IDLE instruction must be followed
by an SSYNC instruction on the ADSP-BF535 processor for the
IDLE instruction to halt the processor.

• Table 3-5 on page 3-11 (Processor State Upon Reset) does not
apply to the ADSP-BF535. Please consult the ADSP-BF535 Black-
fin Processor Hardware Reference for the reset values.

ADSP-BF535 Flags

A-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF535 Flags
Table A-1 lists the Blackfin processor instruction set and the affect on
flags when these instructions execute on an ADSP-BF535 processor. The
symbol definitions for the flag bits in the table are as follows.

• – indicates that the flag is NOT AFFECTED by execution of the
instruction

• * indicates that the flag is SET OR CLEARED depending on exe-
cution of the instruction

• ** indicates that the flag is CLEARED by execution of the
instruction

• U indicates that the flag state is UNDEFINED following execution
of the instruction; if the value of this bit is needed for program exe-
cution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

The flags with undefined (U) results on the ADSP-BF535 have
defined results on subsequent Blackfin processors.

Because the AC0, AC1, V, AV0, AV, and VS flags do not exist on
the ADSP-BF535, these flags do not appear in Table A-1.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference A-3

ADSP-BF535 Considerations

Table A-1. ASTAT Flag Behavior for the ADSP-BF535

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

Jump – – – – – –

IF CC JUMP – – – – – –

Call – – – – – –

RTS, RTI, RTX, RTN, RTE (Return) – – – – – –

LSETUP, LOOP – – – – – –

Load Immediate – – – – – –

Load Pointer Register – – – – – –

Load Data Register – – – – – –

Load Half-Word – Zero-Extended – – – – – –

Load Half-Word – Sign-Extended – – – – – –

Load High Data Register Half – – – – – –

Load Low Data Register Half – – – – – –

Load Byte – Zero-Extended – – – – – –

Load Byte – Sign-Extended – – – – – –

Store Pointer Register – – – – – –

Store Data Register – – – – – –

Store High Data Register Half – – – – – –

Store Low Data Register Half – – – – – –

Store Byte – – – – – –

Move Register (except acc to dreg) – – – – – –

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF535 Flags

A-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Register (acc to dreg) – U U – U –

Move Conditional – – – – – –

Move Half to Full Word – Zero-Extended – * ** ** ** –

Move Half to Full Word – Sign-Extended – * * ** ** –

Move Register Half (except acc to half dreg) – – – – – –

Move Register Half (acc to half dreg) – U U – U –

Move Byte – Zero-Extended – * * ** ** –

Move Byte – Sign-Extended – * * ** ** –

--SP (Push) – – – – – –

--SP (Push Multiple) – – – – – –

SP++ (Pop) – – – – – –

SP++ (Pop Multiple) – – – – – –

LINK, UNLINK – – – – – –

Compare Data Register * * * * U –

Compare Pointer * – – – – –

Compare Accumulator * * * * U –

Move CC – * * * * *

Negate CC * – – – – –

& (AND) – * * ** ** –

~ (NOT One’s Complement) – * * ** ** –

Table A-1. ASTAT Flag Behavior for the ADSP-BF535 (Cont’d)

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference A-5

ADSP-BF535 Considerations

| (OR) – * * ** ** –

^ (Exclusive-OR) – * * ** ** –

BXORSHIFT, BXOR * – – – – –

BITCLR – * * U U –

BITSET – U U U U –

BITTGL – * * U U –

BITTST * – – – – –

DEPOSIT – * * U U –

EXTRACT – * * U U –

BITMUX – U U – – –

ONES (One’s Population Count) – U U – – –

Add with Shift (preg version) – – – – – –

Add with Shift (dreg version) – * * U * –

Shift with Add – – – – – –

Arithmetic Shift (to dreg) – * * U * –

Arithmetic Shift (to A0) – * * U – –

Arithmetic Shift (to A1) – * * U – –

Logical Shift (to preg) – U U U U –

Logical Shift (to dreg) – * * – U –

Logical Shift (to A0) – * * U U –

Table A-1. ASTAT Flag Behavior for the ADSP-BF535 (Cont’d)

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF535 Flags

A-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Shift (to A1) – * * U U –

ROT (Rotate) * – – – – –

ABS (to dreg) – * ** U * –

ABS (to A0) – * ** U U –

ABS (to A1) – * ** U U –

Add (preg version) – – – – – –

Add (dreg version) – * * * * –

Add/Subtract – Prescale Down – – – – – –

Add/Subtract – Prescale Up – – – – – –

Add Immediate (to preg or ireg) – – – – – –

Add Immediate (to dreg) – * * * * –

DIVS, DIVQ (Divide Primitive) – U U U U *

EXPADJ – U U – – –

MAX – * * U U –

MIN – * * U U –

Modify – Decrement (to preg or ireg) – – – – – –

Modify – Decrement (to acc) – U U U – –

Modify – Increment (to preg or ireg) – – – – – –

Modify – Increment (extracted to dreg) – * * * * –

Modify – Increment (to acc) – U U U U –

Table A-1. ASTAT Flag Behavior for the ADSP-BF535 (Cont’d)

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference A-7

ADSP-BF535 Considerations

Multiply 16-Bit Operands – – – – U –

Multiply 32-Bit Operands – – – – – –

Multiply and Multiply-Accumulate to Accumulator – – – – U –

Multiply and Multiply-Accumulate to Half-Register – – – – U –

Multiply and Multiply-Accumulate to Data Register – – – – U –

Negate (Two’s Complement) (to dreg) – * * U * –

Negate (Two’s Complement) (to A0) – * * U U –

Negate (Two’s Complement) (to A1) – * * U U –

RND (Round to Half-Word) – * * U * –

Saturate – * * U U –

SIGNBITS – U U – – –

Subtract – * * * * –

Subtract Immediate (to ireg) – – – – – –

Idle – – – – – –

Core Synchronize – – – – – –

System Synchronize – – – – – –

EMUEXCPT (Force Emulation) – – – – – –

Disable Interrupts – – – – – –

Enable Interrupts – – – – – –

RAISE (Force Interrupt / Reset) – – – – – –

Table A-1. ASTAT Flag Behavior for the ADSP-BF535 (Cont’d)

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF535 Flags

A-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

EXCPT (Force Exception) – – – – – –

Test and Set Byte (Atomic) * – – – – –

No Op – – – – – –

PREFETCH – – – – – –

FLUSH – – – – – –

FLUSHINV – – – – – –

IFLUSH – – – – – –

ALIGN8, ALIGN16, ALIGN24 – U U – – –

DISALGNEXCPT – – – – – –

BYTEOP3P (Dual 16-Bit Add / Clip) – – – – – –

Dual 16-Bit Accumulator Extraction with Addition – – – – – –

BYTEOP16P (Quad 8-Bit Add) – U U U U –

BYTEOP1P (Quad 8-Bit Average – Byte) – U U U U –

BYTEOP2P (Quad 8-Bit Average – Half-Word) – U U U U –

BYTEPACK (Quad 8-Bit Pack) – U U U U –

BYTEOP16M (Quad 8-Bit Subtract) – U U U U –

SAA (Quad 8-Bit Subtract-Absolute-Accumulate) – U U U U –

BYTEUNPACK (Quad 8-Bit Unpack) – U U U U –

Add on Sign – U U U U –

VIT_MAX (Compare-Select) – U U – – –

Table A-1. ASTAT Flag Behavior for the ADSP-BF535 (Cont’d)

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference A-9

ADSP-BF535 Considerations

Vector ABS – * ** U * –

Vector Add / Subtract – * ** * * –

Vector Arithmetic Shift – * * U * –

Vector Logical Shift – * * U ** –

Vector MAX – * * U ** –

Vector MIN – * * U ** –

Vector Multiply – – – – U –

Vector Multiply and Multiply-Accumulate – – – – * –

Vector Negate (Two’s Complement) – * * * * –

Vector PACK – U U – – –

Vector SEARCH – U U – – –

Table A-1. ASTAT Flag Behavior for the ADSP-BF535 (Cont’d)

Instruction CC AZ AN
AC0_
COPY

V_
COPY

AQ

– indicates that the flag is NOT AFFECTED by execution of the instruction
* indicates that the flag is SET OR CLEARED depending on execution of the instruction
** indicates that the flag is CLEARED by execution of the instruction
U indicates that the flag state is UNDEFINED following execution of the instruction; if the value of
this bit is needed for program execution, the program needs to check the bit prior to executing the
instruction with a U in a bit field.

ADSP-BF535 Flags

A-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference B-1

B CORE MMR ASSIGNMENTS

The Blackfin processor’s memory-mapped registers (MMRs) are in the
address range 0xFFE0 0000 – 0xFFFF FFFF.

All core MMRs must be accessed with a 32-bit read or write access.

This appendix lists core MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about
the MMR.

L1 Data Memory Controller Registers
L1 Data Memory Controller registers (0xFFE0 0000 – 0xFFE0 0404)

Table B-1. L1 Data Memory Controller Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 0004 DMEM_CONTROL “DMEM_CONTROL Register” on
page 6-24

0xFFE0 0008 DCPLB_STATUS “DCPLB_STATUS and ICPLB_STATUS
Registers” on page 6-61

0xFFE0 000C DCPLB_FAULT_ADDR “DCPLB_FAULT_ADDR and
ICPLB_FAULT_ADDR Registers” on
page 6-63

0xFFE0 0100 DCPLB_ADDR0 “DCPLB_ADDRx Registers” on page 6-59

L1 Data Memory Controller Registers

B-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

0xFFE0 0104 DCPLB_ADDR1 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0108 DCPLB_ADDR2 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 010C DCPLB_ADDR3 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0110 DCPLB_ADDR4 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0114 DCPLB_ADDR5 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0118 DCPLB_ADDR6 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 011C DCPLB_ADDR7 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0120 DCPLB_ADDR8 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0124 DCPLB_ADDR9 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0128 DCPLB_ADDR10 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 012C DCPLB_ADDR11 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0130 DCPLB_ADDR12 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0134 DCPLB_ADDR13 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0138 DCPLB_ADDR14 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 013C DCPLB_ADDR15 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0200 DCPLB_DATA0 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0204 DCPLB_DATA1 “DCPLB_DATAx Registers” on page 6-57

0 xFFE0 0208 DCPLB_DATA2 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 020C DCPLB_DATA3 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0210 DCPLB_DATA4 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0214 DCPLB_DATA5 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0218 DCPLB_DATA6 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 021C DCPLB_DATA7 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0220 DCPLB_DATA8 “DCPLB_DATAx Registers” on page 6-57

Table B-1. L1 Data Memory Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

ADSP-BF53x/BF56x Blackfin Processor Programming Reference B-3

Core MMR Assignments

L1 Instruction Memory Controller
Registers

L1 Instruction Memory Controller registers (0xFFE0 1004 –
0xFFE0 1404)

0xFFE0 0224 DCPLB_DATA9 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0228 DCPLB_DATA10 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 022C DCPLB_DATA11 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0230 DCPLB_DATA12 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0234 DCPLB_DATA13 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0238 DCPLB_DATA14 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 023C DCPLB_DATA15 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0300 DTEST_COMMAND “DTEST_COMMAND Register” on
page 6-39

0xFFE0 0400 DTEST_DATA0 “DTEST_DATA0 Register” on page 6-42

0xFFE0 0404 DTEST_DATA1 “DTEST_DATA1 Register” on page 6-41

Table B-2. L1 Instruction Memory Controller Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 1004 IMEM_CONTROL “IMEM_CONTROL Register” on page 6-5

0xFFE0 1008 ICPLB_STATUS “DCPLB_STATUS and ICPLB_STATUS
Registers” on page 6-61

Table B-1. L1 Data Memory Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

L1 Instruction Memory Controller Registers

B-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

0xFFE0 100C ICPLB_FAULT_ADDR “DCPLB_FAULT_ADDR and
ICPLB_FAULT_ADDR Registers” on
page 6-63

0xFFE0 1100 ICPLB_ADDR0 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1104 ICPLB_ADDR1 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1108 ICPLB_ADDR2 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 110C ICPLB_ADDR3 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1110 ICPLB_ADDR4 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1114 ICPLB_ADDR5 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1118 ICPLB_ADDR6 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 111C ICPLB_ADDR7 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1120 ICPLB_ADDR8 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1124 ICPLB_ADDR9 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1128 ICPLB_ADDR10 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 112C ICPLB_ADDR11 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1130 ICPLB_ADDR12 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1134 ICPLB_ADDR13 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1138 ICPLB_ADDR14 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 113C ICPLB_ADDR15 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1200 ICPLB_DATA0 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1204 ICPLB_DATA1 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1208 ICPLB_DATA2 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 120C ICPLB_DATA3 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1210 ICPLB_DATA4 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1214 ICPLB_DATA5 “ICPLB_DATAx Registers” on page 6-55

Table B-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

ADSP-BF53x/BF56x Blackfin Processor Programming Reference B-5

Core MMR Assignments

Interrupt Controller Registers
Interrupt Controller registers (0xFFE0 2000 – 0xFFE0 2110)

0xFFE0 1218 ICPLB_DATA6 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 121C ICPLB_DATA7 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1220 ICPLB_DATA8 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1224 ICPLB_DATA9 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1228 ICPLB_DATA10 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 122C ICPLB_DATA11 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1230 ICPLB_DATA12 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1234 ICPLB_DATA13 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1238 ICPLB_DATA14 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 123C ICPLB_DATA15 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1300 ITEST_COMMAND “ITEST_COMMAND Register” on page
6-21

0XFFE0 1400 ITEST_DATA0 “ITEST_DATA0 Register” on page 6-23

0XFFE0 1404 ITEST_DATA1 “ITEST_DATA1 Register” on page 6-22

Table B-3. Interrupt Controller Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 2000 EVT0
(EMU)

“Core Event Vector Table” on page 4-42

0xFFE0 2004 EVT1
(RST)

“Core Event Vector Table” on page 4-42

Table B-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

Interrupt Controller Registers

B-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

0xFFE0 2008 EVT2
(NMI)

“Core Event Vector Table” on page 4-42

0xFFE0 200C EVT3
(EVX)

“Core Event Vector Table” on page 4-42

0xFFE0 2010 EVT4 “Core Event Vector Table” on page 4-42

0xFFE0 2014 EVT5
(IVHW)

“Core Event Vector Table” on page 4-42

0xFFE0 2018 EVT6
(TMR)

“Core Event Vector Table” on page 4-42

0xFFE0 201C EVT7
(IVG7)

“Core Event Vector Table” on page 4-42

0xFFE0 2020 EVT8
(IVG8)

“Core Event Vector Table” on page 4-42

0xFFE0 2024 EVT9
(IVG9)

“Core Event Vector Table” on page 4-42

0xFFE0 2028 EVT10
(IVG10)

“Core Event Vector Table” on page 4-42

0xFFE0 202C EVT11
(IVG11)

“Core Event Vector Table” on page 4-42

0xFFE0 2030 EVT12
(IVG12)

“Core Event Vector Table” on page 4-42

0xFFE0 2034 EVT13
(IVG13)

“Core Event Vector Table” on page 4-42

0xFFE0 2038 EVT14
(IVG14)

“Core Event Vector Table” on page 4-42

0xFFE0 203C EVT15
(IVG15)

“Core Event Vector Table” on page 4-42

0xFFE0 2104 IMASK “IMASK Register” on page 4-38

Table B-3. Interrupt Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

ADSP-BF53x/BF56x Blackfin Processor Programming Reference B-7

Core MMR Assignments

Debug, MP, and Emulation Unit Registers
Debug, MP, and Emulation Unit registers (0xFFE0 5000 –
0xFFE0 5008)

Trace Unit Registers
Trace Unit registers (0xFFE0 6000 – 0xFFE0 6100)

0xFFE0 2108 IPEND “IPEND Register” on page 4-40

0xFFE0 210C ILAT “ILAT Register” on page 4-39

0xFFE0 2110 IPRIO “IPRIO Register and Write Buffer Depth”
on page 6-35

Table B-4. Debug and Emulation Unit Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 5000 DSPID “DSPID Register” on page 21-27

Table B-5. Trace Unit Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 6000 TBUFCTL “TBUFCTL Register” on page 21-16

0xFFE0 6004 TBUFSTAT “TBUFSTAT Register” on page 21-17

0xFFE0 6100 TBUF “TBUF Register” on page 21-18

Table B-3. Interrupt Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

Watchpoint and Patch Registers

B-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Watchpoint and Patch Registers
Watchpoint and Patch registers (0xFFE0 7000 – 0xFFE0 7200)

Table B-6. Watchpoint and Patch Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 7000 WPIACTL “WPIACTL Register” on page 21-7

0xFFE0 7040 WPIA0 “WPIAn Registers” on page 21-5

0xFFE0 7044 WPIA1 “WPIAn Registers” on page 21-5

0xFFE0 7048 WPIA2 “WPIAn Registers” on page 21-5

0xFFE0 704C WPIA3 “WPIAn Registers” on page 21-5

0xFFE0 7050 WPIA4 “WPIAn Registers” on page 21-5

0xFFE0 7054 WPIA5 “WPIAn Registers” on page 21-5

0xFFE0 7080 WPIACNT0 “WPIACNTn Registers” on page 21-6

0xFFE0 7084 WPIACNT1 “WPIACNTn Registers” on page 21-6

0xFFE0 7088 WPIACNT2 “WPIACNTn Registers” on page 21-6

0xFFE0 708C WPIACNT3 “WPIACNTn Registers” on page 21-6

0xFFE0 7090 WPIACNT4 “WPIACNTn Registers” on page 21-6

0xFFE0 7094 WPIACNT5 “WPIACNTn Registers” on page 21-6

0xFFE0 7100 WPDACTL “WPDACTL Register” on page 21-12

0xFFE0 7140 WPDA0 “WPDAn Registers” on page 21-10

0xFFE0 7144 WPDA1 “WPDAn Registers” on page 21-10

0xFFE0 7180 WPDACNT0 “WPDACNTn Registers” on page 21-11

0xFFE0 7184 WPDACNT1 “WPDACNTn Registers” on page 21-11

0xFFE0 7200 WPSTAT “WPSTAT Register” on page 21-14

ADSP-BF53x/BF56x Blackfin Processor Programming Reference B-9

Core MMR Assignments

Performance Monitor Registers
Performance Monitor registers (0xFFE0 8000 – 0xFFE0 8104)

Table B-7. Performance Monitor Registers

Memory-mapped
Address

Register Name See Section

0xFFE0 8000 PFCTL “PFCTL Register” on page 21-20

0xFFE0 8100 PFCNTR0 “PFCNTRn Registers” on page 21-20

0xFFE0 8104 PFCNTR1 “PFCNTRn Registers” on page 21-20

Performance Monitor Registers

B-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-1

C INSTRUCTION OPCODES

This appendix describes the operation codes (or, “opcodes”) for each
Blackfin instruction. The purpose is to specify the instruction codes for
Blackfin software and tools developers.

Introduction
This format separates instructions as much as practical for maximum clar-
ity. Users are better served by clear, distinct opcode descriptions instead of
confusing tables of convoluted algorithms to construct each opcode. The
format minimizes the number of variables the reader must master to repre-
sent or recognize bit fields within the opcodes. This more explicit format
expands the listings to more pages, but is easier and quicker to reference.
The success of this document is measured by how little time it takes for
you to find the information you want.

However, some instructions (such as Multiply-and-Accumulate and Vec-
tor Multiply-and-Accumulate) support so many options and variations
that individual listings for each version are simply not manageable. In
those cases, bit fields are defined and used.

Appendix Organization
This appendix lists each instruction with its corresponding opcode.
Instructions are grouped according to function.

The instructions also appear in order of their corresponding opcodes in
“Instructions Listed By Operation Code” on page C-140.

Introduction

C-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Glossary
The following terms appear throughout this document. Without trying to
explain the Blackfin architecture, here are the terms used with their defini-
tions. See chapters 1 through 6 for more details on the architecture.

Register Names

The architecture includes the following registers.

Table C-1. Registers

Register Description

Accumulators The set of 40-bit registers A1 and A0 that normally contain data that is being
manipulated. Each Accumulator can be accessed in five ways—as one 40-bit
register, as one 32-bit register (designated as A1.W or A0.W), as two 16-bit
registers similar to Data registers (designated as A1.H, A1.L, A0.H, or A0.L)
and as one 8-bit register (designated A1.X or A0.X) for the bits that extend
beyond bit 31.

Data Registers The set of 32-bit registers R0, R1, …, R6, R7 that normally contain data for
manipulation. Abbreviated D-register or Dreg. Data registers can be accessed
as 32-bit registers, or optionally as two independent 16-bit registers. The least
significant 16 bits of each register is called the “low” half and is designated
with “.L” following the register name. The most significant 16-bit is called the
“high” half and is designated with “.H” following the name. Example: R7.L,
r2.h, r4.L, R0.h.

Pointer Registers The set of 32-bit registers P0, P1, …, P4, P5, including SP and FP that nor-
mally contain byte addresses of data structures. Accessed only as a 32-bit regis-
ter. Abbreviated P-register or Preg. Example: p2, p5, fp, sp.

Stack Pointer SP; contains the 32-bit address of the last occupied byte location in the stack.
The stack grows by decrementing the Stack Pointer. A subset of the Pointer
Registers.

Frame Pointer FP; contains the 32-bit address of the previous Frame Pointer in the stack,
located at the top of a frame. A subset of the Pointer Registers.

Loop Top LT0 and LT1; contains 32-bit address of the top of a zero overhead loop.

Loop Count LC0 and LC1; contains 32-bit counter of the zero overhead loop executions.

Loop Bottom LB0 and LB1; contains 32-bit address of the bottom of a zero overhead loop.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-3

Instruction Opcodes

Functional Units

The architecture includes three processor sections.

Index Register The set of 32-bit registers I0, I1, I2, I3 that normally contain byte addresses of
data structures. Abbreviated I-register or Ireg.

Modify Registers The set of 32-bit registers M0, M1, M2, M3 that normally contain offset val-
ues that are added or subtracted to one of the Index registers. Abbreviated as
Mreg.

Length Registers The set of 32-bit registers L0, L1, L2, L3 that normally contain the length (in
bytes) of the circular buffer. Abbreviated as Lreg. Clear Lreg to disable circular
addressing for the corresponding Ireg. Example: Clear L3 to disable circular
addressing for I3.

Base Registers The set of 32-bit registers B0, B1, B2, B3 that normally contain the base
address (in bytes) of the circular buffer. Abbreviated as Breg.

Table C-2. Processor Sections

Processor Description

Data Address Generator
(DAG)

Calculates the effective address for indirect and indexed memory
accesses. Operates on the Pointer, Index, Modify, Length, and Base
Registers. Consists of two units—DAG0 and DAG1.

Multiply and Accumulate
 Unit (MAC)

Performs multiply computations and accumulations on data. Operates
on the Data Registers and Accumulators. Consists of two units
(MAC0 and MAC1), each associated with an Accumulator (A0 and
A1, respectively). Each MAC operates in conjunction with an Arith-
metic Logical Unit.

Arithmetic Logical Unit
(ALU)

Performs arithmetic computations and binary shifts on data. Operates
on the Data Registers and Accumulators. Consists of two units (ALU0
and ALU1), each associated with an Accumulator (A0 and A1, respec-
tively). Each ALU operates in conjunction with a Multiply and Accu-
mulate Unit.

Table C-1. Registers (Cont’d)

Register Description

Introduction

C-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Notation Conventions

This appendix uses the following conventions:

• Register names are alphabetic, followed by a number in cases where
there are more than one register in a logical group. Thus, examples
include ASTAT, FP, R3, and M2.

Register names are reserved and may not be used as program
identifiers.

• Some operations require a register pair. Register pairs are always Data
Registers and are denoted using a colon, e.g., R3:2. The larger num-
ber must is written first. Note: The hardware supports only odd-even
pairs, e.g., R7:6, R5:4, R3:2, and R1:0.

• Some instructions require a group of adjacent registers. Adjacent reg-
isters are denoted by the range enclosed in brackets, e.g., R[7:3].
Again, the larger number appears first.

• Portions of a particular register may be individually specified. This is
written with a dot (“.”) following the register name, then a letter
denoting the desired portion. For 32-bit registers, “.H” denotes the
most significant (“High”) portion, “.L” denotes the least significant
portion. The subdivisions of the 40-bit registers are described later.

Register names are reserved and may not be used as program identifiers.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-5

Instruction Opcodes

This appendix uses the following conventions to describe options in the
assembler syntax:

• When there is a choice of any one register within a register group,
this appendix shows the register set using a single dash to indicate
the range of possible register numbers. The register numbers always
decrement from high to low. For example, “R7–0” means that any
one of the eight Data Registers can be used.

• A range of sequential registers or bits, considered as a group, are
denoted using a colon “:”. The register or bit numbers appear high-
est first, followed by the lowest. For example, the group of Data
Registers R3, R2, R1, and R0 are abbreviated R3:0. This nomen-
clature is similar to that used for valid Data Register pairs, but
here, more than a single pair can be represented. Another example
is the least significant eight bits of a register are denoted 7:0. In the
case of bits, there is no convention to include the register name
with the bit range; the register must be clear by context.

• Immediate values are designated as “imm” with the following
modifiers:

• “imm” indicates a signed value; for example imm7.

• the “u” prefix indicates an unsigned value; for example,
uimm4.

• the decimal number indicates how many bits the value can
include; for example, imm5 is a 5-bit value.

• any alignment requirements are designated by an optional
“m” suffix followed by a number; for example, uimm16m2
is an unsigned, 16-bit integer that must be an even number,
and imm7m4 is a signed, 7-bit integer that must be a multi-
ple of 4.

Introduction

C-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

• PC-relative, signed values are designated as “pcrel” with the follow-
ing modifiers:

• the decimal number indicates how many bits the value can
include; for example, pcrel5 is a 5-bit value.

• any alignment requirements are designated by an optional
“m” suffix followed by a number; for example, pcrel13m2 is
a 13-bit integer that must be an even number.

• Loop PC-relative, signed values are designated as “lppcrel”
with the following modifiers:

• the decimal number indicates how many bits the value can
include; for example, lppcrel5 is a 5-bit value.

• any alignment requirements are designated by an optional
“m” suffix followed by a number; for example, lppcrel11m2
is a 11-bit integer that must be an even number.

Arithmetic Status Flags

The Blackfin architecture includes 12 arithmetic status flags that indicate
specific results of a prior operation. These flags reside in the Arithmetic
Status (ASTAT) Register. A summary of the flags appears below. All flags
are active high. Instructions regarding P-registers, I-registers, L-registers,
M-registers, or B-registers do not affect flags.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-7

Instruction Opcodes

See Chapter 2, Computational Units, for more details.

Table C-3. Arithmetic Status Flag Summary

Flag Description

AC0 Carry (ALU0)

AC1 Carry (ALU1)

AN Negative

AQ Quotient

AV0 Accumulator 0 Overflow

AVS0 Accumulator 0 Sticky Overflow; set when AV0 is set, but remains set until explicitly cleared
by user code

AV1 Accumulator 1 Overflow

AVS1 Accumulator 1 Sticky Overflow; set when AV1 is set, but remains set until explicitly cleared
by user code

AZ Zero

CC Control Code bit; multipurpose flag set, cleared and tested by specific instructions

V Overflow for Data Register results

VS Sticky Overflow for Data Register results; set when V is set, but remains set until explicitly
cleared by user code

Introduction

C-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Core Register Encoding Map
Instruction opcodes can address any core register by Register Group and
Register Number using the following encoding.

Opcode Representation
The Blackfin architecture accepts 16- and 32-bit opcodes. This document
represents the opcodes as hexadecimal values or ranges of values and as
binary bit fields.

Some instructions have no variable arguments, and therefore produce only
one hex value. The value appears in the “min” Hex Opcode Range col-
umn. Instructions that support variable arguments (such as a choice of
source or destination registers, optional modes, or constants) span a range
of hex values. The minimum and maximum allowable hex values are
shown in that case. As explained in “Holes In Opcode Ranges” on
page C-10, the instruction may not produce all possible hex values within
the range.

Table C-4. Core Register Encoding Map

REGISTER NUMBER

REGISTER
GROUP 0 1 2 3 4 5 6 7

0 R0 R1 R2 R3 R4 R5 R6 R7

1 P0 P1 P2 P3 P4 P5 SP FP

2 I0 I1 I2 I3 M0 M1 M2 M3

3 B0 B1 B2 B3 L0 L1 L2 L3

4 A0.x A0.w A1.x A1.w <res.> <res.> ASTAT RETS

5 <res.> <res.> <res.> <res.> <res.> <res.> <res.> <res.>

6 LC0 LT0 LB0 LC1 LT1 LB1 CYCLES CYCLES2

7 USP SEQSTAT SYSCFG RETI RETX RETN RETE EMUDAT

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-9

Instruction Opcodes

A single 16-bit field represents 16-bit opcodes, and two stacked 16-bit
fields represent 32-bit opcodes. When stacked, the upper 16 bits show the
most significant bits; the lower 16 bits, the least significant bits. See the
example table, below.

The hex values of 32-bit instructions are shown stacked in the same order
as the bit fields—most significant over least significant.

See “Opcode Representation In Listings, Memory Dumps” on
page C-11 for parsing instructions when comparing hex opcodes in
debugging software to this reference.

Table C-5. Sample Opcode Representation

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Name

Single Hex
Value

bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit

Syntax without variable arguments (16-bit Instruction)

Instruction
Name

Min.
Value—
Max.
Value

bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit

Syntax with variable arguments (16-bit Instruction)

Instruction
Name

Single Hex
Value

bit bit bit bit bit Most significant
bits

bit bit bit bit bit

bit bit bit bit bit Least significant
bits

bit bit bit bit bit

Syntax without variable arguments (32-bit Instruction)

Instruction
Name

Min.
Value—
Max.
Value

bit bit bit bit bit Most significant
bits

bit bit bit bit bit

bit bit bit bit bit Least significant
bits

bit bit bit bit bit

Syntax with variable arguments (32-bit Instruction)

Introduction

C-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Opcode Bit Terminology
The following conventions describe the instruction opcode bit states.

Undefined Opcodes
Any and all undefined instruction opcode bit patterns are reserved, poten-
tially for future use.

Holes In Opcode Ranges
Holes may exist in the range of operation codes shown for some instructions.
For example, one version of the Zero Overhead Loop Setup instruction spans
the opcode range E080 0000 through E08F 03FF, as shown in the excerpt,
below. However, not all values within that range are valid opcodes; some bit
field values are fixed, leaving gaps or “holes” in the sequence of valid
opcodes. These undefined opcode holes are reserved for potential future use.

Table C-6.

SYMBOL MEANING

0 Binary zero bit, logical “low”

1 Binary one bit, logical “high”

x “don’t care” bit

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-11

Instruction Opcodes

Opcode Representation In Listings, Memory
Dumps

The Blackfin assembler produces opcodes in little endian format for mem-
ory storage. Little endian format is efficient for instruction fetching, but
not especially convenient for user readability. Each 16 bits of opcode are
stored in memory with the least significant byte first followed by the most
significant byte in the next higher address.

32-bit opcodes appear in memory as the most significant 16 bits first, fol-
lowed by the least significant 16 bits at the next higher address. The
reason is that the instruction length is encoded in the most significant 16
bits of the opcode. By storing this information in the lower addresses, the
Program Sequencer can determine in one fetch whether it can begin pro-
cessing the current instruction right away or must wait to fetch the
remainder of the instruction first.

Table C-7. Sample Opcode Holes Representation

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Zero Overhead Loop Setup 0xE080 0000—
0xE08F 03FF

1 1 1 0 0 0 0 0 1 0 0 0 pcrel5m2
divided by 2

0 0 0 0 0 0 pcrel11m2 divided by 2

LOOP loop_name LC0
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC0
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of LOOP_END deter-
mines pcrel11m2.

Introduction

C-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

For example, a 32-bit opcode 0xFEED FACE is stored in memory loca-
tions as shown in Table C-8, below.

This byte sequence is displayed in ascending address order as...

0xED

0xFE

0xCE

0xFA

... or in 16-bit format as...

0xEDFE

0xCEFA

Or in 32-bit format as...

0xFEED FACE

This reference appendix lists the opcodes in this final format since it
matches the opcode bit patterns as recognized by the processor.

Table C-8. Example Memory Contents

Relative Byte Address Data

0 0xED

1 0xFE

2 0xCE

3 0xFA

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-13

Instruction Opcodes

Program Flow Control Instructions
Table C-9. Program Flow Control Instructions (Sheet 1 of 3)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jump 0x0050—
0x0057

0 0 0 0 0 0 0 0 0 1 0 1 Preg #

JUMP (Preg)

Jump 0x0080—
0x0087

0 0 0 0 0 0 0 0 1 0 0 0 Preg #

JUMP (PC+Preg)

Jump 0x2000—
0x2FFF

0 0 1 0 pcrel13m2 divided by 2

JUMP.S pcrel13m2

Jump 0xE200 0000—
0xE2FF FFFF

1 1 1 0 0 0 1 0 Most significant bits of
pcrel25m2

Least significant bits of pcrel25m2 divided by 2

JUMP.L pcrel25m2

Conditional Jump 0x1800—
0x17FF

0 0 0 1 1 0 pcrel11m2 divided by 2

IF CC JUMP pcrel11m2

Conditional Jump 0x1C00—
0x1FFF

0 0 0 1 1 1 pcrel11m2 divided by 2

IF CC JUMP pcrel11m2 (bp)

Conditional Jump 0x1000—
0x13FF

0 0 0 1 0 0 pcrel11m2 divided by 2

IF !CC JUMP pcrel11m2

Conditional Jump 0x1400—
0x1BFF

0 0 0 1 0 1 pcrel11m2 divided by 2

IF !CC JUMP pcrel11m2 (bp)

Call 0x0060—
0x0067

0 0 0 0 0 0 0 0 0 1 1 0 Preg #

CALL (Preg)

Program Flow Control Instructions

C-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Call 0x0070—
0x0077

0 0 0 0 0 0 0 0 0 1 1 1 Preg #

CALL (PC+Preg)

Call 0xE300 0000—
0xE3FF FFFF

1 1 1 0 0 0 1 1 Most significant bits of
pcrel25m2

Least significant bits of pcrel25m2 divided by 2

CALL pcrel25m2

Return 0x0010— 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

RTS

Return 0x0011— 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

RTI

Return 0x0012— 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

RTX

Return 0x0013— 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

RTN

Return 0x0014— 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

RTE

Zero Overhead Loop Setup 0xE080 0000—
0xE08F 03FF

1 1 1 0 0 0 0 0 1 0 0 0 pcrel5m2
divided by 2

0 0 0 0 x x pcrel11m2 divided by 2

LOOP loop_name LC0 LOOP_BEGIN loop_name LOOP_END loop_name... is mapped to...LSETUP
(pcrel5m2, pcrel11m2) LC0... where the address of LOOP_BEGIN determines pcrel5m2, and the address
of LOOP_END determines pcrel11m2.

Zero Overhead Loop Setup 0xE0A0 0000—
0xE0AF F3FF

1 1 1 0 0 0 0 0 1 0 1 0 pcrel5m2
divided by 2

Preg # x x pcrel11m2 divided by 2

LOOP loop_name LC0 = Preg LOOP_BEGIN loop_name LOOP_END loop_name ... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC0 = Preg ... where the address of LOOP_BEGIN determines
pcrel5m2, and the address of LOOP_END determines pcrel11m2.

Table C-9. Program Flow Control Instructions (Sheet 2 of 3)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-15

Instruction Opcodes

Zero Overhead Loop Setup 0xE0E0 0000—
0xE0AF F3FF

1 1 1 0 0 0 0 0 1 1 1 0 pcrel5m2
divided by 2

Preg # x x pcrel11m2 divided by 2

LOOP loop_name LC0 = Preg >> 1 LOOP_BEGIN loop_name LOOP_END loop_name ... is mapped
to... LSETUP (pcrel5m2, pcrel11m2) LC0 = Preg >> 1 ... where the address of LOOP_BEGIN
determines pcrel5m2, and the address of LOOP_END determines pcrel11m2.

Zero Overhead Loop Setup 0xE090 0000—
0xE09F 03FF

1 1 1 0 0 0 0 0 1 0 0 1 pcrel5m2
divided by 2

0 0 0 0 x x pcrel11m2 divided by 2

LOOP loop_name LC1 LOOP_BEGIN loop_name LOOP_END loop_name ... is mapped to... LSETUP
(pcrel5m2, pcrel11m2) LC1 ... where the address of LOOP_BEGIN determines pcrel5m2, and the
address of LOOP_END determines pcrel11m2.

Zero Overhead Loop Setup 0xE0B0 0000—
0xE0BF F3FF

1 1 1 0 0 0 0 0 1 0 1 1 pcrel5m2
divided by 2

Preg # x x pcrel11m2 divided by 2

LOOP loop_name LC1 = Preg LOOP_BEGIN loop_name LOOP_END loop_name ... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC1 = Preg ... where the address of LOOP_BEGIN determines
pcrel5m2, and the address of LOOP_END determines pcrel11m2.

Zero Overhead Loop Setup 0xE0F0 0000—
0xE0FF F3FF

1 1 1 0 0 0 0 0 1 1 1 1 pcrel5m2
divided by 2

Preg # x x pcrel11m2 divided by 2

LOOP loop_name LC1 = Preg >> 1 LOOP_BEGIN loop_name LOOP_END loop_name ... is mapped
to... LSETUP (pcrel5m2, pcrel11m2) LC1 = Preg >> 1 ... where the address of LOOP_BEGIN
determines pcrel5m2, and the address of LOOP_END determines pcrel11m2.

Table C-9. Program Flow Control Instructions (Sheet 3 of 3)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load / Store Instructions

C-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load / Store Instructions
Table C-10. Load / Store Instructions (Sheet 1 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load Immediate 0xE100 0000—
0xE11F FFFF

1 1 1 0 0 0 0 1 0 0 0 Reg
grp. #

Reg #

uimm16

reg_lo = uimm16

Load Immediate 0xE140 0000—
0xE15F FFFF

1 1 1 0 0 0 0 1 0 1 0 Reg
grp. #

Reg #

uimm16

reg_hi = uimm16

Load Immediate 0xE180 0000—
0xE19F FFFF

1 1 1 0 0 0 0 1 1 0 0 Reg
grp. #

Reg #

uimm16

reg = uimm16 (Z)

Load Immediate 0xC408 003F 1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 = 0

Load Immediate 0xC408 403F 1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = 0

Load Immediate 0xC408 803F 1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = A0 = 0

Load Immediate 0x6000—
0x63FF

0 1 1 0 0 0 imm7 Dreg #

Dreg = imm7 (X)

Load Immediate 0x6800—
0x6BFF

0 1 1 0 1 0 imm7 Preg #

Preg = imm7 (X)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-17

Instruction Opcodes

Load Immediate 0xE120 0000—
0xE13F FFFF

1 1 1 0 0 0 0 1 0 0 1 Reg
grp. #

Reg #

imm16

reg = imm16 (X)

Load Pointer Register 0x9140—
0x917F

1 0 0 1 0 0 0 1 0 1 Source
Preg #

Dest.
Preg #

Preg = [Preg]

Load Pointer Register 0x9040—
0x907F

1 0 0 1 0 0 0 0 0 1 Source
Preg #

Dest.
Preg #

Preg = [Preg ++]

Load Pointer Register 0x90C0—
0x90FF

1 0 0 1 0 0 0 0 1 1 Source
Preg #

Dest.
Preg #

Preg = [Preg – –]

Load Pointer Register 0xAC00—
0xAFFF

1 0 1 0 1 1 uimm6m4
divided by 4

Source
Preg #

Dest.
Preg #

Preg = [Preg + uimm6m4]

Load Pointer Register 0xE500 0000—
0xE53F 7FFF

1 1 1 0 0 1 0 1 0 0 Source
Preg #

Dest.
Preg #

uimm17m4 divided by 4

Preg = [Preg + uimm17m4]

Load Pointer Register 0xE500 8000—
0xE53F FFFF

1 1 1 0 0 1 0 1 0 0 Source
Preg #

Dest.
Preg #

uimm17m4 divided by 4

Preg = [Preg – uimm17m4]

Load Pointer Register 0xB808—
0xB9FF

1 0 1 1 1 0 0 uimm7m4
divided by 4

Preg #

Preg = [FP – uimm7m4]

Load Data Register 0x9100—
0x913F

1 0 0 1 0 0 0 1 0 0 Preg # Dreg #

Dreg = [Preg]

Table C-10. Load / Store Instructions (Sheet 2 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load / Store Instructions

C-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Data Register 0x9000—
0x903F

1 0 0 1 0 0 0 0 0 0 Preg # Dreg #

Dreg = [Preg ++]

Load Data Register 0x9080—
0x90BF

1 0 0 1 0 0 0 0 1 0 Preg # Dreg #

Dreg = [Preg – –]

Load Data Register 0xA000—
0xA3FF

1 0 1 0 0 0 uimm6m4
divided by 4

Preg # Dreg #

Dreg = [Preg + uimm6m4]

Load Data Register 0xE400 0000—
0xE4EF 7FFF

1 1 1 0 0 1 0 0 0 0 Preg # Dreg #

uimm17m4 divided by 4

Dreg = [Preg + uimm17m4]

Load Data Register 0xE400 8000—
0xE43F FFFF

1 1 1 0 0 1 0 0 0 0 Preg # Dreg #

uimm17m4 divided by 4

Dreg = [Preg – uimm17m4]

Load Data Register 0x8000—
0x81FF

1 0 0 0 0 0 0 Dest.
Dreg #

Index
Preg #

Pointer
Preg #

Dreg = [Preg ++ Preg]

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Load Data Register 0xB800—
0xB9F7

1 0 1 1 1 0 0 uimm7m4
divided by 4

Dreg #

Dreg = [FP – uimm7m4]

Load Data Register 0x9D00—
0x9D1F

1 0 0 1 1 1 0 1 0 0 0 Ireg # Dreg #

Dreg = [Ireg]

Load Data Register 0x9C00—
0x9C1F

1 0 0 1 1 1 0 0 0 0 0 Ireg # Dreg #

Dreg = [Ireg ++]

Table C-10. Load / Store Instructions (Sheet 3 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-19

Instruction Opcodes

Load Data Register 0x9C80—
0x9C9F

1 0 0 1 1 1 0 0 1 0 0 Ireg # Dreg #

Dreg = [Ireg – –]

Load Data Register 0x9D80—
0x9DFF

1 0 0 1 1 1 0 1 1 Mreg
#

Ireg # Dreg #

Dreg = [Ireg ++ Mreg]

Load Half Word, Zero Extended 0x9500—
0x953F

1 0 0 1 0 1 0 1 0 0 Preg # Dreg #

Dreg = W [Preg] (Z)

Load Half Word , Zero Extended 0x9400—
0x943F

1 0 0 1 0 1 0 0 0 0 Preg # Dreg #

Dreg = W [Preg ++] (Z)

Load Half Word, Zero Extended 0x9480—
0x94BF

1 0 0 1 0 1 0 0 1 0 Preg # Dreg #

Dreg = W [Preg ––] (Z)

Load Half Word, Zero Extended 0xA400—
0xA7FF

1 0 1 0 0 1 uimm5m2
divided by 2

Preg # Dreg #

Dreg = W [Preg + uimm5m2] (Z)

Load Half Word, Zero Extended 0xE440 0000—
0xE47F 8FFF

1 1 1 0 0 1 0 0 0 1 Preg # Dreg #

uimm16m2 divided by 2

Dreg = W [Preg + uimm16m2] (Z)

Load Half Word, Zero Extended 0xE440 8000—
0xE47F FFFF

1 1 1 0 0 1 0 0 0 1 Preg # Dreg #

uimm16m2 divided by 2

Dreg = W [Preg – uimm16m2] (Z)

Load Half Word, Zero Extended 0x8601—
0x87FE

1 0 0 0 0 1 1 Dest.
Dreg #

Index
Preg #

Pointer
Preg #

Dreg = W [Preg ++ Preg] (Z)

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Table C-10. Load / Store Instructions (Sheet 4 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load / Store Instructions

C-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Half Word, Sign Extended 0x9540—
0x957F

1 0 0 1 0 1 0 1 0 1 Preg # Dreg #

Dreg = W [Preg] (X)

Load Half Word, Sign Extended 0x9440—
0x947F

1 0 0 1 0 1 0 0 0 1 Preg # Dreg #

Dreg = W [Preg ++] (X)

Load Half Word, Sign Extended 0x94C0—
0x94FF

1 0 0 1 0 1 0 0 1 1 Preg # Dreg #

Dreg = W [Preg ––] (X)

Load Half Word, Sign Extended 0xA800—
0xABFF

1 0 1 0 1 0 uimm5m2
divided by 2

Preg # Dreg #

Dreg = W [Preg + uimm5m2] (X)

Load Half Word, Sign Extended 0xE540 0000—
0xE57F 8FFF

1 1 1 0 0 1 0 1 0 1 Preg # Dreg #

uimm16m2 divided by 2

Dreg = W [Preg + uimm16m2] (X)

Load Half Word, Sign Extended 0xE540 8000—
0xE57F FFFF

1 1 1 0 0 1 0 1 0 1 Preg # Dreg #

uimm16m2 divided by 2

Dreg = W [Preg – uimm16m2] (X)

Load Half Word, Sign Extended 0x8E00—
0x8FFF

1 0 0 0 1 1 1 Dest.
Dreg #

Index
Preg #

Pointer
Preg #

Dreg = W [Preg ++ Preg] (X)

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Load High Data Register Half 0x9D40—
0x9D5F

1 0 0 1 1 1 0 1 0 1 0 Ireg # Dreg #

Dreg_hi = W [Ireg]

Load High Data Register Half 0x9C40—
0x9C5F

1 0 0 1 1 1 0 0 0 1 0 Ireg # Dreg #

Dreg_hi = W [Ireg ++]

Table C-10. Load / Store Instructions (Sheet 5 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-21

Instruction Opcodes

Load High Data Register Half 0x9CC0—
0x9CDF

1 0 0 1 1 1 0 0 1 1 0 Ireg # Dreg #

Dreg_hi = W [Ireg – –]

Load High Data Register Half 0x8400—
0x85FF

1 0 0 0 0 1 0 Dest.
Dreg #

Pointer
Preg #

Pointer
Preg #

Dreg_hi = W [Preg]

NOTE: The two least significant bit fields must refer to the same Preg number. Otherwise, this opcode
represents a post-modify version of this instruction.

Load High Data Register Half 0x8401—
0x85FE

1 0 0 0 0 1 0 Dest.
Dreg #

Index
Preg #

Pointer
Preg #

Dreg_hi = W [Preg ++ Preg]

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Load Low Data Register Half 0x9D20—
0x9D3F

1 0 0 1 1 1 0 1 0 0 1 Ireg # Dreg #

Dreg_lo = W [Ireg]

Load Low Data Register Half 0x9C20—
0x9C3F

1 0 0 1 1 1 0 0 0 0 1 Ireg # Dreg #

Dreg_lo = W [Ireg ++]

Load Low Data Register Half 0x9CA0—
0x9CBF

1 0 0 1 1 1 0 0 1 0 1 Ireg # Dreg #

Dreg_lo = W [Ireg – –]

Load Low Data Register Half 0x8200—
0x83FF

1 0 0 0 0 0 1 Dest.
Dreg #

Pointer
Preg #

Pointer
Preg #

Dreg_lo = W [Preg]

NOTE: Both Pointer Preg # fields must refer to the same Preg number. Otherwise, this opcode represents
a post-modify version of this instruction.

Load Low Data Register Half 0x8201—
0x83FE

1 0 0 0 0 0 1 Dest.
Dreg #

Index
Preg #

Pointer
Preg #

Dreg_lo = W [Preg ++ Preg]

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Table C-10. Load / Store Instructions (Sheet 6 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load / Store Instructions

C-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Byte, Zero Extended 0x9900—
0x993F

1 0 0 1 1 0 0 1 0 0 Preg # Dreg #

Dreg = B [Preg] (Z)

Load Byte, Zero Extended 0x9800—
0x983F

1 0 0 1 1 0 0 0 0 0 Preg # Dreg #

Dreg = B [Preg ++] (Z)

Load Byte, Zero Extended 0x9880—
0x98BF

1 0 0 1 1 0 0 0 1 0 Preg # Dreg #

Dreg = B [Preg ––] (Z)

Load Byte, Zero Extended 0xE480 0000—
0xE4BF 7FFF

1 1 1 0 0 1 0 0 1 0 Preg # Dreg #

uimm15

Dreg = B [Preg + uimm15] (Z)

Load Byte, Zero Extended 0xE480 8000—
0xE4BF FFFF

1 1 1 0 0 1 0 0 1 0 Preg # Dreg #

uimm15

Dreg = B [Preg – uimm15] (Z)

Load Byte, Sign Extended 0x9940—
0x997F

1 0 0 1 1 0 0 1 0 1 Preg # Dreg #

Dreg = B [Preg] (X)

Load Byte, Sign Extended 0x9840—
0x987F

1 0 0 1 1 0 0 0 0 1 Preg # Dreg #

Dreg = B [Preg ++] (X)

Load Byte, Sign Extended 0x98C0—
0x98FF

1 0 0 1 1 0 0 0 1 1 Preg # Dreg #

Dreg = B [Preg ––] (X)

Load Byte, Sign Extended 0xE580 0000—
0xE5BF 7FFF

1 1 1 0 0 1 0 1 1 0 Preg # Dreg #

uimm15

Dreg = B [Preg + uimm15] (X)

Table C-10. Load / Store Instructions (Sheet 7 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-23

Instruction Opcodes

Load Byte, Sign Extended 0xE580 8000—
0xE5BF FFFF

1 1 1 0 0 1 0 1 1 0 Preg # Dreg #

uimm15

Dreg = B [Preg – uimm15] (X)

Store Pointer Register 0x9340—
0x937F

1 0 0 1 0 0 1 1 0 1 Dest.
Pointer
Preg #

Source
Preg #

[Preg] = Preg

Store Pointer Register 0x9240—
0x927F

1 0 0 1 0 0 1 0 0 1 Dest.
Pointer
Preg #

Source
Preg #

[Preg ++] = Preg

Store Pointer Register 0x92C0—
0x92FF

1 0 0 1 0 0 1 0 1 1 Dest.
Pointer
Preg #

Source
Preg #

[Preg – –] = Preg

Store Pointer Register 0xBC00—
0xBFFF

1 0 1 1 1 1 uimm6m4
divided by 4

Source
Pointer
Preg #

Dest.
Preg #

[Preg + uimm6m4] = Preg

Store Pointer Register 0xE700 0000—
0xE7EF 8FFF

1 1 1 0 0 1 1 1 0 0 Dest.
Pointer
Preg #

Source
Preg #

uimm17m4 divided by 4

[Preg + uimm17m4] = Preg

Store Pointer Register 0xE700 8000—
0xE73F FFFF

1 1 1 0 0 1 1 1 0 0 Dest.
Pointer
Preg #

Source
Preg #

uimm17m4 divided by 4

[Preg – uimm17m4] = Preg

Table C-10. Load / Store Instructions (Sheet 8 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load / Store Instructions

C-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Store Pointer Register 0xBA08—
0xBBFF

1 0 1 1 1 0 1 uimm7m4
divided by 4

Preg #

[FP – uimm7m4] = Preg

Store Data Register 0x9300—
0x933F

1 0 0 1 0 0 1 1 0 0 Preg # Dreg #

[Preg] = Dreg

Store Data Register 0x9200—
0x923F

1 0 0 1 0 0 1 0 0 0 Preg # Dreg #

[Preg ++] = Dreg

Store Data Register 0x9280—
0x92BF

1 0 0 1 0 0 1 0 1 0 Preg # Dreg #

[Preg – –] = Dreg

Store Data Register 0xB000—
0xB3FF

1 0 1 1 0 0 uimm6m4
divided by 4

Preg # Dreg #

[Preg + uimm6m4] = Dreg

Store Data Register 0xE600 0000—
0xE63F 7FFF

1 1 1 0 0 1 1 0 0 0 Preg # Dreg #

uimm17m4 divided by 4

[Preg + uimm17m4] = Dreg

Store Data Register 0xE600 8000—
0xE63F FFFF

1 1 1 0 0 1 1 0 0 0 Preg # Dreg #

uimm17m4 divided by 4

[Preg – uimm17m4] = Dreg

Store Data Register 0x8800—
0x89FF

1 0 0 0 1 0 0 Source
Dreg #

Index
Preg #

Pointer
Preg #

[Preg ++ Preg] = Dreg

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Store Data Register 0xBA00—
0xBBF7

1 0 1 1 1 0 1 uimm7m4
divided by 4

Dreg #

[FP – uimm7m4] = Dreg

Table C-10. Load / Store Instructions (Sheet 9 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-25

Instruction Opcodes

Store Data Register 0x9F00—
0x9F1F

1 0 0 1 1 1 1 1 0 0 0 Ireg # Dreg #

[Ireg] = Dreg

Store Data Register 0x9E00—
0x9E1F

1 0 0 1 1 1 1 0 0 0 0 Ireg # Dreg #

[Ireg ++] = Dreg

Store Data Register 0x9E80—
0x9E9F

1 0 0 1 1 1 1 0 1 0 0 Ireg # Dreg #

[Ireg – –] = Dreg

Store Data Register 0x9F80—
0x9FFF

1 0 0 1 1 1 1 1 1 Mreg
#

Ireg # Dreg #

[Ireg ++ Mreg] = Dreg

Store High Data Register Half 0x9F40—
0x9F5F

1 0 0 1 1 1 1 1 0 1 0 Ireg # Dreg #

W [Ireg] = Dreg_hi

Store High Data Register Half 0x9E40—
0x9E5F

1 0 0 1 1 1 1 0 0 1 0 Ireg # Dreg #

W [Ireg ++] = Dreg_hi

Store High Data Register Half 9EC0—
0x9EDF

1 0 0 1 1 1 1 0 1 1 0 Ireg # Dreg #

W [Ireg – –] = Dreg_hi

Store High Data Register Half 0x8C00—
0x8DFF

1 0 0 0 1 1 0 Source
Dreg #

Pointer
Preg #

Pointer
Preg #

W [Preg] = Dreg_hi

NOTE: Both Pointer Preg # fields must refer to the same Preg number. Otherwise, this opcode represents
a post-modify version of this instruction.

Store High Data Register Half 0x8C01—
0x8DFE

1 0 0 0 1 1 0 Source
Dreg #

Index
Preg #

Pointer
Preg #

W [Preg ++ Preg] = Dreg_hi

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Table C-10. Load / Store Instructions (Sheet 10 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load / Store Instructions

C-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Store Low Data Register Half 0x9F20—
0x9F3F

1 0 0 1 1 1 1 1 0 0 1 Ireg # Dreg #

W [Ireg] = Dreg_lo

Store Low Data Register Half 0x9E20—
0x9E3F

1 0 0 1 1 1 1 0 0 0 1 Ireg # Dreg #

W [Ireg ++] = Dreg_lo

Store Low Data Register Half 0x9EA0—
0x9EBF

1 0 0 1 1 1 1 0 1 0 1 Ireg # Dreg #

W [Ireg – –] = Dreg_lo

Store Low Data Register Half 0x8A00—
0x8BFF

1 0 0 0 1 0 1 Source
Dreg #

Pointer
Preg #

Pointer
Preg #

W [Preg] = Dreg_lo

NOTE: Both Pointer Preg # fields must refer to the same Preg number. Otherwise, this opcode represents
a post-modify version of this instruction.

Store Low Data Register Half 0x9700—
0x973F

1 0 0 1 0 1 1 1 0 0 Preg # Dreg #

W [Preg] = Dreg

Store Low Data Register Half 0x9600—
0x963F

1 0 0 1 0 1 1 0 0 0 Preg # Dreg #

W [Preg ++] = Dreg

Store Low Data Register Half 0x9680—
0x96BF

1 0 0 1 0 1 1 0 1 0 Preg # Dreg #

W [Preg – –] = Dreg

Store Low Data Register Half 0xB400—
0xB7FF

1 0 1 1 0 1 uimm5m2
divided by 2

Preg # Dreg #

W [Preg + uimm5m2] = Dreg

Store Low Data Register Half 0xE640 0000—
0xE67F 7FFF

1 1 1 0 0 1 1 0 0 1 Preg # Dreg #

uimm16m2 divided by 2

W [Preg + uimm16m2] = Dreg

Table C-10. Load / Store Instructions (Sheet 11 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-27

Instruction Opcodes

Store Low Data Register Half 0xE640 8000—
0xE67F FFFF

1 1 1 0 0 1 1 0 0 1 Preg # Dreg #

uimm16m2 divided by 2

W [Preg – uimm16m2] = Dreg

Store Low Data Register Half 0x8A01—
0x8BFE

1 0 0 0 1 0 1 Source
Dreg #

Index
Preg #

Pointer
Preg #

W [Preg ++ Preg] = Dreg_lo

NOTE: Pointer Preg number cannot be the same as Index Preg number. If so, this opcode represents a
non-post-modify instruction version.

Store Byte 0x9B00—
0x9B3F

1 0 0 1 1 0 1 1 0 0 Preg # Dreg #

B [Preg] = Dreg

Store Byte 0x9A00—
0x9A3F

1 0 0 1 1 0 1 0 0 0 Preg # Dreg #

B [Preg ++] = Dreg

Store Byte 0x9A80—
0x9ABF

1 0 0 1 1 0 1 0 1 0 Preg # Dreg #

B [Preg – –] = Dreg

Store Byte 0xE680 0000—
0xE6BF 7FFF

1 1 1 0 0 1 1 0 1 0 Preg # Dreg #

uimm15

B [Preg + uimm15] = Dreg

Store Byte 0xE680 8000—
0xE6BF FFFF

1 1 1 0 0 1 1 0 1 0 Preg # Dreg #

uimm15

B [Preg – uimm15] = Dreg

Table C-10. Load / Store Instructions (Sheet 12 of 12)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move Instructions

C-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Instructions
Table C-11. Move Instructions (Sheet 1 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move Register 0x3000—
0x3FFF

0 0 1 1 Dest. reg.
group

Source
reg.

group

Dest. reg.
#

Source
reg. #

genreg = genreg
genreg = dagreg
dagreg = genreg
dagreg = dagreg
genreg = USP
USP = genreg
Dreg = sysreg
sysreg = Dreg
sysreg = Preg
sysreg = USP

Move Register 0xC408 C000—
0xC408 C000

1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 = A1

Move Register 0xC408 E000—
0xC408 E000

1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = A0

Move Register 0xC409 2000—
0xC409 2038

1 1 0 0 0 1 0 x x x 0 0 1 0 0 1

0 0 1 0 0 0 0 0 0 0 Source
Dreg #

0 0 0

A0 = Dreg

Move Register 0xC409 A000—
0xC409 A038

1 1 0 0 0 1 0 x x x 0 0 1 0 0 1

1 0 1 0 0 0 0 0 0 0 Source
Dreg #

0 0 0

A1 = Dreg

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-29

Instruction Opcodes

Move Register 0xC00B 3800—
0xC00B 39C0

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 1 1 1 0 0 Dreg_eve
n #

0 0 0 0 0 0

Dreg_even = A0

Move Register 0xC08B 3800—
0xC08B 39C0

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1

0 0 1 1 1 0 0 Dreg_eve
n #

0 0 0 0 0 0

Dreg_even = A0 (FU)

Move Register 0xC12B 3800—
0xC12B 39C0

1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1

0 0 1 1 1 0 0 Dreg_eve
n #

0 0 0 0 0 0

Dreg_even = A0 (ISS2)

Move Register 0xC00F 1800—
0xC00F 19C0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 0 0 Dreg_eve
n # of the
pair con-
taining

Dreg_od
d

0 0 0 0 0 0

Dreg_odd = A1

Move Register 0xC08F 1800—
0xC08F 19C0

1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1

0 0 0 1 1 0 0 Dreg_eve
n # of the
pair con-
taining

Dreg_od
d

0 0 0 0 0 0

Dreg_odd = A1 (FU)

Table C-11. Move Instructions (Sheet 2 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move Instructions

C-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Register 0xC12F 1800—
0xC12F 19C0

1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1

0 0 0 1 1 0 0 Dreg_eve
n # of the
pair con-
taining

Dreg_od
d

0 0 0 0 0 0

Dreg_odd = A1 (ISS2)

Move Register 0xC00F 3800—
0xC00F 39C0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 1 1 1 0 0 Dreg_eve
n # of the

register
pair

0 0 0 0 0 0

Dreg_even = A0, Dreg_odd = A1
Dreg_odd = A1, Dreg_even =A0

Move Register 0xC08F 3800—
0xC08F 39C0

1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1

0 0 1 1 1 0 0 Dreg_eve
n # of the

register
pair

0 0 0 0 0 0

Dreg_even = A0, Dreg_odd = A1 (FU)
Dreg_odd = A1, Dreg_even =A0 (FU)

Move Register 0xC12F 3800—
0xC12F 39C0

1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1

0 0 1 1 1 0 0 Dreg_eve
n # of the

register
pair

0 0 0 0 0 0

Dreg_even = A0, Dreg_odd = A1 (ISS2)
Dreg_odd = A1, Dreg_even =A0 (ISS2)

Table C-11. Move Instructions (Sheet 3 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-31

Instruction Opcodes

Move Conditional 0x0700—
0x073F

0 0 0 0 0 1 1 1 0 0 Dest.
Dreg #

Source
Dreg #

IF CC Dreg=Dreg

Move Conditional 0x0740—
0x077F

0 0 0 0 0 1 1 1 0 1 Dest.
Dreg #

Source
Preg #

IF CC Dreg=Preg

Move Conditional 0x0780—
0x07BF

0 0 0 0 0 1 1 1 1 0 Dest.
Preg #

Source
Dreg #

IF CC Preg=Dreg

Move Conditional 0x07C0—
0x07FF

0 0 0 0 0 1 1 1 1 1 Dest.
Preg #

Source
Preg #

IF CC Preg=Preg

Move Conditional 0x0600—
0x063F

0 0 0 0 0 1 1 0 0 0 Dest.
Dreg #

Source
Dreg #

IF !CC Dreg=Dreg

Move Conditional 0x0640—
0x067F

0 0 0 0 0 1 1 0 0 1 Dest.
Dreg #

Source
Preg #

IF !CC Dreg=Preg

Move Conditional 0x0680—
0x06BF

0 0 0 0 0 1 1 0 1 0 Dest.
Preg #

Source
Dreg #

IF !CC Preg=Dreg

Move Conditional 0x06C0—
0x06FF

0 0 0 0 0 1 1 0 1 1 Dest.
Preg #

Source
Preg #

IF !CC Preg=Preg

Move Half to Full Word, Zero
Extended

0x42C0—
0x42FF

0 1 0 0 0 0 1 0 1 1 Source
Dreg #

Dest.
Dreg #

Dreg = Dreg_lo (Z)

Move Half to Full Word, Sign
Extended

0x4280—
0x42BF

0 1 0 0 0 0 1 0 1 0 Source
Dreg #

Dest.
Dreg #

Dreg = Dreg_lo (X)

Table C-11. Move Instructions (Sheet 4 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move Instructions

C-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Register Half 0xC409 4000—
0xC409 4038

1 1 0 0 0 1 0 x x x 0 0 1 0 0 1

0 1 0 0 0 0 0 0 0 0 Source
Dreg #

0 0 0

A0.X = Dreg_lo

Move Register Half 0xC409 C000—
0xC409 C038

1 1 0 0 0 1 0 x x x 0 0 1 0 0 1

1 1 0 0 0 0 0 0 0 0 Source
Dreg #

0 0 0

A1.X = Dreg_lo

Move Register Half 0xC40A 0000—
0xC40A 0E00

1 1 0 0 0 1 0 x x x 0 0 1 0 1 0

0 0 0 0 Dest
Dreg #

0 0 0 1 1 1 1 1 1

Dreg_lo = A0.X

Move Register Half 0xC40A 4000—
0xC40A 4E00

1 1 0 0 0 1 0 x x x 0 0 1 0 1 0

0 1 0 0 Dest
Dreg #

0 0 0 1 1 1 1 1 1

Dreg_lo = A1.X

Move Register Half 0xC409 0000—
0xC409 0038

1 1 0 0 0 1 0 x x x 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 Source 0
Dreg #

0 0 0

A0.L = Dreg_lo

Move Register Half 0xC409 8000—
0xC409 8038

1 1 0 0 0 1 0 x x x 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 Source 0
Dreg #

0 0 0

A1.L = Dreg_lo

Table C-11. Move Instructions (Sheet 5 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-33

Instruction Opcodes

Move Register Half 0xC429 0000—
0xC429 0038

1 1 0 0 0 1 0 x x x 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 Source 0
Dreg #

0 0 0

A0.H = Dreg_hi

Move Register Half 0xC429 8000—
0xC429 8038

1 1 0 0 0 1 0 x x x 1 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 Source 0
Dreg #

0 0 0

A1.H = Dreg_hi

Move Register Half 0xC003 3800—
0xC003 39C0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0

Move Register Half 0xC083 3800—
0xC083 39C0

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (FU)

Move Register Half 0xC103 3800—
0xC103 39C0

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (IS)

Move Register Half 0xC183 3800—
0xC183 39C0

1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (IU)

Move Register Half 0xC043 3800—
0xC043 39C0

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (T)

Table C-11. Move Instructions (Sheet 6 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move Instructions

C-34 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Register Half 0xC023 3800—
0xC023 39C0

1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (S2RND)

Move Register Half 0xC123 3800—
0xC123 39C0

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (ISS2)

Move Register Half 0xC163 3800—
0xC163 39C0

1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0 (IH)

Move Register Half 0xC007 1800—
0xC007 19C0

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1

Move Register Half 0xC107 1800—
0xC107 19C0

1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (IS)

Move Register Half 0xC087 1800—
0xC087 19C0

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (FU)

Move Register Half 0xC187 1800—
0xC187 19C0

1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (IU)

Table C-11. Move Instructions (Sheet 7 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-35

Instruction Opcodes

Move Register Half 0xC047 1800—
0xC047 19C0

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (T)

Move Register Half 0xC027 1800—
0xC027 19C0

1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (S2RND)

Move Register Half 0xC127 1800—
0xC127 19C0

1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (ISS2)

Move Register Half 0xC167 1800—
0xC167 19C0

1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1

0 0 0 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_hi = A1 (IH)

Move Register Half 0xC007 3800—
0xC007 39C0

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1
Dreg_hi = A1, Dreg_lo = A0

Move Register Half 0xC087 3800—
0xC087 39C0

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (FU)
Dreg_hi = A1, Dreg_lo = A0 (FU)

Move Register Half 0xC107 3800—
0xC107 39C0

1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (IS)
Dreg_hi = A1, Dreg_lo = A0 (IS)

Table C-11. Move Instructions (Sheet 8 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move Instructions

C-36 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move Register Half 0xC187 3800—
0xC187 39C0

1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (IU)
Dreg_hi = A1, Dreg_lo = A0 (IU)

Move Register Half 0xC047 3800—
0xC047 39C0

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (T)
Dreg_hi = A1, Dreg_lo = A0 (T)

Move Register Half 0xC027 3800—
0xC027 39C0

1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (S2RND)
Dreg_hi = A1, Dreg_lo = A0 (S2RND)

Move Register Half 0xC127 3800—
0xC127 39C0

1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (ISS2)
Dreg_hi = A1, Dreg_lo = A0 (ISS2)

Move Register Half 0xC167 3800—
0xC167 39C0

1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1

0 0 1 1 1 0 0 Dreg # 0 0 0 0 0 0

Dreg_lo = A0, Dreg_hi = A1 (IH)
Dreg_hi = A1, Dreg_lo = A0 (IH)

Move Byte, Zero Extended 0x4340—
0x437F

0 1 0 0 0 0 1 1 0 1 Source
Dreg #

Dest.
Dreg #

Dreg = Dreg_byte (Z)

Move Byte, Sign Extended 0x4300—
0x433F

0 1 0 0 0 0 1 1 0 0 Source
Dreg #

Dest.
Dreg #

Dreg = Dreg_byte (X)

Table C-11. Move Instructions (Sheet 9 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-37

Instruction Opcodes

Stack Control Instructions
Table C-12. Stack Control Instructions (Sheet 1 of 2)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Push 0x0140—
0x017F

0 0 0 0 0 0 0 1 0 1 Reg.
group

Reg. #

[– –SP]=allreg

Push Multiple 0x05C0—
0x05FD

0 0 0 0 0 1 0 1 1 1 Dreg # Preg #

NOTE: See two above notes on interpretation of the register number fields.

[– –SP]=(R7:Dreglim, P5:Preglim)

Push Multiple 0x0540—
0x0578

0 0 0 0 0 1 0 1 0 1 Dreg # 0 0 0

NOTE: The embedded register number represents the lowest register in the range to be used. Example:
“100b” in that field means R7 through R4 are used.

[– –SP]=(R7:Dreglim)

Push Multiple 0x04C0—
0x04C5

0 0 0 0 0 1 0 0 1 1 0 0 0 Preg #

NOTE: The embedded register number represents the lowest register in the range to be used. Example:
“010b” in that field means P5 through P2 are used. The highest useful value allowed is P4.

[– –SP]=(P5:Preglim)

Pop 0x0100—
0x013F

0 0 0 0 0 0 0 1 0 0 Reg.
group

Reg. #

NOTE: Dreg and Preg not supported by this instruction. See Load Data Register for Dreg and Load
Pointer Register for Preg.

mostreg=[SP++]

Pop Multiple 0x0580—
0x05BD

0 0 0 0 0 1 0 1 1 0 Dreg # Preg #

NOTE: See two above notes on interpretation of the register number fields.

(R7:Dreglim, P5:Preglim)=[SP++]

Stack Control Instructions

C-38 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Pop Multiple 0x0500—
0x0538

0 0 0 0 0 1 0 1 0 0 Dreg # 0 0 0

NOTE: The embedded register number represents the lowest register in the range to be used. Example:
“100b” in that field means R7 through R4 are used.

(R7:Dreglim)=[SP++]

Pop Multiple 0x0480—
0x0485

0 0 0 0 0 1 0 0 1 0 0 0 0 Preg #

NOTE: The embedded register number represents the lowest register in the range to be used. Example:
“010b” in that field means P5 through P2 are used. The highest useful value allowed is P4.

(P5:Preglim)=[SP++]

Linkage 0xE800 0000—
0xE800 FFFF

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

uimm18m4 divided by 4

LINK uimm18m4

Linkage 0xE801 0000 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UNLINK

Table C-12. Stack Control Instructions (Sheet 2 of 2)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-39

Instruction Opcodes

Control Code Bit Management
Instructions

Table C-13. Control Code Bit Management Instructions (Sheet 1 of 4)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Compare Data Register 0x0800—
0x083F

0 0 0 0 1 0 0 0 0 0 Source
reg #

Dest reg
#

CC = Dreg == Dreg

Compare Data Register 0x0C00—
0x0C3F

0 0 0 0 1 1 0 0 0 0 imm3 Dest reg
#

CC = Dreg == imm3

Compare Data Register 0x0880—
0x08BF

0 0 0 0 1 0 0 0 1 0 Source
reg #

Dest reg
#

CC = Dreg < Dreg

Compare Data Register 0x0C80—
0x0CBF

0 0 0 0 1 1 0 0 1 0 imm3 Dest reg
#

CC = Dreg < imm3

Compare Data Register 0x0900—
0x093F

0 0 0 0 1 0 0 1 0 0 Source
reg #

Dest reg
#

CC = Dreg <= Dreg

Compare Data Register 0x0D00—
0x0D3F

0 0 0 0 1 1 0 1 0 0 imm3 Dest reg
#

CC = Dreg <= imm3

Compare Data Register 0x0980—
0x09BF

0 0 0 0 1 0 0 1 1 0 Source
reg #

Dest reg
#

CC = Dreg < Dreg (IU)

Compare Data Register 0x0D80—
0x0DBF

0 0 0 0 1 1 0 1 1 0 uimm3 Dest reg
#

CC = Dreg < uimm3 (IU)

Compare Data Register 0x0A00—
0x0A3F

0 0 0 0 1 0 1 0 0 0 Source
reg #

Dest reg
#

CC = Dreg <= Dreg (IU)

Control Code Bit Management Instructions

C-40 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Compare Data Register 0x0E00—
0x0E3F

0 0 0 0 1 1 1 0 0 0 uimm3 Dest reg
#

CC = Dreg <= uimm3 (IU)

Compare Pointer Register 0x0840—
0x087F

0 0 0 0 1 0 0 0 0 1 Source
reg #

Dest reg
#

CC = Preg == Preg

Compare Pointer Register 0x0C40—
0x0C7F

0 0 0 0 1 1 0 0 0 1 imm3 Dest reg
#

CC = Preg == imm3

Compare Pointer Register 0x08C0—
0x08FF

0 0 0 0 1 0 0 0 1 1 Source
reg #

Dest reg
#

CC = Preg < Preg

Compare Pointer Register 0x0CC0—
0x0CFF

0 0 0 0 1 1 0 0 1 1 imm3 Dest reg
#

CC = Preg < imm3

Compare Pointer Register 0x0940—
0x097F

0 0 0 0 1 0 0 1 0 1 Source
reg #

Dest reg
#

CC = Preg <= Preg

Compare Pointer Register 0x0D40—
0x0D7F

0 0 0 0 1 1 0 1 0 1 imm3 Dest reg
#

CC = Preg <= imm3

Compare Pointer Register 0x09C0—
0x09FF

0 0 0 0 1 0 0 1 1 1 Source
reg #

Dest reg
#

CC = Preg < Preg (IU)

Compare Pointer Register 0x0DC0—
0x0DFF

0 0 0 0 1 1 0 1 1 1 uimm3 Dest reg
#

CC = Preg < uimm3 (IU)

Compare Pointer Register 0x0A40—
0x0A7F

0 0 0 0 1 0 1 0 0 1 Source
reg #

Dest reg
#

CC = Preg <= Preg (IU)

Table C-13. Control Code Bit Management Instructions (Sheet 2 of 4)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-41

Instruction Opcodes

Compare Pointer Register 0x0E40—
0x0E7F

0 0 0 0 1 1 1 0 0 1 uimm3 Dest reg
#

CC = Preg <= uimm3 (IU)

Compare Accumulator 0x0A80 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0

CC = A0 == A1

Compare Accumulator 0x0B00 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

CC = A0 < A1

Compare Accumulator 0x0B80 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0

CC = A0 <= A1

Move CC 0x0200—
0x0207

0 0 0 0 0 0 1 0 0 0 0 0 0 Dreg #

Dreg = CC

Move CC 0x0380—
0x039F

0 0 0 0 0 0 1 1 1 0 0 ASTAT bit #

statbit = CC

Move CC 0x03A0—
0x03BF

0 0 0 0 0 0 1 1 1 0 1 ASTAT bit #

statbit |= CC

Move CC 0x03C0—
0x03DF

0 0 0 0 0 0 1 1 1 1 0 ASTAT bit #

statbit &= CC

Move CC 0x03E0—
0x03FF

0 0 0 0 0 0 1 1 1 1 1 ASTAT bit #

statbit ^= CC

Move CC 0x0208—
0x020F

0 0 0 0 0 0 1 0 0 0 0 0 1 Dreg #

CC = Dreg

Move CC 0x0300—
0x031F

0 0 0 0 0 0 1 1 0 0 0 ASTAT bit #

CC = statbit

Table C-13. Control Code Bit Management Instructions (Sheet 3 of 4)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Control Code Bit Management Instructions

C-42 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Move CC 0x0320—
0x033F

0 0 0 0 0 0 1 1 0 0 1 ASTAT bit #

CC |= statbit

Move CC 0x0340—
035F

0 0 0 0 0 0 1 1 0 1 0 ASTAT bit #

CC &= statbit

Move CC 0x0360—
0x037F

0 0 0 0 0 0 1 1 0 1 1 ASTAT bit #

CC ^= statbit

Negate CC 0x0218 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0

CC = !CC

Table C-13. Control Code Bit Management Instructions (Sheet 4 of 4)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-43

Instruction Opcodes

Logical Operations Instructions
Table C-14. Logical Operations Instructions

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AND 0x5400—
0x55FF

0 1 0 1 0 1 0 Dest.
Dreg #

Src 1
Dreg #

Src 0
Dreg #

Dreg = Dreg & Dreg

NOT (One’s Complement) 0x43C0—
0x43FF

0 1 0 0 0 0 1 1 1 1 Source
Dreg #

Dest.
Dreg #

Dreg = ~ Dreg

OR 0x5600—
0x57FF

0 1 0 1 0 1 1 Dest.
Dreg #

Src 1
Dreg #

Src 0
Dreg #

Dreg = Dreg | Dreg

Exclusive OR 0x5800—
0x59FF

0 1 0 1 1 0 0 Dest.
Dreg #

Src 1
Dreg #

Src 0
Dreg #

Dreg = Dreg ^ Dreg

Bit Wise Exclusive OR 0xC60B 0000—
0xC60B 0E38

1 1 0 0 0 1 1 0 0 0 x x 1 0 1 1

0 0 0 0 Dest.
Dreg #

x x x Source
Dreg #

0 0 0

Dreg_lo = CC = BXORSHIFT (A0, Dreg)

Bit Wise Exclusive OR 0xC60B 4000—
0xC60B 4E38

1 1 0 0 0 1 1 0 0 0 x x 1 0 1 1

0 1 0 0 Dest.
Dreg #

x x x Source
Dreg #

0 0 0

Dreg_lo = CC = BXOR (A0, Dreg)

Bit Wise Exclusive OR C60C 4000—
C60C 4E00

1 1 0 0 0 1 1 0 0 x x 0 1 1 0 0

0 1 0 0 Dest.
Dreg #

x x x 0 0 0 0 0 0

Dreg_lo = CC = BXOR (A0, A1, CC)

Bit Wise Exclusive OR C60C 0000 1 1 0 0 0 1 1 0 0 x x 0 1 1 0 0

0 0 0 0 0 0 0 x x x 0 0 0 0 0 0

A0 = BXORSHIFT (A0, A1, CC)

Bit Operations Instructions

C-44 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Bit Operations Instructions
Table C-15. Bit Operations Instructions (Sheet 1 of 2)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Clear 0x4C00—
0x4CFF

0 1 0 0 1 1 0 0 uimm5 Dest.
Dreg #

BITCLR (Dreg, uimm5)

Bit Set 0x4A00—
0x4AFF

0 1 0 0 1 0 1 0 uimm5 Dest.
Dreg #

BITSET (Dreg, uimm5)

Bit Toggle 0x4B00—
0x4BFF

0 1 0 0 1 0 1 1 uimm5 Dest.
Dreg #

BITTGL (Dreg, uimm5)

Bit Test 0x4900—
0x49FF

0 1 0 0 1 0 0 1 uimm5 Dest.
Dreg #

CC = BITTST (Dreg, uimm5)

Bit Test 0x4800—
0x48FF

0 1 0 0 1 0 0 0 uimm5 Dest.
Dreg #

CC = ! BITTST (Dreg, uimm5)

Bit Field Deposit 0xC60A 8000—
0xC60A 8E3F

1 1 0 0 0 1 1 0 0 x x 0 1 0 1 0

1 0 0 0 Dest.
Dreg #

x x x foregnd
Dreg #

backgnd
Dreg #

Dreg = DEPOSIT (Dreg, Dreg)

Bit Field Deposit 0xC60A C000—
0xC60A CE3F

1 1 0 0 0 1 1 0 0 x x 0 1 0 1 0

1 1 0 0 Dest.
Dreg #

x x x foregnd
Dreg #

backgnd
Dreg #

Dreg = DEPOSIT (Dreg, Dreg) (X)

Bit Field Extraction 0xC60A 0000—
0xC60A 0E3F

1 1 0 0 0 1 1 0 0 x x 0 1 0 1 0

0 0 0 0 Dest.
Dreg #

x x x pattern
Dreg #

scene
Dreg #

Dreg = EXTRACT (Dreg, Dreg_lo) (Z)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-45

Instruction Opcodes

Bit Field Extraction 0xC60A 4000—
0xC60A 4E3F

1 1 0 0 0 1 1 0 0 x x 0 1 0 1 0

0 1 0 0 Dest.
Dreg #

x x x pattern
Dreg #

scene
Dreg #

Dreg = EXTRACT (Dreg, Dreg_lo) (X)

Bit Multiplex 0xC608 0000—
0xC608 003F

1 1 0 0 0 1 1 0 0 x x 0 1 0 0 0

0 0 0 0 0 0 0 x x x Source 0
Dreg #

Source 1
Dreg #

BITMUX (Dreg, Dreg, A0) (ASR)

Bit Multiplex 0xC608 4000—
0xC608 403F

1 1 0 0 0 1 1 0 0 x x 0 1 0 0 0

0 1 0 0 0 0 0 x x x Source 0
Dreg #

Source 1
Dreg #

BITMUX (Dreg, Dreg, A0) (ASL)

Ones Population Count 0xC606 C000—
0xC606 CE07

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 0

1 1 0 0 Dest.
Dreg #

x x x 0 0 0 Source
Dreg #

Dreg_lo = ONES Dreg

Table C-15. Bit Operations Instructions (Sheet 2 of 2)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift / Rotate Operations Instructions

C-46 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift / Rotate Operations Instructions
Table C-16. Shift / Rotate Operations Instructions (Sheet 1 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Add with Shift 0x4580—
0x45BF

0 1 0 0 0 1 0 1 1 0 Source
Preg #

Dest.
Preg #

Preg = (Preg + Preg) << 1

Add with Shift 0x45C0—
0x45FF

0 1 0 0 0 1 0 1 1 1 Source
Preg #

Dest.
Preg #

Preg = (Preg + Preg) << 2

Add with Shift 0x4100—
0x413F

0 1 0 0 0 0 0 1 0 0 Source
Dreg #

Dest.
Dreg #

Dreg = (Dreg + Dreg) << 1

Add with Shift 0x4140—
0x417F

0 1 0 0 0 0 0 1 0 1 Source
Dreg #

Dest.
Dreg #

Dreg = (Dreg + Dreg) << 2

Shift with Add 0x5C00—
0x5DFF

0 1 0 1 1 1 0 Dest.
Preg #

Src 1
Preg #

Src 0
Preg #

Preg = Preg + (Preg <<1)

Shift with Add 0x5E00—
0x5FFF

0 1 0 1 1 1 1 Dest.
Preg #

Src 1
Preg #

Src 0
Preg #

Preg = Preg + (Preg <<2)

Arithmetic Shift 0x4D00—
0x4DFF

0 1 0 0 1 1 0 uimm5 Dest.
Dreg #

Dreg >>>= uimm5

Arithmetic Shift 0xC680 0180—
0xC680 0FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 0 0 0 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_lo = Dreg_lo >>> uimm4

Arithmetic Shift 0xC680 1180—
0xC680 1FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 0 0 1 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_lo = Dreg_hi >>> uimm4

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-47

Instruction Opcodes

Arithmetic Shift 0xC680 2180—
0xC680 2FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 0 1 0 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_hi = Dreg_lo >>> uimm4

Arithmetic Shift 0xC680 3180—
0xC680 3FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 0 1 1 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_hi = Dreg_hi >>> uimm4

Arithmetic Shift 0xC680 4000—
0xC680 4E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 1 0 0 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_lo = Dreg_lo << uimm4 (S)

Arithmetic Shift 0xC680 5000—
0xC680 5E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 1 0 1 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_lo = Dreg_hi << uimm4 (S)

Arithmetic Shift 0xC680 6000—
0xC680 6E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 1 1 0 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_hi = Dreg_lo << uimm4 (S)

Arithmetic Shift 0xC680 7000—
0xC680 7E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

0 1 1 1 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_hi = Dreg_hi << uimm4 (S)

Arithmetic Shift 0xC682 0100—
0xC682 0FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 0

0 0 0 0 Dest.
Dreg #

2’s complement of
uimm5

Source
Dreg #

Dreg = Dreg >>> uimm5

Table C-16. Shift / Rotate Operations Instructions (Sheet 2 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift / Rotate Operations Instructions

C-48 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Shift 0xC682 4000—
0xC680 4EFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 0

0 1 0 0 Dest.
Dreg #

uimm5 Source
Dreg #

Dreg = Dreg << uimm5 (S)

Arithmetic Shift 0xC683 0100—
0xC683 01F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

0 0 0 0 0 0 0 2’s complement of
uimm5

0 0 0

A0 = A0 >>> uimm5

Arithmetic Shift 0xC683 1100—
0xC683 11F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

0 0 0 1 0 0 0 2’s complement of
uimm5

0 0 0

A1 = A1 >>> uimm5

Arithmetic Shift 0x4000—
0x403F

0 1 0 0 0 0 0 0 0 0 Source
Dreg #

Dest.
Dreg #

Dreg >>>= Dreg

Arithmetic Shift 0xC600 0000—
0xC600 0E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 0 0 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_lo = ASHIFT Dreg_lo BY Dreg_lo

Arithmetic Shift 0xC600 1000—
0xC600 1E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 0 0 1 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_lo = ASHIFT Dreg_hi BY Dreg_lo

Arithmetic Shift 0xC600 2000—
0xC600 2E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 0 1 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_hi = ASHIFT Dreg_lo BY Dreg_lo

Arithmetic Shift 0xC600 3000—
0xC600 3E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 0 1 1 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_hi = ASHIFT Dreg_hi BY Dreg_lo

Table C-16. Shift / Rotate Operations Instructions (Sheet 3 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-49

Instruction Opcodes

Arithmetic Shift 0xC600 4000—
0xC600 4E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 1 0 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_lo = ASHIFT Dreg_lo BY Dreg_lo (S)

Arithmetic Shift 0xC600 5000—
0xC600 5E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 1 0 1 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_lo = ASHIFT Dreg_hi BY Dreg_lo (S)

Arithmetic Shift 0xC600 6000—
0xC600 6E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 1 1 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_hi = ASHIFT Dreg_lo BY Dreg_lo (S)

Arithmetic Shift 0xC600 7000—
0xC600 7E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

0 1 1 1 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_hi = ASHIFT Dreg_hi BY Dreg_lo (S)

Arithmetic Shift 0xC602 0000—
0xC602 0E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 0

0 0 0 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg = ASHIFT Dreg BY Dreg_lo

Arithmetic Shift 0xC602 4000—
0xC602 4E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 0

0 1 0 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg = ASHIFT Dreg BY Dreg_lo (S)

Arithmetic Shift 0xC603 0000—
0xC603 0038

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 1

0 0 0 0 0 0 0 x x x Source
Dreg #

0 0 0

A0 = ASHIFT A0 BY Dreg_lo

Table C-16. Shift / Rotate Operations Instructions (Sheet 4 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift / Rotate Operations Instructions

C-50 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Arithmetic Shift 0xC603 1000—
0xC603 1038

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 1

0 0 0 1 0 0 0 x x x Source
Dreg #

0 0 0

A1 = ASHIFT A1 BY Dreg_lo

Logical Shift 0x4500—
0x453F

0 1 0 0 0 1 0 1 0 0 Source
Preg #

Dest.
Preg #

Preg = Preg >> 1

Logical Shift 0x44C0—
0x44FF

0 1 0 0 0 1 0 0 1 1 Source
Preg #

Dest.
Preg #

Preg = Preg >> 2

Logical Shift 0x5A00—
0x5BFF

0 1 0 1 1 0 1 Source
Preg #

Dest.
Preg #

Dest.
Preg #

NOTE: Both Destination Preg # fields must refer to the same Preg number. Otherwise, this opcode rep-
resents an Add with Shift instruction.
NOTE: This Preg = Preg <<1 instruction produces the same opcode as the special case of the Preg = Preg
+ Preg Add instruction, where both input operands are the same Preg (e.g., p3 = p0+p0;) that accom-
plishes the same function. Both syntaxes double the input operand value, then place the result in a Preg.

Preg = Preg << 1

Logical Shift 0x4440—
0x447F

0 1 0 0 0 1 0 0 0 1 Source
Preg #

Dest.
Preg #

Preg = Preg << 2

Logical Shift 0x4E00—
0x4EFF

0 1 0 0 1 1 1 uimm5 Dest.
Dreg #

Dreg >>= uimm5

Logical Shift 0x4F00—
0x4FFF

0 1 0 0 1 1 1 uimm5 Dest.
Dreg #

Dreg <<= uimm5

Logical Shift 0xC680 8180—
0xC680 8FFF

1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0

1 0 0 0 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_lo = Dreg_lo >> uimm4

Table C-16. Shift / Rotate Operations Instructions (Sheet 5 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-51

Instruction Opcodes

Logical Shift 0xC680 9180—
0xC680 9FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 0 1 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_lo = Dreg_hi >> uimm4

Logical Shift 0xC680 A180—
0xC680 AFFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 1 0 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_hi = Dreg_lo >> uimm4

Logical Shift 0xC680 B180—
0xC680 BFFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 1 1 Dest.
Dreg #

2’s comp. of
uimm4

Source
Dreg #

Dreg_hi = Dreg_hi >> uimm4

Logical Shift 0xC680 8000—
0xC680 8E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 0 0 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_lo = Dreg_lo << uimm4

Logical Shift 0xC680 9000—
0xC680 9E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 0 1 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_lo = Dreg_hi << uimm4

Logical Shift 0xC680 A000—
0xC680 AE7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 1 0 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_hi = Dreg_lo << uimm4

Logical Shift 0xC680 B000—
0xC680 BE7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 0

1 0 1 1 Dest.
Dreg #

uimm4 Source
Dreg #

Dreg_hi = Dreg_hi << uimm4

Table C-16. Shift / Rotate Operations Instructions (Sheet 6 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift / Rotate Operations Instructions

C-52 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Shift 0xC682 8100—
0xC682 8FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 0

1 0 0 0 Dest.
Dreg #

2’s comp. of
uimm5

Source
Dreg #

Dreg = Dreg >> uimm5

Logical Shift 0xC682 8000—
0xC682 8EFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 0

1 0 0 0 Dest.
Dreg #

uimm5 Source
Dreg #

Dreg = Dreg << uimm5

Logical Shift 0xC683 4100—
0xC683 41F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

0 1 0 0 0 0 0 2’s comp of
uimm5

0 0 0

A0 = A0 >> uimm5

Logical Shift 0xC683 4000—
0xC683 40F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

0 1 0 0 0 0 0 uimm5 0 0 0

A0 = A0 << uimm5

Logical Shift 0xC683 5100—
0xC683 51F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

0 1 0 1 0 0 0 2’s comp of
uimm5

0 0 0

A1 = A1 >> uimm5

Logical Shift 0xC683 5000—
0xC683 50F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

0 1 0 1 0 0 0 uimm5 0 0 0

A1 = A1 << uimm5

Logical Shift 0x4080—
0x40BF

0 1 0 0 0 0 0 0 1 0 Source
Dreg #

Dest.
Dreg #

Dreg <<= Dreg

Logical Shift 0x4040—
0x407F

0 1 0 0 0 0 0 0 0 1 Source
Dreg #

Dest.
Dreg #

Dreg >>= Dreg

Table C-16. Shift / Rotate Operations Instructions (Sheet 7 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-53

Instruction Opcodes

Logical Shift 0xC600 8000—
0xC600 8E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

1 0 0 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_lo = LSHIFT Dreg_lo BY Dreg_lo

Logical Shift 0xC600 9000—
0xC600 9E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

1 0 0 1 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_lo = LSHIFT Dreg_hi BY Dreg_lo

Logical Shift 0xC600 A000—
0xC600 AE3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

1 0 1 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_hi = LSHIFT Dreg_lo BY Dreg_lo

Logical Shift 0xC600 B000—
0xC600 BE3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 0

1 0 1 1 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg_hi = LSHIFT Dreg_hi BY Dreg_lo

Logical Shift 0xC602 8000—
0xC602 8E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 0

1 0 0 0 Dest.
Dreg #

x x x Source
Dreg #

sh_mag
Dreg #

Dreg = LSHIFT Dreg BY Dreg_lo

Logical Shift 0xC603 4000—
0xC603 4038

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 1

0 1 0 0 0 0 0 x x x Source
Dreg #

0 0 0

A0 = LSHIFT A0 BY Dreg_lo

Logical Shift 0xC603 5000—
0xC603 5038

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 1

0 1 0 1 0 0 0 x x x Source
Dreg #

0 0 0

A1 = LSHIFT A1 BY Dreg_lo

Table C-16. Shift / Rotate Operations Instructions (Sheet 8 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift / Rotate Operations Instructions

C-54 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Rotate 0xC682 C000—
0xC682 CFFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 0

1 1 0 0 Dest.
Dreg #

imm6 Source
Dreg #

Dreg = ROT Dreg BY imm6

Rotate 0xC683 8000—
0xC683 81F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

1 0 0 0 0 0 0 imm6 0 0 0

A0 = ROT A0 BY imm6

Rotate 0xC683 9000—
0xC683 91F8

1 1 0 0 0 1 1 0 1 x x 0 0 0 1 1

1 0 0 1 0 0 0 imm6 0 0 0

A1 = ROT A1 BY imm6

Rotate 0xC602 C000—
0xC602 CE3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 0

1 1 0 0 Dest.
Dreg #

x x x Source
Dreg #

rot_mag
Dreg #

Dreg = ROT Dreg BY Dreg_lo

Rotate 0xC603 8000—
0xC603 8038

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 1

1 0 0 0 0 0 0 x x x Source
Dreg #

0 0 0

A0 = ROT A0 BY Dreg_lo

Rotate 0xC603 9000—
0xC603 9038

1 1 0 0 0 1 1 0 0 x x 0 0 0 1 1

1 0 0 1 0 0 0 x x x Source
Dreg #

0 0 0

A1 = ROT A1 BY Dreg_lo

Table C-16. Shift / Rotate Operations Instructions (Sheet 9 of 9)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-55

Instruction Opcodes

Arithmetic Operations Instructions
Table C-17. Arithmetic Operations Instructions (Sheet 1 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Absolute Value 0xC410 403F 1 1 0 0 0 1 0 x x x 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 = ABS A1

Absolute Value 0xC430 003F 1 1 0 0 0 1 0 x x x 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = ABS A0

Absolute Value 0xC430 403F 1 1 0 0 0 1 0 x x x 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = ABS A1

Absolute Value 0xC410 C03F 1 1 0 0 0 1 0 x x x 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = ABS A1, A0 = ABS A0

Absolute Value 0xC407 8000—
0xC407 8E38

1 1 0 0 0 1 0 x x x 0 0 0 1 1 1

1 0 0 0 Dest
Dreg #

0 0 0 Source
Dreg #

0 0 0

Dreg = ABS Dreg

Add 0x5A00—
0x5BFF

0 1 0 1 1 0 1 Dest.
Dreg #

Src 1
Dreg #

Src 0
Dreg #

NOTE: The special case of Preg = Preg + Preg, where both input operands are the same Preg (e.g., p3 =
p0+p0;), produces the same opcode as the Logical Shift instruction Preg = Preg << 1 that accomplishes the
same function. Both syntaxes double the input operand value, then place the result in a Preg.

Preg = Preg + Preg

Add 0x5000—
0x51FF

0 1 0 1 0 0 0 Dest.
Dreg #

Src 1
Dreg #

Src 0
Dreg #

Dreg = Dreg + Dreg

Arithmetic Operations Instructions

C-56 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add 0xC404 0000—
0xC404 0E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg + Dreg (NS)

Add 0xC404 2000—
0xC404 2E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 0

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg + Dreg (S)

Add 0xC402 0000—
0xC402 0E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo + Dreg_lo (NS)

Add 0xC402 4000—
0xC402 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo + Dreg_hi (NS)

Add 0xC402 8000—
0xC402 8E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

1 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi + Dreg_lo (NS)

Add 0xC402 C000—
0xC402 CE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

1 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi + Dreg_hi (NS)

Add 0xC422 0000—
0xC422 0E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo + Dreg_lo (NS)

Table C-17. Arithmetic Operations Instructions (Sheet 2 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-57

Instruction Opcodes

Add 0xC422 4000—
0xC422 4E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo + Dreg_hi (NS)

Add 0xC422 8000—
0xC422 8E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

1 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi + Dreg_lo (NS)

Add 0xC422 C000—
0xC422 CE3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

1 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi + Dreg_hi (NS)

Add 0xC402 2000—
0xC402 2E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo + Dreg_lo (S)

Add 0xC402 6000—
0xC402 6E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo + Dreg_hi (S)

Add 0xC402 A000—
0xC402 AE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

1 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi + Dreg_lo (S)

Add 0xC402 E000—
0xC402 EE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 0

1 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi + Dreg_hi (S)

Table C-17. Arithmetic Operations Instructions (Sheet 3 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-58 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add 0xC422 2000—
0xC422 2E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo + Dreg_lo (S)

Add 0xC422 6000—
0xC422 6E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo + Dreg_hi (S)

Add 0xC422 A000—
0xC422 AE3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

1 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi + Dreg_lo (S)

Add 0xC422 E000—
0xC422 EE3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 0

1 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi + Dreg_hi (S)

Add/Subtract, Prescale Down 0xC405 9000—
0xC405 9E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 1

1 0 0 1 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg + Dreg (RND20)

Add/Subtract, Prescale Down 0xC425 9000—
0xC425 9E3F

1 1 0 0 0 1 0 x x x 1 0 0 1 0 1

1 0 0 1 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg + Dreg (RND20)

Add/Subtract, Prescale Down 0xC405 D000—
0xC405 DE3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 1

1 1 0 1 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg – Dreg (RND20)

Table C-17. Arithmetic Operations Instructions (Sheet 4 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-59

Instruction Opcodes

Add/Subtract, Prescale Down 0xC425 D000—
0xC425 DE3F

1 1 0 0 0 1 0 x x x 1 0 0 1 0 1

1 1 0 1 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg – Dreg (RND20)

Add/Subtract, Prescale Up 0xC405 0000—
0xC405 0E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 1

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg + Dreg (RND12)

Add/Subtract, Prescale Up 0xC425 0000—
0xC425 0E3F

1 1 0 0 0 1 0 x x x 1 0 0 1 0 1

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg + Dreg (RND12)

Add/Subtract, Prescale Up 0xC405 4000—
0xC405 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 1

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg – Dreg (RND12)

Add/Subtract, Prescale Up 0xC425 4000—
0xC425 4E3F

1 1 0 0 0 1 0 x x x 1 0 0 1 0 1

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg – Dreg (RND12)

Add Immediate 0x6400—
0x6700

0 1 1 0 0 1 imm7 Dreg #

Dreg += imm7

Add Immediate 0x6C00—
0x6FFF

0 1 1 0 1 1 imm7 Preg #

Preg += imm7

Add Immediate 0x9F60—
0x9F63

1 0 0 1 1 1 1 1 0 1 1 0 0 0 Ireg #

Ireg += 2

Table C-17. Arithmetic Operations Instructions (Sheet 5 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-60 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Add Immediate 0x9F68—
0x9F6B

1 0 0 1 1 1 1 1 0 1 1 0 1 0 Ireg #

Ireg += 4

Divide Primitive 0x4240—
0x427F

0 1 0 0 0 0 1 0 0 1 Source
Dreg #

Dest.
Dreg #

DIVS (Dreg, Dreg)

Divide Primitive 0x4200—
0x423F

0 1 0 0 0 0 1 0 0 0 Source
Dreg #

Dest.
Dreg #

DIVQ (Dreg, Dreg)

Exponent Detection 0xC607 0000—
0xC607 0E3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 1

0 0 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = EXPADJ (Dreg, Dreg_lo)

Exponent Detection 0xC607 8000—
0xC607 8E3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 1

1 0 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = EXPADJ (Dreg_lo, Dreg_lo)

Exponent Detection 0xC607 C000—
0xC607 CE3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 1

1 1 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = EXPADJ (Dreg_hi, Dreg_lo)

Exponent Detection 0xC607 4000—
0xC607 4E3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 1

0 1 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = EXPADJ (Dreg, Dreg_lo) (V)

Maximum 0xC407 0000—
0xC407 0E3F

1 1 0 0 0 1 0 0 0 x x 0 0 1 1 1

0 0 0 0 Dest
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg = MAX (Dreg, Dreg)

Table C-17. Arithmetic Operations Instructions (Sheet 6 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-61

Instruction Opcodes

Minimum 0xC407 4000—
0xC407 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 1 1

0 1 0 0 Dest
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = MIN (Dreg, Dreg)

Modify, Decrement 0xC40B C03F 1 1 0 0 0 1 0 x x x 0 0 1 0 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 – = A1

Modify, Decrement 0xC40B E03F 1 1 0 0 0 1 0 x x x 0 0 1 0 1 1

1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 – = A1 (W32)

Modify, Decrement 0x4400—
0x443F

0 1 0 0 0 1 0 0 0 0 Source
Preg #

Dest.
Preg #

Preg – = Preg

Modify, Decrement 0x9E70—
0x9E7F

1 0 0 1 1 1 1 0 0 1 1 1 Mreg
#

Ireg #

Ireg – = Mreg

Modify, Increment 0xC40B 803F 1 1 0 0 0 1 0 x x x 0 0 1 0 1 1

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 += A1

Modify, Increment 0xC40B A03F 1 1 0 0 0 1 0 x x x 0 0 1 0 1 1

1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 += A1 (W32)

Modify, Increment 0x4540—
0x457F

0 1 0 0 0 1 0 1 0 1 Source
Preg #

Dest.
Preg #

Preg += Preg (BREV)

Modify, Increment 0x9E60—
0x9E6F

1 0 0 1 1 1 1 0 0 1 1 0 Mreg
#

Ireg #

Ireg += Mreg

Table C-17. Arithmetic Operations Instructions (Sheet 7 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-62 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Modify, Increment 0x9EE0—
0x9EEF

1 0 0 1 1 1 1 0 1 1 1 0 Mreg
#

Ireg #

Ireg += Mreg (brev)

Modify, Increment 0xC40B 003F—
0xC40B 0E00

1 1 0 0 0 1 0 x x x 0 0 1 0 1 1

0 0 0 0 Dest
Dreg #

0 0 0 1 1 1 1 1 1

Dreg = (A0 += A1)

Modify, Increment 0xC40B 403F—
0xC40B 4E00

1 1 0 0 0 1 0 x x x 0 0 1 0 1 1

0 1 0 0 Dest
Dreg #

0 0 0 1 1 1 1 1 1

Dreg_lo = (A0 += A1)

Modify, Increment 0xC42B 403F—
0xC42B 4E00

1 1 0 0 0 1 0 x x x 1 0 1 0 1 1

0 1 0 0 Dest
Dreg #

0 0 0 1 1 1 1 1 1

NOTE: When issuing compatible load/store instructions in parallel with a Multiply 16-Bit Operands
instruction, add 0x0800 0000 to the Multiply 16-Bit Operands opcode.

Dreg_hi = (A0 += A1)

Multiply 16-Bit Operands 0xC200 2000—
0xC200 27FF

1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi

Multiply 16-Bit Operands 0xC280 2000—
0xC280 27FF

1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply 16-Bit Operands C300 2000—
0xC300 27FF

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (IS)

Table C-17. Arithmetic Operations Instructions (Sheet 8 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-63

Instruction Opcodes

Multiply 16-Bit Operands 0xC380 2000—
0xC380 27FF

1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (IU)

Multiply 16-Bit Operands 0xC240 2000—
0xC240 27FF

1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (T)

Multiply 16-Bit Operands 0xC2C0 2000—
0xC2C0 27FF

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (TFU)

Multiply 16-Bit Operands 0xC220 2000—
0xC220 27FF

1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (S2RND)

Multiply 16-Bit Operands 0xC320 200—
0xC320 27FF0

1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (ISS2)

Multiply 16-Bit Operands 0xC360 2000—
0xC360 27FF

1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply 16-Bit Operands
instruction, add 0x0800 0000 to the Multiply 16-Bit Operands opcode.

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (IH)

Multiply 16-Bit Operands 0xC208 2000—
0xC208 27FF

1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi

Table C-17. Arithmetic Operations Instructions (Sheet 9 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-64 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply 16-Bit Operands 0xC288 2000—
0xC288 27FF

1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply 16-Bit Operands 0xC308 2000—
0xC308 27FF

1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply 16-Bit Operands 0xC228 2000—
0xC228 27FF

1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi (S2RND)

Multiply 16-Bit Operands 0xC328 2000—
0xC328 27FF

1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply 16-Bit Operands
instruction, add 0x0800 0000 to the Multiply 16-Bit Operands opcode.

Dreg_even = Dreg_lo_hi * Dreg_lo_hi (ISS2)

Multiply 16-Bit Operands 0xC204 0000—
0xC204 C1FF

1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi

Multiply 16-Bit Operands 0xC284 0000—
0xC284 C1FF

1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply 16-Bit Operands 0xC304 0000—
0xC304 C1FF

1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS)

Table C-17. Arithmetic Operations Instructions (Sheet 10 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-65

Instruction Opcodes

Multiply 16-Bit Operands 0xC384 0000—
0xC384 C1FF

1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU)

Multiply 16-Bit Operands 0xC244 0000—
0xC244 C1FF

1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T)

Multiply 16-Bit Operands 0xC2C4 0000—
0xC2C4 C1FF

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU)

Multiply 16-Bit Operands 0xC224 0000—
0xC224 C1FF

1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND)

Multiply 16-Bit Operands 0xC324 0000—
0xC324 C1FF

1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2)

Multiply 16-Bit Operands 0xC364 0000—
0xC364 C1FF

1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH)

Multiply 16-Bit Operands 0xC214 0000—
0xC214 C1FF

1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (M)

Table C-17. Arithmetic Operations Instructions (Sheet 11 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-66 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply 16-Bit Operands 0xC294 0000—
0xC294 C1FF

1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU, M)

Multiply 16-Bit Operands 0xC314 0000—
0xC314 C1FF

1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS, M)

Multiply 16-Bit Operands 0xC394 0000—
0xC394 C1FF

1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU, M)

Multiply 16-Bit Operands 0xC254 0000—
0xC254 C1FF

1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T, M)

Multiply 16-Bit Operands 0xC2D4 0000—
0xC2D4 C1FF

1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU, M)

Multiply 16-Bit Operands 0xC234 0000—
0xC234 C1FF

1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

Multiply 16-Bit Operands 0xC334 0000—
0xC334 C1FF

1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

Table C-17. Arithmetic Operations Instructions (Sheet 12 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-67

Instruction Opcodes

Multiply 16-Bit Operands 0xC374 0000—
0xC374 C1FF

1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply 16-Bit Operands
instruction, add 0x0800 0000 to the Multiply 16-Bit Operands opcode.

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH, M)

Multiply 16-Bit Operands 0xC20C 0000—
0xC20C C1FF

1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi

Multiply 16-Bit Operands 0xC28C 0000—
0xC28C C1FF

1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply 16-Bit Operands 0xC30C 0000—
0xC30C C1FF

1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply 16-Bit Operands 0xC22C 0000—
0xC22C C1FF

1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND)

Multiply 16-Bit Operands 0xC32C 0000—
0xC32C C1FF

1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2)

Multiply 16-Bit Operands 0xC21C 0000—
0xC21C C1FF

1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (M)

Table C-17. Arithmetic Operations Instructions (Sheet 13 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-68 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply 16-Bit Operands 0xC29C 0000—
0xC29C C1FF

1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU, M)

Multiply 16-Bit Operands 0xC31C 0000—
0xC31C C1FF

1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS, M)

Multiply 16-Bit Operands 0xC239 0000—
0xC239 C1FF

1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

Multiply 16-Bit Operands 0xC33C 0000—
0xC33C C1FF

1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

Dreg
half

0 0 0 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply 16-Bit Operands
instruction, add 0x0800 0000 to the Multiply 16-Bit Operands opcode.

Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

Multiply 32-Bit Operands 0x40C0—
0x40FF

0 1 0 0 0 0 0 0 1 1 Source
Dreg #

Dest.
Dreg #

Dreg *= Dreg

Table C-17. Arithmetic Operations Instructions (Sheet 14 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-69

Instruction Opcodes

Multiply and Multiply-Accumulate to Accumulator

Legend:
Dreg half determines which halves of the input
operand registers to use.

Dreg
half

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.

src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.

src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Multiply and Multiply-Accumulate
to Accumulator

0xC003 0000—
0xC003 063F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 = Dreg_lo_hi * Dreg_lo_hi

Multiply and Multiply-Accumulate
to Accumulator

0xC083 0000—
0xC083 063F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply and Multiply-Accumulate
to Accumulator

0xC103 0000—
0xC103 063F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 = Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply and Multiply-Accumulate
to Accumulator

0xC063 0000—
0xC063 063F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

A0 = Dreg_lo_hi * Dreg_lo_hi (W32)

Table C-17. Arithmetic Operations Instructions (Sheet 15 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-70 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Accumulator

0xC003 0800—
0xC003 0E3F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 += Dreg_lo_hi * Dreg_lo_hi

Multiply and Multiply-Accumulate
to Accumulator

0xC083 0800—
0xC083 0E3F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 += Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply and Multiply-Accumulate
to Accumulator

0xC103 0800—
0xC103 0E3F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 += Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply and Multiply-Accumulate
to Accumulator

0xC063 0800—
0xC063 0E3F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 1 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

A0 += Dreg_lo_hi * Dreg_lo_hi (W32)

Multiply and Multiply-Accumulate
to Accumulator

0xC003 1000—
0xC003 163F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 – = Dreg_lo_hi * Dreg_lo_hi

Multiply and Multiply-Accumulate
to Accumulator

0xC083 1000—
0xC083 163F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 1 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 – = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply and Multiply-Accumulate
to Accumulator

0xC103 1000—
0xC103 163F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 1 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 – = Dreg_lo_hi * Dreg_lo_hi (IS)

Table C-17. Arithmetic Operations Instructions (Sheet 16 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-71

Instruction Opcodes

Multiply and Multiply-Accumulate
to Accumulator

0xC063 1000—
0xC063 163F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 1 0 Dreg
half

0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

A0 – = Dreg_lo_hi * Dreg_lo_hi (W32)

Multiply and Multiply-Accumulate
to Accumulator

0xC000 1800—
0xC000 D83F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 = Dreg_lo_hi * Dreg_lo_hi

Multiply and Multiply-Accumulate
to Accumulator

0xC080 1800—
0xC080 D83F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply and Multiply-Accumulate
to Accumulator

0xC100 1800—
0xC100 D83F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 = Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply and Multiply-Accumulate
to Accumulator

0xC060 1800—
0xC060 D83F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 = Dreg_lo_hi * Dreg_lo_hi (W32)

Multiply and Multiply-Accumulate
to Accumulator

0xC010 1800—
0xC010 D83F

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 = Dreg_lo_hi * Dreg_lo_hi (M)

Table C-17. Arithmetic Operations Instructions (Sheet 17 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-72 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Accumulator

0xC070 1800—
0xC070 D83F

1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

A1 = Dreg_lo_hi * Dreg_lo_hi (W32, M)

Multiply and Multiply-Accumulate
to Accumulator

0xC001 1800—
0xC001 D83F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 += Dreg_lo_hi * Dreg_lo_hi

Multiply and Multiply-Accumulate
to Accumulator

0xC081 1800—
0xC081 D83F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 += Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply and Multiply-Accumulate
to Accumulator

0xC101 1800—
0xC101 D83F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 += Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply and Multiply-Accumulate
to Accumulator

0xC061 1800—
0xC061 D83F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 += Dreg_lo_hi * Dreg_lo_hi (W32)

Multiply and Multiply-Accumulate
to Accumulator

0xC011 1800—
0xC011 D83F

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 += Dreg_lo_hi * Dreg_lo_hi (M)

Table C-17. Arithmetic Operations Instructions (Sheet 18 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-73

Instruction Opcodes

Multiply and Multiply-Accumulate
to Accumulator

0xC071 1800—
0xC071 D83F

1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

A1 += Dreg_lo_hi * Dreg_lo_hi (W32, M)

Multiply and Multiply-Accumulate
to Accumulator

0xC002 1800—
0xC002 D83F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 – = Dreg_lo_hi * Dreg_lo_hi

Multiply and Multiply-Accumulate
to Accumulator

0xC082 1800—
0xC082 D83F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 – = Dreg_lo_hi * Dreg_lo_hi (FU)

Multiply and Multiply-Accumulate
to Accumulator

0xC102 1800—
0xC102 D83F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 – = Dreg_lo_hi * Dreg_lo_hi (IS)

Multiply and Multiply-Accumulate
to Accumulator

0xC062 1800—
0xC062 D83F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 – = Dreg_lo_hi * Dreg_lo_hi (W32)

Multiply and Multiply-Accumulate
to Accumulator

0xC022 1800—
0xC022 D83F

1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

A1 – = Dreg_lo_hi * Dreg_lo_hi (M)

Table C-17. Arithmetic Operations Instructions (Sheet 19 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-74 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Accumulator

0xC072 1800—
0xC072 D83F

1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0

Dreg
half

0 1 1 0 0 0 0 0 src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

A1 – = Dreg_lo_hi * Dreg_lo_hi (W32, M)

Multiply and Multiply-Accumulate to Accumulator

LEGEND:
Dreg half determines which halves of the input
operand registers to use.

Dreg
half

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.

src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate
to Half Register

0xC003 2000—
0xC003 27FF

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Half Register

0xC083 2000—
0xC083 27FF

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Half Register

0xC103 2000—
0xC103 27FF

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IS)

Table C-17. Arithmetic Operations Instructions (Sheet 20 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-75

Instruction Opcodes

Multiply and Multiply-Accumulate
to Half Register

0xC183 2000—
0xC183 27FF

1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IU)

Multiply and Multiply-Accumulate
to Half Register

0xC043 2000—
0xC043 27FF

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (T)

Multiply and Multiply-Accumulate
to Half Register

0xC0C3 2000—
0xC0C3 27FF

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (TFU)

Multiply and Multiply-Accumulate
to Half Register

0xC023 2000—
0xC023 27FF

1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Half Register

0xC123 2000—
0xC123 27FF

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Half Register

0xC163 2000—
0xC163 27FF

1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1

0 0 1 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IH)

Multiply and Multiply-Accumulate
to Half Register

0xC003 2800—
0xC003 2FFF

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi)

Table C-17. Arithmetic Operations Instructions (Sheet 21 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-76 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Half Register

0xC083 2800—
0xC083 2FFF

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Half Register

0xC103 2800—
0xC103 2FFF

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Half Register

0xC183 2800—
0xC183 2FFF

1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IU)

Multiply and Multiply-Accumulate
to Half Register

0xC043 2800—
0xC043 2FFF

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (T)

Multiply and Multiply-Accumulate
to Half Register

0xC0C3 2800—
0xC0C3 2FFF

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (TFU)

Multiply and Multiply-Accumulate
to Half Register

0xC023 2800—
0xC023 2FFF

1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Half Register

0xC123 2800—
0xC123 2FFF

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Table C-17. Arithmetic Operations Instructions (Sheet 22 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-77

Instruction Opcodes

Multiply and Multiply-Accumulate
to Half Register

0xC163 2800—
0xC163 2FFF

1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1

0 0 1 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IH)

Multiply and Multiply-Accumulate
to Half Register

0xC003 3000—
0xC003 37FF

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Half Register

0xC083 3000—
0xC083 37FF

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumu-
late to Half Register

0xC103 3000—
0xC103 37FF

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Half Register

0xC183 3000—
0xC183 37FF

1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (IU)

Multiply and Multiply-Accumulate
to Half Register

0xC043 3000—
0xC043 37FF

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (T)

Multiply and Multiply-Accumulate
to Half Register

0xC0C3 3000—
0xC0C3 37FF

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (TFU)

Table C-17. Arithmetic Operations Instructions (Sheet 23 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-78 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Half Register

0xC023 3000—
0xC023 37FF

1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Half Register

0xC123 3000—
0xC123 37FF

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Half Register

0xC163 3000—
0xC163 37FF

1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1

0 0 1 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_lo = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (IH)

Multiply and Multiply-Accumulate
to Half Register

0xC004 1800—
0xC004 D9FF

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Half Register

0xC084 1800—
0xC084 D9FF

1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Half Register

0xC104 1800—
0xC104 D9FF

1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Half Register

0xC184 1800—
0xC184 D9FF

1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IU)

Table C-17. Arithmetic Operations Instructions (Sheet 24 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-79

Instruction Opcodes

Multiply and Multiply-Accumulate
to Half Register

0xC044 1800—
0xC044 D9FF

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (T)

Multiply and Multiply-Accumulate
to Half Register

0xC0C4 1800—
0xC0C4 D9FF

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (TFU)

Multiply and Multiply-Accumulate
to Half Register

0xC024 1800—
0xC024 D9FF

1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Half Register

0xC124 1800—
0xC124 D9FF

1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Half Register

0xC164 1800—
0xC164 D9FF

1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IH)

Multiply and Multiply-Accumulate
to Half Register

0xC014 1800—
0xC014 D9FF

1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (M)

Multiply and Multiply-Accumulate
to Half Register

0xC094 1800—
0xC094 D9FF

1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Table C-17. Arithmetic Operations Instructions (Sheet 25 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-80 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Half Register

0xC114 1800—
0xC114 D9FF

1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Multiply and Multiply-Accumulate
to Half Register

0xC194 1800—
0xC194 D9FF

1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC054 1800—
0xC054 D9FF

1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (T, M)

Multiply and Multiply-Accumulate
to Half Register

0xC0D4 1800—
0xC0D4 D9FF

1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC034 1800—
0xC034 D9FF

1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Multiply and Multiply-Accumulate
to Half Register

0xC134 1800—
0xC134 D9FF

1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Multiply and Multiply-Accumulate
to Half Register

0xC174 1800—
0xC174 D9FF

1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IH, M)

Table C-17. Arithmetic Operations Instructions (Sheet 26 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-81

Instruction Opcodes

Multiply and Multiply-Accumulate
to Half Register

0xC005 1800—
0xC005 D9FF

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Half Register

0xC085 1800—
0xC085 D9FF

1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Half Register

0xC105 1800—
0xC105 D9FF

1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Half Register

0xC185 1800—
0xC185 D9FF

1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IU)

Multiply and Multiply-Accumulate
to Half Register

0xC045 1800—
0xC045 D9FF

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (T)

Multiply and Multiply-Accumulate
to Half Register

0xC0C5 1800—
0xC0C5 D9FF

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (TFU)

Multiply and Multiply-Accumulate
to Half Register

0xC025 1800—
0xC025 D9FF

1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Table C-17. Arithmetic Operations Instructions (Sheet 27 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-82 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Half Register

0xC125 1800—
0xC125 D9FF

1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Half Register

0xC165 1800—
0xC165 D9FF

1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IH)

Multiply and Multiply-Accumulate
to Half Register

0xC015 1800—
0xC015 D9FF

1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (M)

Multiply and Multiply-Accumulate
to Half Register

0xC095 1800—
0xC095 D9FF

1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC115 1800—
0xC115 D9FF

1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Multiply and Multiply-Accumulate
to Half Register

0xC195 1800—
0xC195 D9FF

1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC055 1800—
0xC055 D9FF

1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (T, M)

Table C-17. Arithmetic Operations Instructions (Sheet 28 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-83

Instruction Opcodes

Multiply and Multiply-Accumulate
to Half Register

0xC0D5 1800—
0xC0D5 D9FF

1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC035 1800—
0xC035 D9FF

1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Multiply and Multiply-Accumulate
to Half Register

0xC135 1800—
0xC135 D9FF

1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Multiply and Multiply-Accumulate
to Half Register

0xC175 1800—
0xC175 D9FF

1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IH, M)

Multiply and Multiply-Accumulate
to Half Register

0xC006 1800—
0xC006 D9FF

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Half Register

0xC086 1800—
0xC086 D9FF

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Half Register

0xC106 1800—
0xC106 D9FF

1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IS)

Table C-17. Arithmetic Operations Instructions (Sheet 29 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-84 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Half Register

0xC186 1800—
0xC186 D9FF

1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IU)

Multiply and Multiply-Accumulate
to Half Register

0xC046 1800—
0xC046 D9FF

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (T)

Multiply and Multiply-Accumulate
to Half Register

0xC0C6 1800—
0xC0C6 D9FF

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (TFU)

Multiply and Multiply-Accumulate
to Half Register

0xC026 1800—
0xC026 D9FF

1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Half Register

0xC126 1800—
0xC126 D9FF

1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Half Register

0xC166 1800—
0xC166 D9FF

1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IH)

Multiply and Multiply-Accumulate
to Half Register

0xC016 1800—
0xC016 D9FF

1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (M)

Table C-17. Arithmetic Operations Instructions (Sheet 30 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-85

Instruction Opcodes

Multiply and Multiply-Accumulate
to Half Register

0xC096 1800—
0xC096 D9FF

1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC116 1800—
0xC116 D9FF

1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Multiply and Multiply-Accumulate
to Half Register

0xC196 1800—
0xC196 D9FF

1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC056 1800—
0xC056 D9FF

1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (T, M)

Multiply and Multiply-Accumulate
to Half Register

0xC0D6 1800—
0xC0D6 D9FF

1 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

Multiply and Multiply-Accumulate
to Half Register

0xC036 1800—
0xC036 D9FF

1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Multiply and Multiply-Accumulate
to Half Register

0xC136 1800—
0xC136 D9FF

1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Table C-17. Arithmetic Operations Instructions (Sheet 31 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-86 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Half Register

0xC176 1800—
0xC176 D9FF

1 1 0 0 0 0 0 1 0 1 1 1 0 1 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_hi = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IH, M)

Multiply and Multiply-Accumulate to Half Register

LEGEND:
Dreg half determines which halves of the input
operand registers to use.

Dreg
half

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.

src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.

src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate
to Data Register

0xC00D 0000—
0xC00D 07FF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Data Register

0xC08D 0000—
0xC08D 07FF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1

0 0 0 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (FU)

Table C-17. Arithmetic Operations Instructions (Sheet 32 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-87

Instruction Opcodes

Multiply and Multiply-Accumulate
to Data Register

0xC10D 0000—
0xC10D 07FF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1

0 0 0 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Data Register

0xC02D 0000—
0xC02D 07FF

1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1

0 0 0 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Data Register

0xC12D 0000—
0xC12D 07FF

1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1

0 0 0 0 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Data Register

0xC00D 0800—
0xC00D 0FFF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Data Register

0xC08D 0800—
0xC08D 0FFF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1

0 0 0 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Data Register

0xC10D 0800—
0xC10D 0FFF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1

0 0 0 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Data Register

0xC02D 0800—
0xC02D 0FFF

1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1

0 0 0 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Table C-17. Arithmetic Operations Instructions (Sheet 33 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-88 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Data Register

0xC12D 0800—
0xC12D 0FFF

1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1

0 0 0 0 1 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Data Register

0xC00D 1000—
0xC00D 17FF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 – = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Data Register

0xC08D 1000—
0xC08D 17FF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1

0 0 0 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Data Register

0xC10D 1000—
0xC10D 17FF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1

0 0 0 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Data Register

0xC02D 1000—
0xC02D 17FF

1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1

0 0 0 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (S2RND

Multiply and Multiply-Accumulate
to Data Register

0xC12D 1000—
0xC12D 17FF

1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1

0 0 0 1 0 Dreg
half

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_even = (A0 – = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Table C-17. Arithmetic Operations Instructions (Sheet 34 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-89

Instruction Opcodes

Multiply and Multiply-Accumulate
to Data Register

0xC008 1800—
0xC008 D9FF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Data Register

0xC088 1800—
0xC088 D9FF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Data Register

0xC108 1800—
0xC108 D9FF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Data Register

0xC028 1800—
0xC028 D9FF

1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Data Register

0xC128 1800—
0xC128 D9FF

1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Data Register

0xC018 1800—
0xC018 D9FF

1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (M)

Multiply and Multiply-Accumulate
to Data Register

0xC098 1800—
0xC098 D9FF

1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Table C-17. Arithmetic Operations Instructions (Sheet 35 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-90 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Data Register

0xC118 1800—
0xC118 D9FF

1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Multiply and Multiply-Accumulate
to Data Register

0xC038 1800—
0xC038 D9FF

1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Multiply and Multiply-Accumulate
to Data Register

0xC138 1800—
0xC138 D9FF

1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Multiply and Multiply-Accumulate
to Data Register

0xC009 1800—
0xC009 D9FF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi)

Multiply and Multiply-Accumulate
to Data Register

0xC089 1800—
0xC089 D9FF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Data Register

0xC109 1800—
0xC109 D9FF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Data Register

0xC029 1800—
0xC029 D9FF

1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Table C-17. Arithmetic Operations Instructions (Sheet 36 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-91

Instruction Opcodes

Multiply and Multiply-Accumulate
to Data Register

0xC129 1800—
0xC129 D9FF

1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Data Register

0xC019 1800—
0xC019 D9FF

1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (M)

Multiply and Multiply-Accumulate
to Data Register

0xC099 1800—
0xC099 D9FF

1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Multiply and Multiply-Accumulate
to Data Register

0xC119 1800—
0xC119 D9FF

1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Multiply and Multiply-Accumulate
to Data Register

0xC039 1800—
0xC039 D9FF

1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Multiply and Multiply-Accumulate
to Data Register

0xC139 1800—
0xC139 D9FF

1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Multiply and Multiply-Accumulate
to Data Register

0xC00A 1800—
0xC00A D9FF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi)

Table C-17. Arithmetic Operations Instructions (Sheet 37 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-92 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate
to Data Register

0xC08A 1800—
0xC08A D9FF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (FU)

Multiply and Multiply-Accumulate
to Data Register

0xC10A 1800—
0xC10A D9FF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IS)

Multiply and Multiply-Accumulate
to Data Register

0xC02A 1800—
0xC02A D9FF

1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Multiply and Multiply-Accumulate
to Data Register

0xC12A 1800—
0xC12A D9FF

1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Multiply and Multiply-Accumulate
to Data Register

0xC01A 1800—
0xC01A D9FF

1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (M)

Multiply and Multiply-Accumulate
to Data Register

0xC09A 1800—
0xC09A D9FF

1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Multiply and Multiply-Accumulate
to Data Register

0xC11A 1800—
0xC11A D9FF

1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Table C-17. Arithmetic Operations Instructions (Sheet 38 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-93

Instruction Opcodes

Multiply and Multiply-Accumulate
to Data Register

0xC03A 1800—
0xC03A D9FF

1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Multiply and Multiply-Accumulate
to Data Register

0xC13A 1800—
0xC13A D9FF

1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0

Dreg
half

0 1 1 0 0 Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Multiply and Multiply-Accu-
mulate instruction, add 0x0800 0000 to the Multiply and Multiply-Accumulate opcode.

Dreg_odd = (A1 – = Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Multiply and Multiply-Accumulate to Data Register

LEGEND: Dreg half determines which halves of
the input operand registers to use.

Dreg
half

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.

src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.

src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Negate (Two’s Complement) 0x4380—
0x43BF

0 1 0 0 0 0 1 1 1 0 Source
Dreg #

Dest.
Dreg #

Dreg = – Dreg

Negate (Two’s Complement) 0xC407 C000—
0xC407 CFC0

1 1 0 0 0 1 0 x x x 0 0 0 1 1 1

1 1 0 0 Dest.
Dreg #

0 0 0 Source
Dreg #

0 0 0

Dreg = – Dreg (NS)

Table C-17. Arithmetic Operations Instructions (Sheet 39 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-94 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Negate (Two’s Complement) 0xC407 E000—
0xC407 EFC0

1 1 0 0 0 1 0 x x x 0 0 0 1 1 1

1 1 1 0 Dest.
Dreg #

0 0 0 Source
Dreg #

0 0 0

Dreg = – Dreg (S)

Negate (Two’s Complement) 0xC40E 003F 1 1 0 0 0 1 0 x x x 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 = – A0

Negate (Two’s Complement) 0xC40E 403F 1 1 0 0 0 1 0 x x x 0 0 1 1 1 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 = – A1

Negate (Two’s Complement) 0xC42E 003F 1 1 0 0 0 1 0 x x x 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = – A0

Negate (Two’s Complement) 0xC42E 403F 1 1 0 0 0 1 0 x x x 1 0 1 1 1 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = – A1

Negate (Two’s Complement) 0xC40E C03F 1 1 0 0 0 1 0 x x x 0 0 1 1 1 0

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = – A1, A0 = – A0

Round to Half Word 0xC40C C000—
0xC40C CE38

1 1 0 0 0 1 0 x x x 0 0 1 1 0 0

1 1 0 0 Dest.
Dreg #

0 0 0 Source
Dreg #

0 0 0

Dreg_lo = Dreg (RND)

Round to Half Word 0xC42C C000—
0xC42C CE38

1 1 0 0 0 1 0 x x x 1 0 1 1 0 0

1 1 0 0 Dest.
Dreg #

0 0 0 Source
Dreg #

0 0 0

Dreg_hi = Dreg (RND)

Table C-17. Arithmetic Operations Instructions (Sheet 40 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-95

Instruction Opcodes

Saturate 0xC408 203F 1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

A0 = A0 (S)

Saturate 0xC408 603F 1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = A1 (S)

Saturate 0xC408 A03F 1 1 0 0 0 1 0 x x x 0 0 1 0 0 0

1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

A1 = A1 (S), A0 = A0 (S)

Sign Bit 0xC605 0000—
0xC605 0E07

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 1

0 0 0 0 Dest.
Dreg #

x x x 0 0 0 Source
Dreg #

Dreg_lo = SIGNBITS Dreg

Sign Bit 0xC605 4000—
0xC605 4E07

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 1

0 1 0 0 Dest.
Dreg #

x x x 0 0 0 Source
Dreg #

Dreg_lo = SIGNBITS Dreg_lo

Sign Bit 0xC605 8000—
0xC605 8E07

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 1

1 0 0 0 Dest.
Dreg #

x x x 0 0 0 Source
Dreg #

Dreg_lo = SIGNBITS Dreg_hi

Sign Bit 0xC606 0000—
0xC606 0E00

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 0

0 0 0 0 Dest.
Dreg #

x x x 0 0 0 0 0 0

Dreg_lo = SIGNBITS A0

Sign Bit 0xC606 4000—
0xC606 4E00

1 1 0 0 0 1 1 0 0 x x 0 0 1 1 0

0 1 0 0 Dest.
Dreg #

x x x 0 0 0 0 0 0

Dreg_lo = SIGNBITS A1

Table C-17. Arithmetic Operations Instructions (Sheet 41 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-96 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Subtract 0x5200—
0x53FF

0 1 0 1 0 0 1 Dest.
Dreg #

Src 1
Dreg #

Src 0
Dreg #

Dreg = Dreg – Dreg

Subtract 0xC404 4000—
0xC404 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 0

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg – Dreg (NS)

Subtract 0xC404 6000—
0xC404 6E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 0 0

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg – Dreg (S)

Subtract 0xC403 0000—
0xC403 0E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo – Dreg_lo (NS)

Subtract 0xC403 4000—
0xC403 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo – Dreg_hi (NS)

Subtract 0xC403 8000—
0xC403 8E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

1 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi – Dreg_lo (NS)

Subtract 0xC403 C000—
0xC403 CE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

1 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi – Dreg_hi (NS)

Subtract 0xC423 0000—
0xC423 0E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo – Dreg_lo (NS)

Table C-17. Arithmetic Operations Instructions (Sheet 42 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-97

Instruction Opcodes

Subtract 0xC423 4000—
0xC423 4E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo – Dreg_hi (NS)

Subtract 0xC423 8000—
0xC423 8E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

1 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi – Dreg_lo (NS)

Subtract 0xC423 C000—
0xC423 CE3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

1 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi – Dreg_hi (NS)

Subtract 0xC403 2000—
0xC403 2E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo – Dreg_lo (S)

Subtract 0xC403 6000—
0xC403 6E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_lo – Dreg_hi (S)

Subtract 0xC403 A000—
0xC403 AE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

1 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi – Dreg_lo (S)

Subtract 0xC403 E000—
0xC403 EE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 1 1

1 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_lo = Dreg_hi – Dreg_hi (S)

Table C-17. Arithmetic Operations Instructions (Sheet 43 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arithmetic Operations Instructions

C-98 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Subtract 0xC423 2000—
0xC423 2E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo – Dreg_lo (S)

Subtract 0xC423 6000—
0xC423 6E3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo – Dreg_hi (S)

Subtract 0xC423 A000—
0xC423 AE3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

1 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi – Dreg_lo (S)

Subtract 0xC423 E000—
0xC423 EE3F

1 1 0 0 0 1 0 x x x 1 0 0 0 1 1

1 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_hi – Dreg_hi (S)

Subtract Immediate 0x9F64—
0x9F67

1 0 0 1 1 1 1 1 0 1 1 0 0 1 Ireg #

Ireg – = 2

Subtract Immediate 0x9F6C—
0x9F6F

1 0 0 1 1 1 1 1 0 1 1 0 1 1 Ireg #

Ireg – = 4

Table C-17. Arithmetic Operations Instructions (Sheet 44 of 44)

Instruction
and Version

Bin

Opcode Range 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-99

Instruction Opcodes

External Event Management Instructions
Table C-18. External Event Management Instructions (Sheet 1 of 2)

Instruction
and Version Opcode Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Idle 0x0020 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

IDLE

Core Synchronize 0x0023 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

CSYNC

System Synchronize 0x0024 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

SSYNC

Force Emulation 0x0025 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

EMUEXCPT

Disable Interrupts 0x0030—
0x0037

0 0 0 0 0 0 0 0 0 0 1 1 Dreg #

CLI Dreg

Enable Interrupts 0x0040—
0x0047

0 0 0 0 0 0 0 0 0 1 0 0 Dreg #

STI Dreg

Force Interrupt / Reset 0x0090—
0x009F

0 0 0 0 0 0 0 0 1 0 0 1 uimm4

RAISE uimm4

Force Exception 0x00A0—
0x00AF

0 0 0 0 0 0 0 0 1 0 1 0 uimm4

EXCPT uimm4

Test and Set Byte (Atomic) 0x00B0—
0x00B5

0 0 0 0 0 0 0 0 1 0 1 1 Preg #

NOTE: SP and FP are not allowed as the register for this instruction. Therefore, the highest valid Preg
number is 5.

TESTSET (Preg)

No Op 0x0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOP

External Event Management Instructions

C-100 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

No Op 0xC003 1800 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

MNOP

No Op 0xC803 1800 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

MNOP when issued in parallel with two compatible load/store instructions

Abort 0x002F 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

NOTE: Abort is only valid on a simulator.

ABORT

Table C-18. External Event Management Instructions (Sheet 2 of 2)

Instruction
and Version Opcode Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-101

Instruction Opcodes

Cache Control Instructions
Table C-19. Cache Control Instructions

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Cache Prefetch 0x0240—
0x0247

0 0 0 0 0 0 1 0 0 1 0 0 0 Preg #

PREFETCH [Preg]

Data Cache Prefetch 0x0260—
0x0267

0 0 0 0 0 0 1 0 0 1 1 0 0 Preg #

PREFETCH [Preg++]

Data Cache Flush 0x0250—
0x0257

0 0 0 0 0 0 1 0 0 1 0 1 0 Preg #

FLUSH [Preg]

Data Cache Line Invalidate 0x0248—
0x024F

0 0 0 0 0 0 1 0 0 1 0 0 1 Preg #

FLUSHINV [Preg]

Instruction Cache Flush 0x0258—
0x025F

0 0 0 0 0 0 1 0 0 1 0 1 1 Preg #

IFLUSH [Preg]

Video Pixel Operations Instructions

C-102 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Video Pixel Operations Instructions
Table C-20. Video Pixel Operations Instructions (Sheet 1 of 5)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte Align 0xC60D 0000—
0xC60D 0E3F

1 1 0 0 0 1 1 0 0 x x 0 1 1 0 1

0 0 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg = ALIGN8 (Dreg, Dreg)

Byte Align 0xC60D 4000—
0xC60D 4E3F

1 1 0 0 0 1 1 0 0 x x 0 1 1 0 1

0 1 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg = ALIGN16 (Dreg, Dreg)

Byte Align 0xC60D 800—
0xC60D 8E3F0

1 1 0 0 0 1 1 0 0 x x 0 1 1 0 1

1 0 0 0 Dest.
Dreg #

x x x Source 0
Dreg #

Source 1
Dreg #

Dreg = ALIGN24 (Dreg, Dreg)

Disable Alignment Exception for
Load

0xC412 C000 1 1 0 0 0 1 0 x x x 0 1 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOTE: When issuing compatible load/store instructions in parallel with a Disable Alignment Exception
for Load instruction, add 0x0800 0000 to the Disable Alignment Exception for Load opcode.

DISALGNEXCPT

Dual 16-Bit Add / Clip 0xC417 0000—
0xC417 0E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 1 1

0 0 0 0 Dest. 0
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO)

Dual 16-Bit Add / Clip 0xC437 0000—
0xC437 0E3F

1 1 0 0 0 1 0 x x x 1 1 0 1 1 1

0 0 0 0 Dest. 0
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI)

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-103

Instruction Opcodes

Dual 16-Bit Add / Clip 0xC417 2000—
0xC417 1E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 1 1

0 0 1 0 Dest. 0
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO, R)

Dual 16-Bit Add / Clip 0xC437 2000—
0xC437 1E3F

1 1 0 0 0 1 0 x x x 1 1 0 1 1 1

0 0 1 0 Dest. 0
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Dual 16-Bit Add / Clip
instruction, add 0x0800 0000 to the Dual 16-Bit Add / Clip opcode.

Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI, R)

Dual 16-Bit Accumulator Extrac-
tion with Addition

0xC40C 403F—
0xC40C 4FC0

1 1 0 0 0 1 0 x x x 0 0 1 1 0 0

0 1 0 0 Dest. of
A1 Op
Dreg #

Dest of
A0 Op
Dreg #

1 1 1 1 1 1

NOTE: When issuing compatible load/store instructions in parallel with a Dual 16-Bit Accumulator
Extraction with Addition instruction, add 0x0800 0000 to the Dual 16-Bit Accumulator Extraction with
Addition opcode.

Dreg = A1.L + A1.H, Dreg = A0.L + A0.H

Quad 8-Bit Add 0xC415 0000—
0xC415 0FFF

1 1 0 0 0 1 0 x x x 0 1 0 1 0 1

0 0 0 0 Dest. 1
Dreg #

Dest. 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair)

Quad 8-Bit Add 0xC415 2000—
0xC415 2FFF

1 1 0 0 0 1 0 x x x 0 1 0 1 0 1

0 0 1 0 Dest. 1
Dreg #

Dest. 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Add instruction,
add 0x0800 0000 to the Quad 8-Bit Add opcode.

(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair) (R)

Table C-20. Video Pixel Operations Instructions (Sheet 2 of 5)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Video Pixel Operations Instructions

C-104 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Quad 8-Bit Average-Byte 0xC414 0000—
0xC414 0E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 0 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair)

Quad 8-Bit Average-Byte 0xC414 4000—
0xC414 4E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 0 0

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (T)

Quad 8-Bit Average-Byte 0xC414 200—
0xC414 2E3F0

1 1 0 0 0 1 0 x x x 0 1 0 1 0 0

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (R)

Quad 8-Bit Average-Byte 0xC414 6000—
0xC414 6E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 0 0

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Average-Byte
instruction, add 0x0800 0000 to the Quad 8-Bit Average-Byte opcode.

Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (T, R)

Quad 8-Bit Average-Half Word 0xC416 0000—
0xC416 0E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 1 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDL)

Quad 8-Bit Average-Half Word 0xC436 0000—
0xC436 0E3F

1 1 0 0 0 1 0 x x x 1 1 0 1 1 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDH)

Quad 8-Bit Average-Half Word 0xC416 4000—
0xC416 6E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 1 0

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TL)

Table C-20. Video Pixel Operations Instructions (Sheet 3 of 5)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-105

Instruction Opcodes

Quad 8-Bit Average-Half Word 0xC436 4000—
0xC436 6E3F

1 1 0 0 0 1 0 x x x 1 1 0 1 1 0

0 1 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TH)

Quad 8-Bit Average-Half Word 0xC416 2000—
0xC416 2E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 1 0

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDL, R)

Quad 8-Bit Average-Half Word 0xC436 2000—
0xC436 2E3F

1 1 0 0 0 1 0 x x x 1 1 0 1 1 0

0 0 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDH, R)

Quad 8-Bit Average-Half Word 0xC416 6000—
0xC416 7E3F

1 1 0 0 0 1 0 x x x 0 1 0 1 1 0

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TL, R)

Quad 8-Bit Average-Half Word 0xC436 6000—
0xC436 7E3F

1 1 0 0 0 1 0 x x x 1 1 0 1 1 0

0 1 1 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Average-Half
Word instruction, add 0x0800 0000 to the Quad 8-Bit Average-Half Word opcode.

Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TH, R)

Quad 8-Bit Pack 0xC418 0000—
0xC418 0E3F

1 1 0 0 0 1 0 x x x 0 1 1 0 0 0

0 0 0 0 Dest.
Dreg #

0 0 0 Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Pack instruction,
add 0x0800 0000 to the Quad 8-Bit Pack opcode.

Dreg = BYTEPACK (Dreg, Dreg)

Table C-20. Video Pixel Operations Instructions (Sheet 4 of 5)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Video Pixel Operations Instructions

C-106 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Quad 8-Bit Subtract 0xC415 4000—
0xC415 4FFF

1 1 0 0 0 1 0 x x x 0 1 0 1 0 1

0 1 0 0 Dest. 1
Dreg #

Dest. 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

(Dreg, Dreg) = BYTEOP16M (Dreg_pair, Dreg_pair)

Quad 8-Bit Subtract 0xC415 6000—
0xC415 6FFF

1 1 0 0 0 1 0 x x x 0 1 0 1 0 1

0 1 1 0 Dest. 1
Dreg #

Dest. 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Subtract instruc-
tion, add 0x0800 0000 to the Quad 8-Bit Subtract opcode.

(Dreg, Dreg) = BYTEOP16M (Dreg_pair, Dreg_pair) (R)

Quad 8-Bit Subtract-Abso-
lute-Accumulate

0xC412 0000—
0xC412 003F

1 1 0 0 0 1 0 x x x 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 Source 0
Dreg #

Source 1
Dreg #

SAA (Dreg_pair, Dreg_pair)

Quad 8-Bit Subtract-Abso-
lute-Accumulate

0xC412 2000—
0xC412 203F

1 1 0 0 0 1 0 x x x 0 1 0 0 1 0

0 0 1 0 0 0 0 0 0 0 Source 0
Dreg #

Source 1
Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Subtract-Abso-
lute-Accumulate instruction, add 0x0800 0000 to the Quad 8-Bit Subtract-Absolute-Accumulate
opcode.

SAA (Dreg_pair, Dreg_pair) (R)

Quad 8-Bit Unpack 0xC418 4000—
0xC418 4FF8

1 1 0 0 0 1 0 x x x 0 1 1 0 0 0

0 1 0 0 Dest. 1
Dreg #

Dest. 0
Dreg #

Source 0
Dreg #

0 0 0

(Dreg, Dreg) = BYTEUNPACK Dreg_pair

Quad 8-Bit Unpack 0xC418 6000—
0xC418 6FF8

1 1 0 0 0 1 0 x x x 0 1 1 0 0 0

0 1 1 0 Dest. 1
Dreg #

Dest. 0
Dreg #

Source 0
Dreg #

0 0 0

NOTE: When issuing compatible load/store instructions in parallel with a Quad 8-Bit Unpack instruc-
tion, add 0x0800 0000 to the Quad 8-Bit Unpack opcode.

(Dreg, Dreg) = BYTEUNPACK Dreg_pair (R)

Table C-20. Video Pixel Operations Instructions (Sheet 5 of 5)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-107

Instruction Opcodes

Vector Operations Instructions
Table C-21. Vector Operations Instructions (Sheet 1 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Add on Sign

0xC40C 0000—
0xC40C 0E38

1 1 0 0 0 1 0 x x x 0 0 1 1 0 0

0 0 0 0
Dest.

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg_hi = Dreg_lo = SIGN (Dreg_hi) * Dreg_hi + SIGN (Dreg_lo) * Dreg_lo

Compare Select (VIT_MAX) 0xC609 C000—
0xC609 CE07

1 1 0 0 0 1 1 0 0 x x 0 1 0 0 1

1 1 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = VIT_MAX (Dreg, Dreg) (ASR)

Compare Select (VIT_MAX) 0xC609 8000—
0xC609 8E07

1 1 0 0 0 1 1 0 0 x x 0 1 0 0 1

1 0 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = VIT_MAX (Dreg, Dreg) (ASL)

Compare Select (VIT_MAX) 0xC609 4000—
0xC609 4E07

1 1 0 0 0 1 1 0 0 x x 0 1 0 0 1

0 1 0 0
Dest.

Dreg # x x x 0 0 0
Source
Dreg #

Dreg_lo = VIT_MAX (Dreg) (ASR)

Compare Select (VIT_MAX) 0xC609 0000—
0xC609 0E07

1 1 0 0 0 1 1 0 0 x x 0 1 0 0 1

0 0 0 0
Dest.

Dreg # x x x 0 0 0
Source
Dreg #

Dreg_lo = VIT_MAX (Dreg) (ASL)

Vector Absolute Value 0xC406 8000—
0xC406 8E38

1 1 0 0 0 1 0 x x x 0 0 0 1 1 0

1 0 0 0
Dest.

Dreg # 0 0 0
Source
Dreg # 0 0 0

Dreg = ABS Dreg (V)

Vector Add / Subtract 0xC400 0000—
0xC400 0E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 0 0 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg

Vector Operations Instructions

C-108 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract 0xC400 2000—
0xC400 2E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 0 1 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg (S)

Vector Add / Subtract 0xC400 1000—
0xC400 1E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 0 0 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg (CO)

Vector Add / Subtract 0xC400 3000—
0xC400 3E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 0 1 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg (SC0)

Vector Add / Subtract 0xC400 8000—
0xC400 8E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 0 0 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|+ Dreg

Vector Add / Subtract 0xC400 A000—
0xC400 AE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 0 1 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|+ Dreg (S)

Vector Add / Subtract 0xC400 9000—
0xC400 9E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 0 0 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|+ Dreg (CO)

Vector Add / Subtract 0xC400 B000—
0xC400 BE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 0 1 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|+ Dreg (SC0)

Table C-21. Vector Operations Instructions (Sheet 2 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-109

Instruction Opcodes

Vector Add / Subtract 0xC400 4000—
0xC400 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 1 0 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg

Vector Add / Subtract 0xC400 6000—
0xC400 6E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 1 1 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg (S)

Vector Add / Subtract 0xC400 5000—
0xC400 5E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 1 0 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg (CO)

Vector Add / Subtract 0xC400 7000—
0xC400 7E3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

0 1 1 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg (SC0)

Vector Add / Subtract 0xC400 C000—
0xC400 CE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 1 0 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|– Dreg

Vector Add / Subtract 0xC400 E000—
0xC400 EE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 1 1 0
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|– Dreg (S)

Vector Add / Subtract 0xC400 D000—
0xC400 DE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 1 0 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|– Dreg (CO)

Table C-21. Vector Operations Instructions (Sheet 3 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-110 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract 0xC400 F000—
0xC400 FE3F

1 1 0 0 0 1 0 x x x 0 0 0 0 0 0

1 1 1 1
Dest

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg –|– Dreg (SC0)

Vector Add / Subtract 0xC401 0000—
0xC401 0FFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

0 0 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg

Vector Add / Subtract 0xC401 8000—
0xC401 8FFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 0 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (ASR)

Vector Add / Subtract 0xC401 C000—
0xC401 CFFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 1 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (ASL)

Vector Add / Subtract 0xC401 2000—
0xC401 2FFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

0 0 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (S)

Vector Add / Subtract 0xC401 A000—
0xC401 AFFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 0 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (S, ASR)

Vector Add / Subtract 0xC401 E000—
0xC401 EFFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 1 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (S, ASL)

Table C-21. Vector Operations Instructions (Sheet 4 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-111

Instruction Opcodes

Vector Add / Subtract 0xC401 1000—
0xC401 1FFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

0 0 0 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (CO)

Vector Add / Subtract 0xC401 9000—
0xC401 9FFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 0 0 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (CO, ASR)

Vector Add / Subtract 0xC401 D000—
0xC401 DFFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 1 0 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (CO, ASL)

Vector Add / Subtract 0xC401 3000—
0xC401 3FFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

0 0 1 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (SCO)

Vector Add / Subtract 0xC401 B000—
0xC401 BFFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 0 1 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (SCO, ASR)

Vector Add / Subtract 0xC401 F000—
0xC401 FFFF

1 1 0 0 0 1 0 x x x 0 0 0 0 0 1

1 1 1 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (SCO, ASL)

Vector Add / Subtract 0xC421 0000—
0xC421 0FFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

0 0 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg

Table C-21. Vector Operations Instructions (Sheet 5 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-112 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract 0xC421 8000—
0xC421 8FFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 0 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (ASR)

Vector Add / Subtract 0xC421 C000—
0xC421 CFFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 1 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (ASL)

Vector Add / Subtract 0xC421 2000—
0xC421 2FFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

0 0 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (S)

Vector Add / Subtract 0xC421 A000—
0xC421 AFFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 0 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (S, ASR)

Vector Add / Subtract 0xC421 E000—
0xC421 EFFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 1 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (S, ASL)

Vector Add / Subtract 0xC421 1000—
0xC421 1FFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

0 0 0 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (CO)

Vector Add / Subtract 0xC421 9000—
0xC421 9FFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 0 0 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (CO, ASR)

Table C-21. Vector Operations Instructions (Sheet 6 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-113

Instruction Opcodes

Vector Add / Subtract 0xC421 D000—
0xC421 DFFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 1 0 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (CO, ASL)

Vector Add / Subtract 0xC421 3000—
0xC421 3FFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

0 0 1 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (SCO)

Vector Add / Subtract 0xC421 B000—
0xC421 BFFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 0 1 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (SCO, ASR)

Vector Add / Subtract 0xC421 F000—
0xC421 FFFF

1 1 0 0 0 1 0 x x x 1 0 0 0 0 1

1 1 1 1
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (SCO, ASL)

Vector Add / Subtract 0xC404 8000—
0xC404 8FFF

1 1 0 0 0 1 0 x x x 0 0 0 1 0 0

1 0 0 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg + Dreg, Dreg = Dreg – Dreg

Vector Add / Subtract 0xC404 A000—
0xC404 AFFF

1 1 0 0 0 1 0 x x x 0 0 0 1 0 0

1 0 1 0
Dest 1
Dreg #

Dest 0
Dreg #

Source 0
Dreg #

Source 1
Dreg #

Dreg = Dreg + Dreg, Dreg = Dreg – Dreg (S)

Vector Add / Subtract 0xC411 003F—
0xC411 0FC0

1 1 0 0 0 1 0 x x x 0 1 0 0 0 1

0 0 0 0
Dest 1
Dreg #

Dest 0
Dreg # 1 1 1 1 1 1

Dreg = A1 + A0, Dreg = A1 – A0

Table C-21. Vector Operations Instructions (Sheet 7 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-114 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract

0xC411 203F—
0xC411 2FC0

1 1 0 0 0 1 0 x x x 0 1 0 0 0 1

0 0 1 0
Dest 1
Dreg #

Dest 0
Dreg # 1 1 1 1 1 1

Dreg = A1 + A0, Dreg = A1 – A0 (S)

Vector Add / Subtract 0xC411 403F—
0xC411 4FC0

1 1 0 0 0 1 0 x x x 0 1 0 0 0 1

0 1 0 0
Dest 1
Dreg #

Dest 0
Dreg # 1 1 1 1 1 1

Dreg = A0 + A1, Dreg = A0 – A1

Vector Add / Subtract 0xC411 603F—
0xC411 6FC0

1 1 0 0 0 1 0 x x x 0 1 0 0 0 1

0 1 1 0
Dest 1
Dreg #

Dest 0
Dreg # 1 1 1 1 1 1

Dreg = A0 + A1, Dreg = A0 – A1 (S)

Vector Arithmetic Shift 0xC681 0100—
0xC681 0FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 1

0 0 0 0
Dest.

Dreg #
2’s complement of

uimm5
Source
Dreg #

Dreg = Dreg >>> uimm5 (V)

Vector Arithmetic Shift 0xC681 4000—
0xC681 4EFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 1

0 1 0 0
Dest.

Dreg # uimm5
Source
Dreg #

Dreg = Dreg << uimm5 (V, S)

Vector Arithmetic Shift 0xC601 0000—
0xC601 0E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 1

0 0 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = ASHIFT Dreg BY Dreg_lo (V)

Vector Arithmetic Shift 0xC601 4000—
0xC601 4E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 1

0 1 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = ASHIFT Dreg BY Dreg_lo (V, S)

Table C-21. Vector Operations Instructions (Sheet 8 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-115

Instruction Opcodes

Vector Logical Shift 0xC681 8180—
0xC681 8FFF

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 1

1 0 0 0
Dest.

Dreg # 2’s comp of uimm4
Source
Dreg #

Dreg = Dreg >> uimm4 (V)

Vector Logical Shift 0xC681 8000—
0xC681 8E7F

1 1 0 0 0 1 1 0 1 x x 0 0 0 0 1

1 0 0 0
Dest.

Dreg # uimm4
Source
Dreg #

Dreg = Dreg << uimm4 (V)

Vector Logical Shift 0xC601 8000—
0xC601 8E3F

1 1 0 0 0 1 1 0 0 x x 0 0 0 0 1

1 0 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = LSHIFT Dreg BY Dreg_lo (V)

Vector Maximum 0xC406 0000—
0xC406 0E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 1 0

0 0 0 0
Dest.

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = MAX (Dreg, Dreg) (V)

Vector Minimum 0xC406 4000—
0xC406 4E3F

1 1 0 0 0 1 0 x x x 0 0 0 1 1 0

0 1 0 0
Dest.

Dreg # 0 0 0
Source 0
Dreg #

Source 1
Dreg #

Dreg = MIN (Dreg, Dreg) (V)

Vector Multiply

0xC204 2000—
0xC204 E7FF

1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi

Vector Multiply

0xC284 2000—
0xC284 E7FF

1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU)

Table C-21. Vector Operations Instructions (Sheet 9 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-116 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply

0xC304 2000—
0xC304 E7FF

1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS)

Vector Multiply

0xC384 2000—
0xC384 E7FF

1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU)

Vector Multiply

0xC244 2000—
0xC244 E7FF

1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T)

Vector Multiply

0xC2C4 2000—
0xC2C4 E7FF

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU)

Vector Multiply

0xC224 2000—
0xC224 E7FF

1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND)

Vector Multiply 0xC324 2000—
0xC324 E7FF

1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2)

Table C-21. Vector Operations Instructions (Sheet 10 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-117

Instruction Opcodes

Vector Multiply 0xC364 2000—
0xC364 E7FF

1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH)

Vector Multiply 0xC214 2000—
0xC214 E7FF

1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (M)

Vector Multiply 0xC294 2000—
0xC294 E7FF

1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU, M)

Vector Multiply 0xC314 2000—
0xC314 E7FF

1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS, M)

Vector Multiply 0xC394 2000—
0xC394 E7FF

1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU, M)

Vector Multiply 0xC254 2000—
0xC254 E7FF

1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T, M)

Table C-21. Vector Operations Instructions (Sheet 11 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-118 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply 0xC2D4 2000—
0xC2D4 E7FF

1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU, M)

Vector Multiply 0xC234 2000—
0xC234 E7FF

1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

Vector Multiply 0xC334 2000—
0xC334 E7FF

1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

Vector Multiply 0xC374 2000—
0xC374 E7FF

1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply instruction,
add 0x0800 0000 to the Vector Multiply opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply 16-Bit
Operands opcodes. In fact, each vector opcode is the logical “OR” of the two component scalar opcodes.

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH, M)

Vector Multiply 0xC20C 2000—
0xC20C E7FF

1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi

Table C-21. Vector Operations Instructions (Sheet 12 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-119

Instruction Opcodes

Vector Multiply 0xC28C 2000—
0xC28C E7FF

1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU)

Vector Multiply 0xC30C 2000—
0xC30C E7FF

1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS)

Vector Multiply 0xC22C 2000—
0xC22C E7FF

1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND)

Vector Multiply 0xC32C 2000—
0xC32C E7FF

1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2)

Vector Multiply 0xC21C 2000—
0xC21C E7FF

1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (M)

Vector Multiply 0xC29C 2000—
0xC29C E7FF

1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU, M)

Table C-21. Vector Operations Instructions (Sheet 13 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-120 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply 0xC31C 2000—
0xC31C E7FF

1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS, M)

Vector Multiply 0xC239 2000—
0xC239 E7FF

1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

Vector Multiply 0xC33C 2000—
0xC33C E7FF

1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

Dreg
half 1 1 0 0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply instruction,
add 0x0800 0000 to the Vector Multiply opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply 16-Bit
Operands opcodes. In fact, each vector opcode is the logical “OR” of the two component scalar opcodes.

Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

Table C-21. Vector Operations Instructions (Sheet 14 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-121

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

LEGEND:
Dreg half 0 and Dreg half 1
determine which halves of the
input operand registers to use.
Dreg half 0 controls MAC0 oper-
ating on Dreg_lo and Dreg_even,
and Dreg half 1 controls MAC1
operating on Dreg_hi and
Dreg_odd.

Dreg
half 0
and

Dreg
half 1

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.
src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.
src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Vector Multiply and
Multiply-Accumulate

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate to Accumulator with Multiply and Multiply-Accumulate to Accumu-
lator

Vector Multiply and
Multiply-Accumulate

0xC000 0000—
0xC003 DE3F

1 1 0 0 0 0 0 0 0 0 0 0 0 0 op1

Dreg
half 1 0 op0

Dreg
half 0 0 0 0

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi

Table C-21. Vector Operations Instructions (Sheet 15 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-122 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

0xC080 0000—
0xC083 DE3F

1 1 0 0 0 0 0 0 1 0 0 0 0 0 op1

Dreg
half 1 0 op0

Dreg
half 0 0 0 0

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (FU)

Vector Multiply and
Multiply-Accumulate

0xC100 0000—
0xC103 DE3F

1 1 0 0 0 0 0 1 0 0 0 0 0 0 op1

Dreg
half 1 0 op0

Dreg
half 0 0 0 0

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (IS)

Vector Multiply and
Multiply-Accumulate

0xC060 0000—
0xC063 DE3F

1 1 0 0 0 0 0 0 0 1 1 0 0 0 op1

Dreg
half 1 0 op0

Dreg
half 0 0 0 0

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (W32)

Vector Multiply and
Multiply-Accumulate

0xC010 0000—
0xC013 DE3F

1 1 0 0 0 0 0 0 0 0 0 1 0 0 op1

Dreg
half 1 0 op0

Dreg
half 0 0 0 0

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (M)

Vector Multiply and
Multiply-Accumulate

0xC070 0000—
0xC073 DE3F

1 1 0 0 0 0 0 0 0 1 1 1 0 0 op1

Dreg
half 1 0 op0

Dreg
half 0 0 0 0

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply and
Multiply-Accumulate opcodes. In fact, each vector opcode is the logical “OR” of the two component sca-
lar opcodes.

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (W32, M)

Table C-21. Vector Operations Instructions (Sheet 16 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-123

Instruction Opcodes

Multiply and
Multiply-Accumulate to Accumula-
tor

LEGEND:
op0 and op1 specify the arith-
metic operation for each MAC.
op0 controls MAC0 operating on
Accumulator A0 and op1 con-
trols MAC1 operating on A1.

op0
and
op1

“=” 0 0

“+=” 0 1

“–=” 1 0

Dreg half 0 and Dreg half 1
determine which halves of the
input operand registers to use.
Dreg half 0 controls MAC0 oper-
ating on Accumulator A0 and
Dreg half 1 controls MAC1 oper-
ating on A1.

Dreg
half 0
and

Dreg
half 1

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.
src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Vector Multiply and
Multiply-Accumulate

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate to Half Register with Multiply and Multiply-Accumulate to Half Reg-
ister

Table C-21. Vector Operations Instructions (Sheet 17 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-124 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

0xC004 2000—
0xC007 FFFF

1 1 0 0 0 0 0 0 0 0 0 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

Vector Multiply and
Multiply-Accumulate

0xC084 2000—
0xC087 FFFF

1 1 0 0 0 0 0 0 1 0 0 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

Vector Multiply and
Multiply-Accumulate

0xC104 2000—
0xC107 FFFF

1 1 0 0 0 0 0 1 0 0 0 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

Vector Multiply and
Multiply-Accumulate

0xC184 2000—
0xC187 FFFF

1 1 0 0 0 0 0 1 1 0 0 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IU)

Vector Multiply and
Multiply-Accumulate

0xC044 2000—
0xC047 FFFF

1 1 0 0 0 0 0 0 0 1 0 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (T)

Vector Multiply and
Multiply-Accumulate

0xC0C4 2000—
0xC0C7 FFFF

1 1 0 0 0 0 0 0 1 1 0 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (TFU)

Table C-21. Vector Operations Instructions (Sheet 18 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-125

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

0xC024 2000—
0xC027 FFFF

1 1 0 0 0 0 0 0 0 0 1 0 0 1 op1

Dreg
half 0 1 1 0 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Vector Multiply and
Multiply-Accumulate

0xC124 2000—
0xC127 FFFF

1 1 0 0 0 0 0 1 0 0 1 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Vector Multiply and
Multiply-Accumulate

0xC164 2000—
0xC167 FFFF

1 1 0 0 0 0 0 1 0 1 1 0 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IH)

Vector Multiply and
Multiply-Accumulate

0xC014 2000—
0xC017 FFFF

1 1 0 0 0 0 0 0 0 0 0 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (M)

Vector Multiply and
Multiply-Accumulate

0xC094 2000—
0xC097 FFFF

1 1 0 0 0 0 0 0 1 0 0 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Vector Multiply and
Multiply-Accumulate

0xC114 2000—
0xC117 FFFF

1 1 0 0 0 0 0 1 0 0 0 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Table C-21. Vector Operations Instructions (Sheet 19 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-126 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

0xC194 2000—
0xC197 FFFF

1 1 0 0 0 0 0 1 1 0 0 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IU, M)

Vector Multiply and
Multiply-Accumulate

0xC054 2000—
0xC057 FFFF

1 1 0 0 0 0 0 0 0 1 0 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (T, M)

Vector Multiply and
Multiply-Accumulate

0xC0D4 2000—
0xC0D7 FFFF

1 1 0 0 0 0 0 0 1 1 0 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

Vector Multiply and
Multiply-Accumulate

0xC034 2000—
0xC037 FFFF

1 1 0 0 0 0 0 0 0 0 1 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Vector Multiply and
Multiply-Accumulate

0xC134 2000—
0xC137 FFFF

1 1 0 0 0 0 0 1 0 0 1 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Table C-21. Vector Operations Instructions (Sheet 20 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-127

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

0xC174 2000—
0xC177 FFFF

1 1 0 0 0 0 0 1 0 1 1 1 0 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply and
Multiply-Accumulate opcodes. In fact, each vector opcode is the logical “OR” of the two component sca-
lar opcodes.

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IH, M)

Table C-21. Vector Operations Instructions (Sheet 21 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-128 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

LEGEND:
op0 and op1 specify the arith-
metic operation for each MAC.
op0 controls MAC0 operating on
Accumulator A0 and op1 con-
trols MAC1 operating on A1.

op0
and
op1

“=” 0 0

“+=” 0 1

“–=” 1 0

Dreg half 0 and Dreg half 1
determine which halves of the
input operand registers to use.
Dreg half 0 controls MAC0 oper-
ating on Accumulator A0 and
Dreg half 1 controls MAC1 oper-
ating on A1.

Dreg
half 0
and

Dreg
half 1

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.
src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.
src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Vector Multiply and
Multiply-Accumulate

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate to Data Register with Multiply and Multiply-Accumulate to Data
Register

Table C-21. Vector Operations Instructions (Sheet 22 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-129

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

0xC00C 2000—
0xC00F FFFF

1 1 0 0 0 0 0 0 0 0 0 0 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

Vector Multiply and
Multiply-Accumulate

0xC08C 2000—
0xC08F FFFF

1 1 0 0 0 0 0 0 1 0 0 0 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

Vector Multiply and
Multiply-Accumulate

0xC10C 2000—
0xC10F FFFF

1 1 0 0 0 0 0 1 0 0 0 0 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

Vector Multiply and
Multiply-Accumulate

0xC02C 2000—
0xC02F FFFF

1 1 0 0 0 0 0 0 0 0 1 0 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND)

Vector Multiply and
Multiply-Accumulate

0xC12C 2000—
0xC12F FFFF

1 1 0 0 0 0 0 1 0 0 1 0 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2)

Vector Multiply and
Multiply-Accumulate

0xC01C 2000—
0xC01F FFFF

1 1 0 0 0 0 0 0 0 0 0 1 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (M)

Table C-21. Vector Operations Instructions (Sheet 23 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-130 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

0xC09C 2000—
0xC09F FFFF

1 1 0 0 0 0 0 0 1 0 0 1 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU, M)

Vector Multiply and
Multiply-Accumulate

0xC11C 2000—
0xC11F FFFF

1 1 0 0 0 0 0 1 0 0 0 1 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS, M)

Vector Multiply and
Multiply-Accumulate

0xC03C 2000—
0xC03F FFFF

1 1 0 0 0 0 0 0 0 0 1 1 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

Vector Multiply and
Multiply-Accumulate

0xC13C 2000—
0xC13F FFFF

1 1 0 0 0 0 0 1 0 0 1 1 1 1 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply and
Multiply-Accumulate opcodes. In fact, each vector opcode is the logical “OR” of the two component sca-
lar opcodes.

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

Table C-21. Vector Operations Instructions (Sheet 24 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-131

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

LEGEND:
op0 and op1 specify the arith-
metic operation for each MAC.
op0 controls MAC0 operating on
Accumulator A0 and op1 con-
trols MAC1 operating on A1.

op0
and
op1

“=” 0 0

“+=” 0 1

“–=” 1 0

Dreg half 0 and Dreg half 1
determine which halves of the
input operand registers to use.
Dreg half 0 controls MAC0 oper-
ating on Accumulator A0 and
Dreg half 1 controls MAC1 oper-
ating on A1.

Dreg
half 0
and

Dreg
half 1

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.
src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.
src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Vector Multiply and
Multiply-Accumulate

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate to Accumulator with Multiply and Multiply-Accumulate to Half Reg-
ister

Table C-21. Vector Operations Instructions (Sheet 25 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-132 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

0xC004 0000—
0xC007 DFFF

1 1 0 0 0 0 0 0 0 0 0 0 0 1 op1

Dreg
half 1 0 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

Vector Multiply and
Multiply-Accumulate

0xC084 0000—
0xC087 DFFF

1 1 0 0 0 0 0 0 1 0 0 0 0 1 op1

Dreg
half 1 0 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

Vector Multiply and
Multiply-Accumulate

0xC104 0000—
0xC107 DFFF

1 1 0 0 0 0 0 1 0 0 0 0 0 1 op1

Dreg
half 1 0 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

Vector Multiply and
Multiply-Accumulate

0xC000 2000—
0xC003 FFFF

1 1 0 0 0 0 0 0 0 0 0 0 0 0 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi

Vector Multiply and
Multiply-Accumulate

0xC080 2000—
0xC083 FFFF

1 1 0 0 0 0 0 0 1 0 0 0 0 0 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (FU)

Table C-21. Vector Operations Instructions (Sheet 26 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-133

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

0xC100 2000—
0xC103 FFFF

1 1 0 0 0 0 0 1 0 0 0 0 0 0 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply and
Multiply-Accumulate opcodes. In fact, each vector opcode is the logical “OR” of the two component sca-
lar opcodes.

Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (IS)

Table C-21. Vector Operations Instructions (Sheet 27 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-134 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

LEGEND:
op0 and op1 specify the arith-
metic operation for each MAC.
op0 controls MAC0 operating on
Accumulator A0 and op1 con-
trols MAC1 operating on A1.

op0
and
op1

“=” 0 0

“+=” 0 1

“–=” 1 0

Dreg half 0 and Dreg half 1
determine which halves of the
input operand registers to use.
Dreg half 0 controls MAC0 oper-
ating on Accumulator A0 and
Dreg half 1 controls MAC1 oper-
ating on A1.

Dreg
half 0
and

Dreg
half 1

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.
src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.
src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Vector Multiply and
Multiply-Accumulate

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

Multiply and Multiply-Accumulate to Accumulator with Multiply and Multiply-Accumulate to Data Reg-
ister

Table C-21. Vector Operations Instructions (Sheet 28 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-135

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

0xC00C 0000—
0xC00F DFFF

1 1 0 0 0 0 0 0 0 0 0 0 1 1 op1

Dreg
half 1 0 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

Vector Multiply and
Multiply-Accumulate

0xC08C 0000—
0xC08F DFFF

1 1 0 0 0 0 0 0 1 0 0 0 1 1 op1

Dreg
half 1 0 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

Vector Multiply and
Multiply-Accumulate

0xC10C 0000—
0xC10F DFFF

1 1 0 0 0 0 0 1 0 0 0 0 1 1 op1

Dreg
half 1 0 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

Vector Multiply and
Multiply-Accumulate

0xC008 2000—
0xC00B FFFF

1 1 0 0 0 0 0 0 0 0 0 0 1 0 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi

Vector Multiply and
Multiply-Accumulate

0xC088 2000—
0xC08B FFFF

1 1 0 0 0 0 0 0 1 0 0 0 1 0 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (FU)

Table C-21. Vector Operations Instructions (Sheet 29 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-136 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and
Multiply-Accumulate

0xC108 2000—
0xC10B FFFF

1 1 0 0 0 0 0 1 0 0 0 0 1 0 op1

Dreg
half 1 1 op0

Dreg
half 0

Dest.
Dreg #

src_reg_
0 Dreg #

src_reg_
1 Dreg #

NOTE: When issuing compatible load/store instructions in parallel with a Vector Multiply and Multi-
ply-Accumulate instruction, add 0x0800 0000 to the Vector Multiply and Multiply-Accumulate opcode.

NOTE: The ranges of these vector opcodes naturally overlaps with the component scalar Multiply and
Multiply-Accumulate opcodes. In fact, each vector opcode is the logical “OR” of the two component sca-
lar opcodes.

Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (IS)

Table C-21. Vector Operations Instructions (Sheet 30 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-137

Instruction Opcodes

Vector Multiply and
Multiply-Accumulate

LEGEND:
op0 and op1 specify the arith-
metic operation for each MAC.
op0 controls MAC0 operating on
Accumulator A0 and op1 con-
trols MAC1 operating on A1.

op0
and
op1

“=” 0 0

“+=” 0 1

“–=” 1 0

Dreg half 0 and Dreg half 1
determine which halves of the
input operand registers to use.
Dreg half 0 controls MAC0 oper-
ating on Accumulator A0 and
Dreg half 1 controls MAC1 oper-
ating on A1.

Dreg
half 0
and

Dreg
half 1

Dreg_lo * Dreg_lo 0 0

Dreg_lo * Dreg_hi 0 1

Dreg_hi * Dreg_lo 1 0

Dreg_hi * Dreg_hi 1 1

Dest. Dreg # encodes the destination Data Register.
src_reg_0 Dreg # encodes the input operand register to the left of the “*” operand.
src_reg_1 Dreg # encodes the input operand register to the right of the “*” operand.

Vector Multiply and
Multiply-Accumulate

Multiply and
Multiply-Accumulate to Accumulator with Multiply and
Multiply-Accumulate to Data Register

Table C-21. Vector Operations Instructions (Sheet 31 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Operations Instructions

C-138 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Negate (Two’s Complement) 0xC40F C000—
0xC40F CE38

1 1 0 0 0 1 0 x x x 0 0 1 1 1 1

1 1 0 0
Dest.

Dreg # 0 0 0
Source
Dreg # 0 0 0

Dreg = – Dreg (V)

Vector Pack 0xC604 0000—
0xC604 0E3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 0

0 0 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = PACK (Dreg_lo, Dreg_lo)

Vector Pack 0xC604 4000—
0xC604 4E3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 0

0 1 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = PACK (Dreg_lo, Dreg_hi)

Vector Pack 0xC604 8000—
0xC604 8E3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 0

1 0 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = PACK (Dreg_hi, Dreg_lo)

Vector Pack 0xC604 C000—
0xC604 CE3F

1 1 0 0 0 1 1 0 0 x x 0 0 1 0 0

1 1 0 0
Dest.

Dreg # x x x
Source 0
Dreg #

Source 1
Dreg #

Dreg = PACK (Dreg_hi, Dreg_hi)

Vector Search 0xC40D 0000—
0xC40D 2FFF

1 1 0 0 0 1 0 x x x 0 0 1 1 0 1

0 0 0 0
Dest. 1
Dreg #

Dest. 0
Dreg #

Source
Dreg # 0 0 0

(Dreg, Dreg) = SEARCH Dreg (GT)

Vector Search 0xC40D 4000—
0xC40D 6FFF

1 1 0 0 0 1 0 x x x 0 0 1 1 0 1

0 1 0 0
Dest. 1
Dreg #

Dest. 0
Dreg #

Source
Dreg # 0 0 0

(Dreg, Dreg) = SEARCH Dreg (GE)

Table C-21. Vector Operations Instructions (Sheet 32 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-139

Instruction Opcodes

Vector Search 0xC40D 8000—
0xC40D AFF8

1 1 0 0 0 1 0 x x x 0 0 1 1 0 1

1 0 0 0
Dest. 1
Dreg #

Dest. 0
Dreg #

Source
Dreg # 0 0 0

(Dreg, Dreg) = SEARCH Dreg (LT)

Vector Search

0xC40D C000—
0xC40D EFF8

1 1 0 0 0 1 0 x x x 0 0 1 1 0 1

1 1 0 0
Dest. 1
Dreg #

Dest. 0
Dreg #

Source
Dreg # 0 0 0

NOTE: When issuing compatible load/store instructions in parallel with a Vector Search instruction, add
0x0800 0000 to the Vector Search opcode.

(Dreg, Dreg) = SEARCH Dreg (LE)

Table C-21. Vector Operations Instructions (Sheet 33 of 33)

Instruction
and Version

Opcode
Range

Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instructions Listed By Operation Code

C-140 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Instructions Listed By Operation Code

16-Bit Opcode Instructions
Table C-22 lists the instructions that are represented by 16-bit opcodes.

Table C-22. 16-Bit Opcode Instructions (Sheet 1 of 14)

Instruction
and Version

Opcode
Range

No Op
NOP

0x0000—

Return
RTS

0x0010—

Return
RTI

0x0011—

Return
RTX

0x0012—

Return
RTN

0x0013—

Return
RTE

0x0014—

Idle
IDLE

0x0020—

Core Synchronize
CSYNC

0x0023—

System Synchronize
SSYNC

0x0024—

Force Emulation
EMUEXCPT

0x0025—

Abort
ABORT

0x002F—

Disable Interrupts
CLI Dreg

0x0030—
0x0037

Enable Interrupts
STI Dreg

0x0040 —
0x0047

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-141

Instruction Opcodes

Jump
JUMP (Preg)

0x0050—
0x0057

Call
CALL (Preg)

0x0060—
0x0067

Call
CALL (PC+Preg)

0x0070—
0x0077

Jump
JUMP (PC+Preg)

0x0080—
0x0087

Force Interrupts / Reset
RAISE uimm4

0x0090—
0x009F

Force Exception
EXCPT uimm4

0x00A0—
0x00AF

Test and Set Byte (Atomic)
TESTSET (Preg)

0x00B0—
0x00B5

Pop
mostreg=[SP++]

0x0100—
0x013F

Push
[– –SP]=allreg

0x0140—
0x017F

Move CC
Dreg = CC

0x0200—
0x0207

Move CC
CC = Dreg

0x0208—
0x020F

Negate CC
CC = !CC

0x0218—

Data Cache Prefetch
PREFETCH [Preg]

0x0240—
0x0247

Data Cache Line Invalidate
FLUSHINV [Preg]

0x0248—
0x024F

Data Cache Flush
FLUSH [Preg]

0x0250—
0x0257

Instruction Cache Flush
IFLUSH [Preg]

0x0258—
0x025F

Table C-22. 16-Bit Opcode Instructions (Sheet 2 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-142 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Data Cache Prefetch
PREFETCH [Preg++]

0x0260—
0x0267

Data Cache Line Invalidate
FLUSHINV [Preg++]

0x0268—
0x026F

Data Cache Flush
FLUSH [Preg++]

0x0270—
0x0277

Instruction Cache Flush
IFLUSH [Preg++]

0x0278—
0x027F

Move CC
CC = statbit

0x0300—
0x031F

Move CC
CC |= statbit

0x0320—
0x033F

Move CC
CC &= statbit

0x0340—
0x035F

Move CC
CC ^= statbit

0x0360—
0x037F

Move CC
statbit = CC

0x0380—
0x039F

Move CC
statbit |= CC

0x03A0—
0x03BF

Move CC
statbit &= CC

0x03C0—
0x03DF

Move CC
statbit ^= CC

0x03E0—
0x03FF

Pop Multiple
(P5:Preglim)=[SP++]

0x0480—
0x0485

Push Multiple
[– –SP]=(P5:Preglim)

0x04C0—
0x04C5

Pop Multiple
(R7:Dreglim)=[SP++]

0x0500—
0x0538

Push Multiple
[– –SP]=(R7:Dreglim)

0x0540—
0x0578

Table C-22. 16-Bit Opcode Instructions (Sheet 3 of 14)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-143

Instruction Opcodes

Pop Multiple
(R7:Dreglim, P5:Preglim)=[SP++]

0x0580—
0x05BD

Push Multiple
[– –SP]=(R7:Dreglim, P5:Preglim)

0x05C0—
0x05FD

Move Conditional
IF !CC Dreg=Dreg

0x0600—
0x063F

Move Conditional
IF !CC Dreg=Preg

0x0640—
0x067F

Move Conditional
IF !CC Preg=Dreg

0x0680—
0x06BF

Move Conditional
IF !CC Preg=Preg

0x06C0—
0x06FF

Move Conditional
IF CC Dreg=Dreg

0x0700—
0x073F

Move Conditional
IF CC Dreg=Preg

0x0740—
0x077F

Move Conditional
IF CC Preg=Dreg

0x0780—
0x07BF

Move Conditional
IF CC Preg=Preg

0x07C0—
0x07FF

Compare Data Register
CC = Dreg == Dreg

0x0800—
0x083F

Compare Pointer Register
CC = Preg == Preg

0x0840—
0x087F

Compare Data Register
CC = Dreg < Dreg

0x0880—
0x08BF

Compare Pointer Register
CC = Preg < Preg

0x08C0—
0x08FF

Compare Data Register
CC = Dreg <= Dreg

0x0900—
0x093F

Compare Pointer Register
CC = Preg <= Preg

0x0940—
0x097F

Table C-22. 16-Bit Opcode Instructions (Sheet 4 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-144 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Compare Data Register
CC = Dreg < Dreg (IU)

0x0980—
0x09BF

Compare Pointer Register
CC = Preg < Preg (IU)

0x09C0—
0x09FF

Compare Data Register
CC = Dreg <= Dreg (IU)

0x0A00—
0x0A3F

Compare Pointer Register
CC = Preg <= Preg (IU)

0x0A40—
0x0A7F

Compare Accumulator
CC = A0 == A1

0x0A80—

Compare Accumulator
CC = A0 < A1

0x0B00—

Compare Accumulator
CC = A0 <= A1

0x0B80—

Compare Data Register
CC = Dreg == imm3

0x0C00—
0x0C3F

Compare Pointer Register
CC = Preg == imm3

0x0C40—
0x0C7F

Compare Data Register
CC = Dreg < imm3

0x0C80—
0x0CBF

Compare Pointer Register
CC = Preg < imm3

0x0CC0—
0x0CFF

Compare Data Register
CC = Dreg <= imm3

0x0D00—
0x0D3F

Compare Pointer Register
CC = Preg <= imm3

0x0D40—
0x0D7F

Compare Data Register
CC = Dreg < uimm3 (IU)

0x0D80—
0x0DBF

Compare Pointer Register
CC = Preg < uimm3 (IU)

0x0DC0—
0x0DFF

Compare Data Register
CC = Dreg <= uimm3 (IU)

0x0E00—
0x0E3F

Table C-22. 16-Bit Opcode Instructions (Sheet 5 of 14)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-145

Instruction Opcodes

Compare Pointer Register
CC = Preg <= uimm3 (IU)

0x0E40—
0x0E7F

Conditional Jump
IF !CC JUMP pcrel11m2

0x1000—
0x13FF

Conditional Jump
IF CC JUMP pcrel11m2

0x1800—
0x17FF

Conditional Jump
IF !CC JUMP pcrel11m2 (bp)

0x1400—
0x1BFF

Conditional Jump
IF CC JUMP pcrel11m2 (bp)

0x1C00—
0x1FFF

Jump
JUMP.S pcrel13m2

0x2000—
0x2FFF

Move Register
genreg = genreg
genreg = dagreg
dagreg = genreg
dagreg = dagreg
genreg = USP
USP = genreg
Dreg = sysreg
sysreg = Dreg
sysreg = Preg
sysreg = USP

0x3000—
0x3FFF

Arithmetic Shift
Dreg >>>= Dreg

0x4000—
0x403F

Logical Shift
Dreg >>= Dreg

0x4040—
0x407F

Logical Shift
Dreg <<= Dreg

0x4080—
0x40BF

Multiply 32-Bit Operands
Dreg *= Dreg

0x40C0—
0x40FF

Add with Shift
Dreg = (Dreg + Dreg) << 1

0x4100—
0x413F

Add with Shift
Dreg = (Dreg + Dreg) << 2

0x4140—
0x417F

Table C-22. 16-Bit Opcode Instructions (Sheet 6 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-146 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Divide Primitive
DIVQ (Dreg, Dreg)

0x4200—
0x423F

Divide Primitive
DIVS (Dreg, Dreg)

0x4240—
0x427F

Move Half to Full Word, Sign Extended
Dreg = Dreg_lo (X)

0x4280—
0x42BF

Move Half to Full Word – Zero Extended
Dreg = Dreg_lo (Z)

0x42C0—
0x42FF

Move Byte, Sign Extended
Dreg = Dreg_byte (X)

0x4300—
0x433F

Move Byte, Zero Extended
Dreg = Dreg_byte (Z)

0x4340—
0x437F

Negate (Two’s Complement)
Dreg = – Dreg

0x4380—
0x43BF

NOT (One’s Complement)
Dreg = ~ Dreg

0x43C0—
0x43FF

Modify-Decrement
Preg –= Preg

0x4400—
0x443F

Logical Shift
Preg = Preg << 2

0x4440—
0x447F

Logical Shift
Preg = Preg >> 2

0x44C0—
0x44FF

Logical Shift
Preg = Preg >> 1

0x4500—
0x453F

Modify-Increment
Preg += Preg (BREV)

0x4540—
0x457F

Add with Shift
Preg = (Preg + Preg) << 1

0x4580—
0x45BF

Add with Shift
Preg = (Preg + Preg) << 2

0x45C0—
0x45FF

Bit Test
CC = ! BITTST (Dreg, uimm5)

0x4800—
0x48FF

Table C-22. 16-Bit Opcode Instructions (Sheet 7 of 14)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-147

Instruction Opcodes

Bit Test
CC = BITTST (Dreg, uimm5)

0x4900—
0x49FF

Bit Set
BITSET (Dreg, uimm5)

0x4A00—
0x4AFF

Bit Toggle
BITTGL (Dreg, uimm5)

0x4B00—
0x4BFF

Bit Clear
BITCLR (Dreg, uimm5)

0x4C00—
0x4CFF

Arithmetic Shift
Dreg >>>= uimm5

0x4D00—
0x4DFF

Logical Shift
Dreg >>= uimm5

0x4E00—
0x4EFF

Logical Shift
Dreg <<= uimm5

0x4F00—
0x4FFF

Add
Dreg = Dreg + Dreg

0x5000—
0x51FF

Subtract
Dreg = Dreg – Dreg

0x5200—
0x53FF

AND
Dreg = Dreg & Dreg

0x5400—
0x55FF

OR
Dreg = Dreg | Dreg

0x5600—
0x57FF

Exclusive-OR
Dreg = Dreg ^ Dreg

0x5800—
0x59FF

Add
Preg = Preg + Preg

0x5A00—
0x5BFF

Logical Shift
Preg = Preg << 1

0x5A00—
0x5BFF

NOTE: The special case of the Preg = Preg + Preg Add instruction, where both input operands are the
same Preg (e.g., p3 = p0+p0;), produces the same opcode as the Logical Shift instruction Preg = Preg << 1
that accomplishes the same function. Both syntaxes double the input operand value, then place the result
in a Preg.

Shift with Add
Preg = Preg + (Preg <<1)

0x5C00—
0x5DFF

Table C-22. 16-Bit Opcode Instructions (Sheet 8 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-148 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Shift with Add
Preg = Preg + (Preg <<2)

0x5E00—
0x5FFF

Load Immediate
Dreg = imm7 (X)

0x6000—
0x63FF

Add Immediate
Dreg += imm7

0x6400—
0x6700

Load Immediate
Preg = imm7 (X)

0x6800—
0x6BFF

Add Immediate
Preg += imm7

0x6C00—
0x6FFF—

Load Data Register
Dreg = [Preg ++ Preg]

0x8000—
0x81FF—

Load Low Data Register Half
Dreg_lo = W [Preg]

0x8200—
0x83FF—

Load Low Data Register Half
Dreg_lo = W [Preg ++ Preg]

0x8201—
0x83FE—

Load High Data Register Half
Dreg_hi = W [Preg]

0x8400—
0x85FF—

Load High Data Register Half
Dreg_hi = W [Preg ++ Preg]

0x8401—
0x85FE—

Load Half Word, Zero Extended
Dreg = W [Preg ++ Preg] (Z)

0x8601—
0x87FE—

Load Half Word, Sign Extended
Dreg = W [Preg ++ Preg] (X)

0x8E00—
0x8FFF—

Store Data Register
[Preg ++ Preg] = Dreg

0x8800—
0x89FF

Store Low Data Register Half
W [Preg] = Dreg_lo

0x8A00—
0x8BFF

Store Low Data Register Half
W [Preg ++ Preg] = Dreg_lo

0x8A01—
0x8BFE

Store High Data Register Half
W [Preg] = Dreg_hi

0x8C00—
0x8DFF

Table C-22. 16-Bit Opcode Instructions (Sheet 9 of 14)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-149

Instruction Opcodes

Store High Data Register Half
W [Preg ++ Preg] = Dreg_hi

0x8C01—
0x8DFE

Load Data Register
Dreg = [Preg ++]

0x9000—
0x903F

Load Pointer Register
Preg = [Preg ++]

0x9040—
0x907F

Load Data Register
Dreg = [Preg – –]

0x9080—
0x90BF

Load Pointer Register
Preg = [Preg – –]

0x90C0—
0x90FF

Load Data Register
Dreg = [Preg]

0x9100—
0x913F

Load Pointer Register
Preg = [Preg]

0x9140—
0x917F

Store Data Register
[Preg ++] = Dreg

0x9200—
0x923F

Store Pointer Register
[Preg ++] = Preg

0x9240—
0x927F

Store Data Register
[Preg – –] = Dreg

0x9280—
0x92BF

Store Pointer Register
[Preg – –] = Preg

0x92C0—
0x92FF

Store Data Register
[Preg] = Dreg

0x9300—
0x933F

Store Pointer Register
[Preg] = Preg

0x9340—
0x937F

Load Half Word, Zero Extended
Dreg = W [Preg ++] (Z)

0x9400—
0x943F

Load Half Word, Sign Extended
Dreg = W [Preg ++] (X)

0x9440—
0x947F

Load Half Word, Zero Extended
Dreg = W [Preg – –] (Z)

0x9480—
0x94BF

Table C-22. 16-Bit Opcode Instructions (Sheet 10 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-150 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Half Word, Sign Extended
Dreg = W [Preg – –] (X)

0x94C0—
0x94FF

Load Half Word, Zero Extended
Dreg = W [Preg] (Z)

0x9500—
0x953F

Load Half Word, Sign Extended
Dreg = W [Preg] (X)

0x9540—
0x957F

Store Low Data Register Half
W [Preg ++] = Dreg

0x9600—
0x963F

Store Low Data Register Half
W [Preg – –] = Dreg

0x9680—
0x96BF

Store Low Data Register Half
W [Preg] = Dreg

0x9700—
0x973F

Load Byte, Zero Extended
Dreg = B [Preg ++] (Z)

0x9800—
0x983F

Load Byte, Sign Extended
Dreg = B [Preg ++] (X)

0x9840—
0x987F

Load Byte, Zero Extended
Dreg = B [Preg – –] (Z)

0x9880—
0x98BF

Load Byte, Sign Extended
Dreg = B [Preg – –] (X)

0x98C0—
0x98FF

Load Byte, Zero Extended
Dreg = B [Preg] (Z)

0x9900—
0x993F

Load Byte, Sign Extended
Dreg = B [Preg] (X)

0x9940—
0x997F

Store Byte
B [Preg ++] = Dreg

0x9A00—
0x9A3F

Store Byte
B [Preg – –] = Dreg

0x9A80—
0x9ABF

Store Byte
B [Preg] = Dreg

0x9B00—
0x9B3F

Load Data Register
Dreg = [Ireg ++]

0x9C00—
0x9C1F

Table C-22. 16-Bit Opcode Instructions (Sheet 11 of 14)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-151

Instruction Opcodes

Load Low Data Register Half
Dreg_lo = W [Ireg ++]

0x9C20—
0x9C3F

Load High Data Register Half
Dreg_hi = W [Ireg ++]

0x9C40—
0x9C5F

Load Data Register
Dreg = [Ireg – –]

0x9C80—
0x9C9F

Load Low Data Register Half
Dreg_lo = W [Ireg – –]

0x9CA0—
0x9CBF

Load High Data Register Half
Dreg_hi = W [Ireg – –]

0x9CC0—
0x9CDF

Load Data Register
Dreg = [Ireg]

0x9D00—
0x9D1F

Load Low Data Register Half
Dreg_lo = W [Ireg]

0x9D20—
0x9D3F

Load High Data Register Half
Dreg_hi = W [Ireg]

0x9D40—
0x9D5F

Load Data Register
Dreg = [Ireg ++ Mreg]

0x9D80—
0x9DFF

Store Data Register
[Ireg ++] = Dreg

0x9E00—
0x9E1F

Store Low Data Register Half
W [Ireg ++] = Dreg_lo

0x9E20—
0x9E3F

Store High Data Register Half
W [Ireg ++] = Dreg_hi

0x9E40—
0x9E5F

Modify-Increment
Ireg += Mreg

0x9E60—
0x9E6F

Modify-Decrement
Ireg –= Mreg

0x9E70—
0x9E7F

Store Data Register
[Ireg – –] = Dreg

0x9E80—
0x9E9F

Store Low Data Register Half
W [Ireg – –] = Dreg_lo

0x9EA0—
0x9EBF

Table C-22. 16-Bit Opcode Instructions (Sheet 12 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-152 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Store High Data Register Half
W [Ireg – –] = Dreg_hi

0x9EC0—
0x9EDF

Modify-Increment
Ireg += Mreg (brev)

0x9EE0—
0x9EEF

Store Data Register
[Ireg] = Dreg

0x9F00—
0x9F1F

Store Low Data Register Half
W [Ireg] = Dreg_lo

0x9F20—
0x9F3F

Store High Data Register Half
W [Ireg] = Dreg_hi

0x9F40—
0x9F5F

Add Immediate
Ireg += 2

0x9F60—
0x9F63

Subtract Immediate
Ireg –= 2

0x9F64—
0x9F67

Add Immediate
Ireg += 4

0x9F68—
0x9F6B

Subtract Immediate
Ireg –= 4

0x9F6C—
0x9F6F

Store Data Register
[Ireg ++ Mreg] = Dreg

0x9F80—
0x9FFF

Load Data Register
Dreg = [Preg + uimm6m4]

0xA000—
0xA3FF

Load Half Word, Zero Extended
Dreg = W [Preg + uimm5m2] (Z)

0xA400—
0xA7FF

Load Half Word, Sign Extended
Dreg = W [Preg + uimm5m2] (X)

0xA800—
0xABFF

Load Pointer Register
Preg = [Preg + uimm6m4]

0xAC00—
0xAFFF

Store Data Register
[Preg + uimm6m4] = Dreg

0xB000—
0xB3FF

Table C-22. 16-Bit Opcode Instructions (Sheet 13 of 14)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-153

Instruction Opcodes

Store Low Data Register Half
W [Preg + uimm5m2] = Dreg

0xB400—
0xB7FF

Load Data Register
Dreg = [FP – uimm7m4]

0xB800—
0xB9F7

Load Pointer Register
Preg = [FP – uimm7m4]

0xB808—
0xB9FF

Store Data Register
[FP – uimm7m4] = Dreg

0xBA00—
0xBBF7

Store Pointer Register
[FP – uimm7m4] = Preg

0xBA08—
0xBBFF

Store Pointer Register
[Preg + uimm6m4] = Preg

0xBC00—
0xBFFF

Table C-22. 16-Bit Opcode Instructions (Sheet 14 of 14)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-154 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

32-Bit Opcode Instructions
Table C-23 lists the instructions that are represented by 32-bit opcodes.

Table C-23. 32-Bit Opcode Instructions (Sheet 1 of 40)

Instruction
and Version

Opcode
Range

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi

0xC000 0000—
0xC003 DE3F

Multiply and Multiply-Accumulate to Accumulator
A1 = Dreg_lo_hi * Dreg_lo_hi

0xC000 1800—
0xC000 D83F

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi

0xC000 2000—
0xC003 FFFF

Multiply and Multiply-Accumulate to Accumulator
A1 += Dreg_lo_hi * Dreg_lo_hi

0xC001 1800—
0xC001 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 –= Dreg_lo_hi * Dreg_lo_hi

0xC002 1800—
0xC002 D83F

Multiply and Multiply-Accumulate to Accumulator
A0 = Dreg_lo_hi * Dreg_lo_hi

0xC003 0000—
0xC003 063F

Multiply and Multiply-Accumulate to Accumulator
A0 += Dreg_lo_hi * Dreg_lo_hi

0xC003 0800—
0xC003 0E3F

Multiply and Multiply-Accumulate to Accumulator
A0 –= Dreg_lo_hi * Dreg_lo_hi

0xC003 1000—
0xC003 163F

No Op
MNOP

0xC003 1800

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi)

0xC003 2000—
0xC003 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi)

0xC003 2800—
0xC003 0FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi)

0xC003 3000—
0xC003 37FF

Move Register Half
Dreg_lo = A0

0xC003 3800—
0xC003 39C0

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-155

Instruction Opcodes

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

0xC004 0000—
0xC007 DFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi)

0xC004 1800—
0xC004 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

0xC004 2000—
0xC007 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi)

0xC005 1800—
0xC005 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi)

0xC006 1800—
0xC006 D9FF

Move Register Half
Dreg_hi = A1

0xC007 1800—
0xC007 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1
Dreg_hi = A1, Dreg_lo = A0

0xC007 3800—
0xC007 39C0

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi)

0xC008 1800—
0xC008 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi

0xC008 2000—
0xC00B FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi)

0xC009 1800—
0xC009 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi)

0xC00A 1800—
0xC00A D9FF

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

0xC00C 0000—
0xC00F DFFF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi)

0xC00C 2000—
0xC00F FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi)

0xC00D 0000—
0xC00D 07FF

Table C-23. 32-Bit Opcode Instructions (Sheet 2 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-156 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi)

0xC00D 0800—
0xC00D 0FFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 –= Dreg_lo_hi * Dreg_lo_hi)

0xC00D 1000—
0xC00D 17FF

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (M)

0xC010 0000—
0xC013 DE3F

Multiply and Multiply-Accumulate to Accumulator
A1 = Dreg_lo_hi * Dreg_lo_hi (M)

0xC010 1800—
0xC010 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 += Dreg_lo_hi * Dreg_lo_hi (M)

0xC011 1800—
0xC011 D83F

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (M)

0xC014 1800—
0xC014 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (M)

0xC014 2000—
0xC017 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (M)

0xC015 1800—
0xC015 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (M)

0xC016 1800—
0xC016 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (M)

0xC018 1800—
0xC018 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (M)

0xC019 1800—
0xC019 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (M)

0xC01A 1800—
0xC01A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (M)

0xC01C 2000—
0xC01F FFFF

Multiply and Multiply-Accumulate to Accumulator
A1 –= Dreg_lo_hi * Dreg_lo_hi (M)

0xC022 1800—
0xC022 D83F

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC023 2000—
0xC023 27FF

Table C-23. 32-Bit Opcode Instructions (Sheet 3 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-157

Instruction Opcodes

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC023 2800—
0xC023 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC023 3000—
0xC023 37FF

Move Register Half
Dreg_lo = A0 (S2RND)

0xC023 3800—
0xC023 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC024 1800—
0xC024 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC024 2000—
0xC027 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC025 1800—
0xC025 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC026 1800—
0xC026 D9FF

Move Register Half
Dreg_hi = A1 (S2RND)

0xC027 1800—
0xC027 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (S2RND)
Dreg_hi = A1, Dreg_lo = A0 (S2RND)

0xC027 3800—
0xC027 39C0

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC028 1800—
0xC028 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC029 1800—
0xC029 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC02A 1800—
0xC02A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC02C 2000—
0xC02F FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC02D 0000—
0xC02D 07FF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC02D 0800—
0xC02D 0FFF

Table C-23. 32-Bit Opcode Instructions (Sheet 4 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-158 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (S2RND)

0xC02D 1000—
0xC02D 17FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC034 1800—
0xC034 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC034 2000—
0xC037 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC035 1800—
0xC035 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC036 1800—
0xC036 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC038 1800—
0xC038 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC039 1800—
0xC039 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC03A 1800—
0xC03A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (S2RND, M)

0xC03C 2000—
0xC03F FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (T)

0xC043 2000—
0xC043 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (T)

0xC043 2800—
0xC043 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (T)

0xC043 3000—
0xC043 37FF

Move Register Half
Dreg_lo = A0 (T)

0xC043 3800—
0xC043 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (T)

0xC044 1800—
0xC044 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (T)

0xC044 2000—
0xC047 FFFF

Table C-23. 32-Bit Opcode Instructions (Sheet 5 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-159

Instruction Opcodes

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (T)

0xC045 1800—
0xC045 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (T)

0xC046 1800—
0xC046 D9FF

Move Register Half
Dreg_hi = A1 (T)

0xC047 1800—
0xC047 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (T)
Dreg_hi = A1, Dreg_lo = A0 (T)

0xC047 3800—
0xC047 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (T, M)

0xC054 1800—
0xC054 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (T, M)

0xC054 2000—
0xC057 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (T, M)

0xC055 1800—
0xC055 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (T, M)

0xC056 1800—
0xC056 D9FF

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (W32)

0xC060 0000—
0xC063 DE3F

Multiply and Multiply-Accumulate to Accumulator
A1 = Dreg_lo_hi * Dreg_lo_hi (W32)

0xC060 1800—
0xC060 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 += Dreg_lo_hi * Dreg_lo_hi (W32)

0xC061 1800—
0xC061 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 –= Dreg_lo_hi * Dreg_lo_hi (W32)

0xC062 1800—
0xC062 D83F

Multiply and Multiply-Accumulate to Accumulator
A0 = Dreg_lo_hi * Dreg_lo_hi (W32)

0xC063 0000—
0xC063 063F

Multiply and Multiply-Accumulate to Accumulator
A0 += Dreg_lo_hi * Dreg_lo_hi (W32)

0xC063 0800—
0xC063 0E3F

Multiply and Multiply-Accumulate to Accumulator
A0 –= Dreg_lo_hi * Dreg_lo_hi (W32)

0xC063 1000—
0xC063 163F

Table C-23. 32-Bit Opcode Instructions (Sheet 6 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-160 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (W32, M)

0xC070 0000—
0xC073 DE3F

Multiply and Multiply-Accumulate to Accumulator
A1 = Dreg_lo_hi * Dreg_lo_hi (W32, M)

0xC070 1800—
0xC070 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 += Dreg_lo_hi * Dreg_lo_hi (W32, M)

0xC071 1800—
0xC071 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 –= Dreg_lo_hi * Dreg_lo_hi (W32, M)

0xC072 1800—
0xC072 D83F

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (FU)

0xC080 0000—
0xC083 DE3F

Multiply and Multiply-Accumulate to Accumulator
A1 = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC080 1800—
0xC080 D83F

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (FU)

0xC080 2000—
0xC083 FFFF

Multiply and Multiply-Accumulate to Accumulator
A1 += Dreg_lo_hi * Dreg_lo_hi (FU)

0xC081 1800—
0xC081 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 –= Dreg_lo_hi * Dreg_lo_hi (FU)

0xC082 1800—
0xC082 D83F

Multiply and Multiply-Accumulate to Accumulator
A0 = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC083 0000—
0xC083 063F

Multiply and Multiply-Accumulate to Accumulator
A0 += Dreg_lo_hi * Dreg_lo_hi (FU)

0xC083 0800—
0xC083 0E3F

Multiply and Multiply-Accumulate to Accumulator
A0 –= Dreg_lo_hi * Dreg_lo_hi (FU)

0xC083 1000—
0xC083 163F

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC083 2000—
0xC083 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC083 2800—
0xC083 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC083 3000—
0xC083 37FF

Table C-23. 32-Bit Opcode Instructions (Sheet 7 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-161

Instruction Opcodes

Move Register Half
Dreg_lo = A0 (FU)

0xC083 3800—
0xC083 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC084 1800—
0xC084 D9FF

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC084 0000—
0xC087 DFFF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC084 2000—
0xC087 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC085 1800—
0xC085 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC086 1800—
0xC086 D9FF

Move Register Half
Dreg_hi = A1 (FU)

0xC087 1800—
0xC087 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (FU)
Dreg_hi = A1, Dreg_lo = A0 (FU)

0xC087 3800—
0xC087 39C0

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC088 1800—
0xC088 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (FU)

0xC088 2000—
0xC08B FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC089 1800—
0xC089 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC08A 1800—
0xC08A D9FF

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC08C 0000—
0xC08F DFFF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC08C 2000—
0xC08F FFFF

Table C-23. 32-Bit Opcode Instructions (Sheet 8 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-162 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC08D 0000—
0xC08D 07FF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC08D 0800—
0xC08D 0FFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (FU)

0xC08D 1000—
0xC08D 17FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC094 1800—
0xC094 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC094 2000—
0xC097 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC095 1800—
0xC095 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC096 1800—
0xC096 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC098 1800—
0xC098 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC099 1800—
0xC099 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC09A 1800—
0xC09A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (FU, M)

0xC09C 2000—
0xC09F FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C3 2000—
0xC0C3 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C3 2800—
0xC0C3 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C3 3000—
0xC0C3 37FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C4 1800—
0xC0C4 D9FF

Table C-23. 32-Bit Opcode Instructions (Sheet 9 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-163

Instruction Opcodes

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C4 2000—
0xC0C7 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C5 1800—
0xC0C5 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (TFU)

0xC0C6 1800—
0xC0C6 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

0xC0D4 1800—
0xC0D4 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

0xC0D4 2000—
0xC0D7 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

0xC0D5 1800—
0xC0D5 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (TFU, M)

0xC0D6 1800—
0xC0D6 D9FF

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (IS)

0xC100 0000—
0xC103 DE3F

Multiply and Multiply-Accumulate to Accumulator
A1 = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC100 1800—
0xC100 D83F

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (IS)

0xC100 2000—
0xC103 FFFF

Multiply and Multiply-Accumulate to Accumulator
A1 += Dreg_lo_hi * Dreg_lo_hi (IS)

0xC101 1800—
0xC101 D83F

Multiply and Multiply-Accumulate to Accumulator
A1 –= Dreg_lo_hi * Dreg_lo_hi (IS)

0xC102 1800—
0xC102 D83F

Multiply and Multiply-Accumulate to Accumulator
A0 = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC103 0000—
0xC103 063F

Multiply and Multiply-Accumulate to Accumulator
A0 += Dreg_lo_hi * Dreg_lo_hi (IS)

0xC103 0800—
0xC103 0E3F

Multiply and Multiply-Accumulate to Accumulator
A0 –= Dreg_lo_hi * Dreg_lo_hi (IS)

0xC103 1000—
0xC103 163F

Table C-23. 32-Bit Opcode Instructions (Sheet 10 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-164 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC103 2000—
0xC103 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC103 2800—
0xC103 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC103 3000—
0xC103 37FF

Move Register Half
Dreg_lo = A0 (IS)

0xC103 3800—
0xC103 39C0

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC104 0000—
0xC107 DFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC104 1800—
0xC104 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC104 2000—
0xC107 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC105 1800—
0xC105 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC106 1800—
0xC106 D9FF

Move Register Half
Dreg_hi = A1 (IS)

0xC107 1800—
0xC107 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (IS)
Dreg_hi = A1, Dreg_lo = A0 (IS)

0xC107 3800—
0xC107 39C0

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC108 1800—
0xC108 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi (IS)

0xC108 2000—
0xC10B FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC109 1800—
0xC109 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC10A 1800—
0xC10A D9FF

Table C-23. 32-Bit Opcode Instructions (Sheet 11 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-165

Instruction Opcodes

Vector Multiply and Multiply-Accumulate
A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC10C 0000—
0xC10F DFFF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC10C 2000—
0xC10F FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC10D 0000—
0xC10D 07FF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC10D 0800—
0xC10D 0FFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (IS)

0xC10D 1000—
0xC10D 17FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC114 1800—
0xC114 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC114 2000—
0xC117 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC115 1800—
0xC115 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC116 1800—
0xC116 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC118 1800—
0xC118 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC119 1800—
0xC119 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC11A 1800—
0xC11A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IS, M)

0xC11C 2000—
0xC11F FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC123 2000—
0xC123 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC123 2800—
0xC123 2FFF

Table C-23. 32-Bit Opcode Instructions (Sheet 12 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-166 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC123 3000—
0xC123 37FF

Move Register Half
Dreg_lo = A0 (ISS2)

0xC123 3800—
0xC123 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC124 1800—
0xC124 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC124 2000—
0xC127 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC125 1800—
0xC125 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC126 1800—
0xC126 D9FF

Move Register Half
Dreg_hi = A1 (ISS2)

0xC127 1800—
0xC127 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (ISS2)
Dreg_hi = A1, Dreg_lo = A0 (ISS2)

0xC127 3800—
0xC127 39C0

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC128 1800—
0xC128 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC129 1800—
0xC129 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC12A 1800—
0xC12A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC12C 2000—
0xC12F FFFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 = Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC12D 0000—
0xC12D 07FF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 += Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC12D 0800—
0xC12D 0FFF

Multiply and Multiply-Accumulate to Data Register
Dreg_even = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (ISS2)

0xC12D 1000—
0xC12D 17FF

Table C-23. 32-Bit Opcode Instructions (Sheet 13 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-167

Instruction Opcodes

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC134 1800—
0xC134 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC134 2000—
0xC137 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC135 1800—
0xC135 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC136 1800—
0xC136 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 = Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC138 1800—
0xC138 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 += Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC139 1800—
0xC139 D9FF

Multiply and Multiply-Accumulate to Data Register
Dreg_odd = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC13A 1800—
0xC13A D9FF

Vector Multiply and Multiply-Accumulate
Dreg_even = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_odd = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (ISS2, M)

0xC13C 2000—
0xC13F FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC163 2000—
0xC163 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC163 2800—
0xC163 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC163 3000—
0xC163 37FF

Move Register Half
Dreg_lo = A0 (IH)

0xC163 3800—
0xC163 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC164 1800—
0xC164 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC164 2000—
0xC167 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC165 1800—
0xC165 D9FF

Table C-23. 32-Bit Opcode Instructions (Sheet 14 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-168 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IH)

0xC166 1800—
0xC166 D9FF

Move Register Half
Dreg_hi = A1 (IH)

0xC167 1800—
0xC167 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (IH)
Dreg_hi = A1, Dreg_lo = A0 (IH)

0xC167 3800—
0xC167 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IH, M)

0xC174 1800—
0xC174 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IH, M)

0xC174 2000—
0xC177 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IH, M)

0xC175 1800—
0xC175 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IH, M)

0xC176 1800—
0xC176 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC183 2000—
0xC183 27FF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC183 2800—
0xC183 2FFF

Multiply and Multiply-Accumulate to Half Register
Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC183 3000—
0xC183 37FF

Move Register Half
Dreg_lo = A0 (IU)

0xC183 3800—
0xC183 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC184 1800—
0xC184 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC184 2000—
0xC187 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC185 1800—
0xC185 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IU)

0xC186 1800—
0xC186 D9FF

Table C-23. 32-Bit Opcode Instructions (Sheet 15 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-169

Instruction Opcodes

Move Register Half
Dreg_hi = A1 (IU)

0xC187 1800—
0xC187 19C0

Move Register Half
Dreg_lo = A0, Dreg_hi = A1 (IU)
Dreg_hi = A1, Dreg_lo = A0 (IU)

0xC187 3800—
0xC187 39C0

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) (IU, M)

0xC194 1800—
0xC194 D9FF

Vector Multiply and Multiply-Accumulate
Dreg_lo = (A0 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) ,
Dreg_hi = (A1 {=, +=, or –=} Dreg_lo_hi * Dreg_lo_hi) (IU, M)

0xC194 2000—
0xC197 FFFF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) (IU, M)

0xC195 1800—
0xC195 D9FF

Multiply and Multiply-Accumulate to Half Register
Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) (IU, M)

0xC196 1800—
0xC196 D9FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi

0xC200 2000—
0xC200 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi

0xC204 0000—
0xC204 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi

0xC204 2000—
0xC204 E7FF

Multiply 16-Bit Operands
Dreg_even = Dreg_lo_hi * Dreg_lo_hi

0xC208 2000—
0xC208 27FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi

0xC20C 0000—
0xC20C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi

0xC20C 2000—
0xC20C E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (M)

0xC214 0000—
0xC214 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (M)

0xC214 2000—
0xC214 E7FF

Table C-23. 32-Bit Opcode Instructions (Sheet 16 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-170 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (M)

0xC21C 0000—
0xC21C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (M)

0xC21C 2000—
0xC21C E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (S2RND)

0xC220 2000—
0xC220 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND)

0xC224 0000—
0xC224 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND)

0xC224 2000—
0xC224 E7FF

Multiply 16-Bit Operands
Dreg_even = Dreg_lo_hi * Dreg_lo_hi (S2RND)

0xC228 2000—
0xC228 27FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND)

0xC22C 0000—
0xC22C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND)

0xC22C 2000—
0xC22C E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

0xC234 0000—
0xC234 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

0xC234 2000—
0xC234 E7FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

0xC239 0000—
0xC239 C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (S2RND, M)

0xC239 2000—
0xC239 E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (T)

0xC240 2000—
0xC240 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T)

0xC244 0000—
0xC244 C1FF

Table C-23. 32-Bit Opcode Instructions (Sheet 17 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-171

Instruction Opcodes

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T)

0xC244 2000—
0xC244 E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T, M)

0xC254 0000—
0xC254 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (T, M)

0xC254 2000—
0xC254 E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC280 2000—
0xC280 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC284 0000—
0xC284 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC284 2000—
0xC284 E7FF

Multiply 16-Bit Operands
Dreg_even = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC288 2000—
0xC288 27FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC28C 0000—
0xC28C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU)

0xC28C 2000—
0xC28C E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU, M)

0xC294 0000—
0xC294 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (FU, M)

0xC294 2000—
0xC294 E7FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU, M)

0xC29C 0000—
0xC29C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (FU, M)

0xC29C 2000—
0xC29C E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (TFU)

0xC2C0 2000—
0xC2C0 27FF

Table C-23. 32-Bit Opcode Instructions (Sheet 18 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-172 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU)

0xC2C4 0000—
0xC2C4 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU)

0xC2C4 2000—
0xC2C4 E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU, M)

0xC2D4 0000—
0xC2D4 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (TFU, M)

0xC2D4 2000—
0xC2D4 E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC300 2000—
0xC300 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC304 0000—
0xC304 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC304 2000—
0xC304 E7FF

Multiply 16-Bit Operands
Dreg_even = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC308 2000—
0xC308 27FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC30C 0000—
0xC30C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS)

0xC30C 2000—
0xC30C E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS, M)

0xC314 0000—
0xC314 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IS, M)

0xC314 2000—
0xC314 E7FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS, M)

0xC31C 0000—
0xC31C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (IS, M)

0xC31C 2000—
0xC31C E7FF

Table C-23. 32-Bit Opcode Instructions (Sheet 19 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-173

Instruction Opcodes

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (ISS2)

0xC320 2000—
0xC320 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2)

0xC324 0000—
0xC324 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2)

0xC324 2000—
0xC324 E7FF

Multiply 16-Bit Operands
Dreg_even = Dreg_lo_hi * Dreg_lo_hi (ISS2)

0xC328 2000—
0xC328 27FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2)

0xC32C 0000—
0xC32C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2)

0xC32C 2000—
0xC32C E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

0xC334 0000—
0xC334 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

0xC334 2000—
0xC334 E7FF

Multiply 16-Bit Operands
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

0xC33C 0000—
0xC33C C1FF

Vector Multiply
Dreg_even = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_odd = Dreg_lo_hi * Dreg_lo_hi (ISS2, M)

0xC33C 2000—
0xC33C E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (IH)

0xC360 2000—
0xC360 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH)

0xC364 0000—
0xC364 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH)

0xC364 2000—
0xC364 E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH, M)

0xC374 0000—
0xC374 C1FF

Table C-23. 32-Bit Opcode Instructions (Sheet 20 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-174 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IH, M)

0xC374 2000—
0xC374 E7FF

Multiply 16-Bit Operands
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi (IU)

0xC380 2000—
0xC380 27FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU)

0xC384 0000—
0xC384 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU)

0xC384 2000—
0xC384 E7FF

Multiply 16-Bit Operands
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU, M)

0xC394 0000—
0xC394 C1FF

Vector Multiply
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ,
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi (IU, M)

0xC394 2000—
0xC394 E7FF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg

0xC400 0000—
0xC400 0E3F

Vector Add / Subtract
Dreg = Dreg +|+ Dreg (CO)

0xC400 1000—
0xC400 1E3F

Vector Add / Subtract
Dreg = Dreg +|+ Dreg (S)

0xC400 2000—
0xC400 2E3F

Vector Add / Subtract
Dreg = Dreg +|+ Dreg (SC0)

0xC400 3000—
0xC400 3E3F

Vector Add / Subtract
Dreg = Dreg +|– Dreg

0xC400 4000—
0xC400 4E3F

Vector Add / Subtract
Dreg = Dreg +|– Dreg (CO)

0xC400 5000—
0xC400 5E3F

Vector Add / Subtract
Dreg = Dreg +|– Dreg (S)

0xC400 6000—
0xC400 6E3F

Vector Add / Subtract
Dreg = Dreg +|– Dreg (SC0)

0xC400 7000—
0xC400 7E3F

Vector Add / Subtract
Dreg = Dreg –|+ Dreg

0xC400 8000—
0xC400 8E3F

Table C-23. 32-Bit Opcode Instructions (Sheet 21 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-175

Instruction Opcodes

Vector Add / Subtract
Dreg = Dreg –|+ Dreg (CO)

0xC400 9000—
0xC400 9E3F

Vector Add / Subtract
Dreg = Dreg –|+ Dreg (S)

0xC400 A000—
0xC400 AE3F

Vector Add / Subtract
Dreg = Dreg –|+ Dreg (SC0)

0xC400 B000—
0xC400 BE3F

Vector Add / Subtract
Dreg = Dreg –|– Dreg

0xC400 C000—
0xC400 CE3F

Vector Add / Subtract
Dreg = Dreg –|– Dreg (CO)

0xC400 D000—
0xC400 DE3F

Vector Add / Subtract
Dreg = Dreg –|– Dreg (S)

0xC400 E000—
0xC400 EE3F

Vector Add / Subtract
Dreg = Dreg –|– Dreg (SC0)

0xC400 F000—
0xC400 FE3F

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg

0xC401 0000—
0xC401 0FFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (CO)

0xC401 1000—
0xC401 1FFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (S)

0xC401 2000—
0xC401 2FFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (SCO)

0xC401 3000—
0xC401 3FFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (ASR)

0xC401 8000—
0xC401 8FFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (CO, ASR)

0xC401 9000—
0xC401 9FFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (S, ASR)

0xC401 A000—
0xC401 AFFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (SCO, ASR)

0xC401 B000—
0xC401 BFFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (ASL)

0xC401 C000—
0xC401 CFFF

Table C-23. 32-Bit Opcode Instructions (Sheet 22 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-176 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (CO, ASL)

0xC401 D000—
0xC401 DFFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (S, ASL)

0xC401 E000—
0xC401 EFFF

Vector Add / Subtract
Dreg = Dreg +|+ Dreg, Dreg = Dreg –|– Dreg (SCO, ASL)

0xC401 F000—
0xC401 FFFF

Add
Dreg_lo = Dreg_lo + Dreg_lo (NS)

0xC402 0000—
0xC402 0E3F

Add
Dreg_lo = Dreg_lo + Dreg_lo (S)

0xC402 2000—
0xC402 2E3F

Add
Dreg_lo = Dreg_lo + Dreg_hi (NS)

0xC402 4000—
0xC402 4E3F

Add
Dreg_lo = Dreg_lo + Dreg_hi (S)

0xC402 6000—
0xC402 6E3F

Add
Dreg_lo = Dreg_hi + Dreg_lo (NS)

0xC402 8000—
0xC402 8E3F

Add
Dreg_lo = Dreg_hi + Dreg_lo (S)

0xC402 A000—
0xC402 AE3F

Add
Dreg_lo = Dreg_hi + Dreg_hi (NS)

0xC402 C000—
0xC402 CE3F

Add
Dreg_lo = Dreg_hi + Dreg_hi (S)

0xC402 E000—
0xC402 EE3F

Subtract
Dreg_lo = Dreg_lo – Dreg_lo (NS)

0xC403 0000—
0xC403 0E3F

Subtract
Dreg_lo = Dreg_lo – Dreg_lo (S)

0xC403 2000—
0xC403 2E3F

Subtract
Dreg_lo = Dreg_lo – Dreg_hi (NS)

0xC403 4000—
0xC403 4E3F

Subtract
Dreg_lo = Dreg_lo – Dreg_hi (S)

0xC403 6000—
0xC403 6E3F

Subtract
Dreg_lo = Dreg_hi – Dreg_lo (NS)

0xC403 8000—
0xC403 8E3F

Table C-23. 32-Bit Opcode Instructions (Sheet 23 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-177

Instruction Opcodes

Subtract
Dreg_lo = Dreg_hi – Dreg_lo (S)

0xC403 A000—
0xC403 AE3F

Subtract
Dreg_lo = Dreg_hi – Dreg_hi (NS)

0xC403 C000—
0xC403 CE3F

Subtract
Dreg_lo = Dreg_hi – Dreg_hi (S)

0xC403 E000—
0xC403 EE3F

Add
Dreg = Dreg + Dreg (NS)

0xC404 0000—
0xC404 0E3F

Add
Dreg = Dreg + Dreg (S)

0xC404 2000—
0xC404 2E3F

Subtract
Dreg = Dreg – Dreg (NS)

0xC404 4000—
0xC404 4E3F

Subtract
Dreg = Dreg – Dreg (S)

0xC404 6000—
0xC404 6E3F

Vector Add / Subtract
Dreg = Dreg + Dreg, Dreg = Dreg – Dreg

0xC404 8000—
0xC404 8FFF

Vector Add / Subtract
Dreg = Dreg + Dreg, Dreg = Dreg – Dreg (S)

0xC404 A000—
0xC404 AFFF

Add/Subtract-Prescale Up
Dreg_lo = Dreg + Dreg (RND12)

0xC405 0000—
0xC405 0E3F

Add/Subtract-Prescale Up
Dreg_lo = Dreg – Dreg (RND12)

0xC405 4000—
0xC405 4E3F

Add/Subtract-Prescale Down
Dreg_lo = Dreg + Dreg (RND20)

0xC405 9000—
0xC405 9E3F

Add/Subtract-Prescale Down
Dreg_lo = Dreg – Dreg (RND20)

0xC405 D000—
0xC405 DE3F

Vector Maximum
Dreg = MAX (Dreg, Dreg) (V)

0xC406 0000—
0xC406 0E3F

Vector Minimum
Dreg = MIN (Dreg, Dreg) (V)

0xC406 4000—
0xC406 4E3F

Vector Absolute Value
Dreg = ABS Dreg (V)

0xC406 8000—
0xC406 8E38

Table C-23. 32-Bit Opcode Instructions (Sheet 24 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-178 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Maximum
Dreg = MAX (Dreg, Dreg)

0xC407 0000—
0xC407 0E3F

Minimum
Dreg = MIN (Dreg, Dreg)

0xC407 4000—
0xC407 4E3F

Absolute Value
Dreg = ABS Dreg

0xC407 8000—
0xC407 8E38

Negate (Two’s Complement)
Dreg = – Dreg (NS)

0xC407 C000—
0xC407 CFC0

Negate (Two’s Complement)
Dreg = – Dreg (S)

0xC407 E000—
0xC407 EFC0

Load Immediate
A0 = 0

0xC408 003F

Saturate
A0 = A0 (S)

0xC408 203F

Load Immediate
A1 = 0

0xC408 403F

Saturate
A1 = A1 (S)

0xC408 603F

Load Immediate
A1 = A0 = 0

0xC408 803F

Saturate
A1 = A1 (S), A0 = A0 (S)

0xC408 A03F

Move Register Half
A0.L = Dreg_lo

0xC409 0000—
0xC409 0038

Move Register Half
A0.X = Dreg_lo

0xC409 4000—
0xC409 4038

Move Register Half
A1.L = Dreg_lo

0xC409 8000—
0xC409 8038

Move Register Half
A1.X = Dreg_lo

0xC409 C000—
0xC409 C038

Move Register Half
Dreg_lo = A0.X

0xC40A 003F—
0xC40A 0E00

Table C-23. 32-Bit Opcode Instructions (Sheet 25 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-179

Instruction Opcodes

Move Register Half
Dreg_lo = A1.X

0xC40A 403F—
0xC40A 4E00

Modify-Increment
Dreg = (A0 += A1)

0xC40B 003F—
0xC40B 0E00

Modify-Increment
Dreg_lo = (A0 += A1)

0xC40B 403F—
0xC40B 4E00

Modify-Increment
A0 += A1

0xC40B 803F

Modify-Increment
A0 += A1 (W32)

0xC40B A03F

Modify-Decrement
A0 –= A1

0xC40B C03F

Modify-Decrement
A0 –= A1 (W32)

0xC40B E03F

Add on Sign
Dreg_hi = Dreg_lo = SIGN (Dreg_hi) * Dreg_hi + SIGN (Dreg_lo) * Dreg_lo

0xC40C 0000—
0xC40C 0E38

Dual 16-Bit Accumulator Extraction with Addition
Dreg = A1.L + A1.H, Dreg = A0.L + A0.H

0xC40C 403F—
0xC40C 4FC0

Round to Half Word
Dreg_lo = Dreg (RND)

0xC40C C000—
0xC40C CE38

Vector Search
(Dreg, Dreg) = SEARCH Dreg (GT)

0xC40D 0000—
0xC40D 2FFF

Vector Search
(Dreg, Dreg) = SEARCH Dreg (GE)

0xC40D 4000—
0xC40D 6FFF

Vector Search
(Dreg, Dreg) = SEARCH Dreg (LT)

0xC40D 8000—
0xC40D AFF8

Vector Search
(Dreg, Dreg) = SEARCH Dreg (LE)

0xC40D C000—
0xC40D EFF8

Negate (Two’s Complement)
A0 = – A0

0xC40E 003F

Negate (Two’s Complement)
A0 = – A1

0xC40E 403F

Table C-23. 32-Bit Opcode Instructions (Sheet 26 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-180 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Negate (Two’s Complement)
A1 = – A1, A0 = – A0

0xC40E C03F

Vector Negate (Two’s Complement)
Dreg = – Dreg (V)

0xC40F C000—
0xC40F CE38

Absolute Value
A0 = ABS A0

0xC410 0000

Absolute Value
A0 = ABS A1

0xC410 403F

Absolute Value
A1 = ABS A1, A0 = ABS A0

0xC410 C03F

Vector Add / Subtract
Dreg = A1 + A0, Dreg = A1 – A0

0xC411 003F—
0xC411 0FC0

Vector Add / Subtract
Dreg = A1 + A0, Dreg = A1 – A0 (S)

0xC411 203F—
0xC411 2FC0

Vector Add / Subtract
Dreg = A0 + A1, Dreg = A0 – A1

0xC411 403F—
0xC411 4FC0

Vector Add / Subtract
Dreg = A0 + A1, Dreg = A0 – A1 (S)

0xC411 603F—
0xC411 6FC0

Quad 8-Bit Subtract-Absolute-Accumulate
SAA (Dreg_pair, Dreg_pair)

0xC412 0000—
0xC412 003F

Quad 8-Bit Subtract-Absolute-Accumulate
SAA (Dreg_pair, Dreg_pair) (R)

0xC412 2000—
0xC412 203F

Disable Alignment Exception for Load
DISALGNEXCPT

0xC412 C000

Quad 8-Bit Average-Byte
Dreg = BYTEOP1P (Dreg_pair, Dreg_pair)

0xC414 0000—
0xC414 0E3F

Quad 8-Bit Average-Byte
Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (R)

0xC414 2000—
0xC414 2E3F

Quad 8-Bit Average-Byte
Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (T)

0xC414 4000—
0xC414 4E3F

Quad 8-Bit Average-Byte
Dreg = BYTEOP1P (Dreg_pair, Dreg_pair) (T, R)

0xC414 6000—
0xC414 6E3F

Table C-23. 32-Bit Opcode Instructions (Sheet 27 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-181

Instruction Opcodes

Quad 8-Bit Add
(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair)

0xC415 0000—
0xC415 0FFF

Quad 8-Bit Add
(Dreg, Dreg) = BYTEOP16P (Dreg_pair, Dreg_pair) (R)

0xC415 2000—
0xC415 2FFF

Quad 8-Bit Subtract
(Dreg, Dreg) = BYTEOP16M (Dreg_pair, Dreg_pair)

0xC415 4000—
0xC415 4FFF

Quad 8-Bit Subtract
(Dreg, Dreg) = BYTEOP16M (Dreg_pair, Dreg_pair) (R)

0xC415 6000—
0xC415 6FFF

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDL)

0xC416 0000—
0xC416 0E3F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDL, R)

0xC416 2000—
0xC416 2E3F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TL)

0xC416 4000—
0xC416 6E3F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TL, R)

0xC416 6000—
0xC416 7E3F

Dual 16-Bit Add / Clip
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO)

0xC417 0000—
0xC417 0E3F

Dual 16-Bit Add / Clip
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (LO, R)

0xC417 2000—
0xC417 1E3F

Quad 8-Bit Pack
Dreg = BYTEPACK (Dreg, Dreg)

0xC418 0000—
0xC418 0E3F

Quad 8-Bit Unpack
(Dreg, Dreg) = BYTEUNPACK Dreg_pair

0xC418 4000—
0xC418 4FF8

Quad 8-Bit Unpack
(Dreg, Dreg) = BYTEUNPACK Dreg_pair (R)

0xC418 6000—
0xC418 6FF8

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg

0xC421 0000—
0xC421 0FFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (CO)

0xC421 1000—
0xC421 1FFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (S)

0xC421 2000—
0xC421 2FFF

Table C-23. 32-Bit Opcode Instructions (Sheet 28 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-182 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (SCO)

0xC421 3000—
0xC421 3FFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (ASR)

0xC421 8000—
0xC421 8FFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (CO, ASR)

0xC421 9000—
0xC421 9FFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (S, ASR)

0xC421 A000—
0xC421 AFFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (SCO, ASR)

0xC421 B000—
0xC421 BFFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (ASL)

0xC421 C000—
0xC421 CFFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (CO, ASL)

0xC421 D000—
0xC421 DFFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (S, ASL)

0xC421 E000—
0xC421 EFFF

Vector Add / Subtract
Dreg = Dreg +|– Dreg, Dreg = Dreg –|+ Dreg (SCO, ASL)

0xC421 F000—
0xC421 FFFF

Add
Dreg_hi = Dreg_lo + Dreg_lo (NS)

0xC422 0000—
0xC422 0E3F

Add
Dreg_hi = Dreg_lo + Dreg_lo (S)

0xC422 2000—
0xC422 2E3F

Add
Dreg_hi = Dreg_lo + Dreg_hi (NS)

0xC422 4000—
0xC422 4E3F

Add
Dreg_hi = Dreg_lo + Dreg_hi (S)

0xC422 6000—
0xC422 6E3F

Add
Dreg_hi = Dreg_hi + Dreg_lo (NS)

0xC422 8000—
0xC422 8E3F

Add
Dreg_hi = Dreg_hi + Dreg_lo (S)

0xC422 A000—
0xC422 AE3F

Add
Dreg_hi = Dreg_hi + Dreg_hi (NS)

0xC422 C000—
0xC422 CE3F

Table C-23. 32-Bit Opcode Instructions (Sheet 29 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-183

Instruction Opcodes

Add
Dreg_hi = Dreg_hi + Dreg_hi (S)

0xC422 E000—
0xC422 EE3F

Subtract
Dreg_hi = Dreg_lo – Dreg_lo (NS)

0xC423 0000—
0xC423 0E3F

Subtract
Dreg_hi = Dreg_lo – Dreg_lo (S)

0xC423 2000—
0xC423 2E3F

Subtract
Dreg_hi = Dreg_lo – Dreg_hi (NS)

0xC423 4000—
0xC423 4E3F

Subtract
Dreg_hi = Dreg_lo – Dreg_hi (S)

0xC423 6000—
0xC423 6E3F

Subtract
Dreg_hi = Dreg_hi – Dreg_lo (NS)

0xC423 8000—
0xC423 8E3F

Subtract
Dreg_hi = Dreg_hi – Dreg_lo (S)

0xC423 A000—
0xC423 AE3F

Subtract
Dreg_hi = Dreg_hi – Dreg_hi (NS)

0xC423 C000—
0xC423 CE3F

Subtract
Dreg_hi = Dreg_hi – Dreg_hi (S)

0xC423 E000—
0xC423 EE3F

Add/Subtract-Prescale Up
Dreg_hi = Dreg + Dreg (RND12)

0xC425 0000—
0xC425 0E3F

Add/Subtract-Prescale Up
Dreg_hi = Dreg – Dreg (RND12)

0xC425 4000—
0xC425 4E3F

Add/Subtract-Prescale Down
Dreg_hi = Dreg + Dreg (RND20)

0xC425 9000—
0xC425 9E3F

Add/Subtract-Prescale Down
Dreg_hi = Dreg – Dreg (RND20)

0xC425 D000—
0xC425 DE3F

Move Register Half
A0.H = Dreg_hi

0xC429 0000—
0xC429 0038

Move Register Half
A1.H = Dreg_hi

0xC429 8000—
0xC429 8038

Modify-Increment
Dreg_hi = (A0 += A1)

0xC42B 403F—
0xC42B 4E00

Table C-23. 32-Bit Opcode Instructions (Sheet 30 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-184 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Round to Half Word
Dreg_hi = Dreg (RND)

0xC42C C000—
0xC42C CE38

Negate (Two’s Complement)
A1 = – A0

0xC42E 003F

Negate (Two’s Complement)
A1 = – A1

0xC42E 403F

Absolute Value
A1 = ABS A0

0xC430 003F

Absolute Value
A1 = ABS A1

0xC430 403F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDH)

0xC436 0000—
0xC436 0E3F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (RNDH, R)

0xC436 2000—
0xC436 2E3F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TH)

0xC436 4000—
0xC436 6E3F

Quad 8-Bit Average-Half Word
Dreg = BYTEOP2P (Dreg_pair, Dreg_pair) (TH, R)

0xC436 6000—
0xC436 7E3F

Dual 16-Bit Add / Clip
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI)

0xC437 0000—
0xC437 0E3F

Dual 16-Bit Add / Clip
Dreg = BYTEOP3P (Dreg_pair, Dreg_pair) (HI, R)
Arithmetic Shift
Dreg_lo = ASHIFT Dreg_lo BY Dreg_lo

0xC437 2000—
0xC437 1E3F

0xC600 0000—
0xC600 0E3F

Arithmetic Shift
Dreg_lo = ASHIFT Dreg_hi BY Dreg_lo

0xC600 1000—
0xC600 1E3F

Arithmetic Shift
Dreg_hi = ASHIFT Dreg_lo BY Dreg_lo

0xC600 2000—
0xC600 2E3F

Arithmetic Shift
Dreg_hi = ASHIFT Dreg_hi BY Dreg_lo

0xC600 3000—
0xC600 3E3F

Arithmetic Shift
Dreg_lo = ASHIFT Dreg_lo BY Dreg_lo (S)

0xC600 4000—
0xC600 4E3F

Table C-23. 32-Bit Opcode Instructions (Sheet 31 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-185

Instruction Opcodes

Arithmetic Shift
Dreg_lo = ASHIFT Dreg_hi BY Dreg_lo (S)

0xC600 5000—
0xC600 5E3F

Arithmetic Shift
Dreg_hi = ASHIFT Dreg_lo BY Dreg_lo (S)

0xC600 6000—
0xC600 6E3F

Arithmetic Shift
Dreg_hi = ASHIFT Dreg_hi BY Dreg_lo (S)

0xC600 7000—
0xC600 7E3F

Logical Shift
Dreg_lo = LSHIFT Dreg_lo BY Dreg_lo

0xC600 8000—
0xC600 8E3F

Logical Shift
Dreg_lo = LSHIFT Dreg_hi BY Dreg_lo

0xC600 9000—
0xC600 9E3F

Logical Shift
Dreg_hi = LSHIFT Dreg_lo BY Dreg_lo

0xC600 A000—
0xC600 AE3F

Logical Shift
Dreg_hi = LSHIFT Dreg_hi BY Dreg_lo

0xC600 B000—
0xC600 BE3F

Vector Arithmetic Shift
Dreg = ASHIFT Dreg BY Dreg_lo (V)

0xC601 0000—
0xC601 0E3F

Vector Arithmetic Shift
Dreg = ASHIFT Dreg BY Dreg_lo (V, S)

0xC601 4000—
0xC601 4E3F

Vector Logical Shift
Dreg = LSHIFT Dreg BY Dreg_lo (V)

0xC601 8000—
0xC601 8E3F

Arithmetic Shift
Dreg = ASHIFT Dreg BY Dreg_lo

0xC602 0000—
0xC602 0E3F

Arithmetic Shift
Dreg = ASHIFT Dreg BY Dreg_lo (S)

0xC602 4000—
0xC602 4E3F

Logical Shift
Dreg = LSHIFT Dreg BY Dreg_lo

0xC602 8000—
0xC602 8E3F

Rotate
Dreg = ROT Dreg BY Dreg_lo

0xC602 C000—
0xC602 CE3F

Arithmetic Shift
A0 = ASHIFT A0 BY Dreg_lo

0xC603 0000—
0xC603 0038

Arithmetic Shift
A1 = ASHIFT A1 BY Dreg_lo

0xC603 1000—
0xC603 1038

Table C-23. 32-Bit Opcode Instructions (Sheet 32 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-186 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Shift
A0 = LSHIFT A0 BY Dreg_lo

0xC603 4000—
0xC603 4038

Logical Shift
A1 = LSHIFT A1 BY Dreg_lo

0xC603 5000—
0xC603 5038

Rotate
A0 = ROT A0 BY Dreg_lo

0xC603 8000—
0xC603 8038

Rotate
A1 = ROT A1 BY Dreg_lo

0xC603 9000—
0xC603 9038

Vector Pack
Dreg = PACK (Dreg_lo, Dreg_lo)

0xC604 0000—
0xC604 0E3F

Vector Pack
Dreg = PACK (Dreg_lo, Dreg_hi)

0xC604 4000—
0xC604 4E3F

Vector Pack
Dreg = PACK (Dreg_hi, Dreg_lo)

0xC604 8000—
0xC604 8E3F

Vector Pack
Dreg = PACK (Dreg_hi, Dreg_hi)

0xC604 C000—
0xC604 CE3F

Sign Bit
Dreg_lo = SIGNBITS Dreg

0xC605 0000—
0xC605 0E07

Sign Bit
Dreg_lo = SIGNBITS Dreg_lo

0xC605 4000—
0xC605 4E07

Sign Bit
Dreg_lo = SIGNBITS Dreg_hi

0xC605 8000—
0xC605 8E07

Sign Bit
Dreg_lo = SIGNBITS A0

0xC606 0000—
0xC606 0E00

Sign Bit
Dreg_lo = SIGNBITS A1

0xC606 4000—
0xC606 4E00

Ones Population Count
Dreg_lo = ONES Dreg

0xC606 C000—
0xC606 CE07

Exponent Detection
Dreg_lo = EXPADJ (Dreg, Dreg_lo)

0xC607 0000—
0xC607 0E3F

Exponent Detection
Dreg_lo = EXPADJ (Dreg, Dreg_lo) (V)

0xC607 4000—
0xC607 4E3F

Table C-23. 32-Bit Opcode Instructions (Sheet 33 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-187

Instruction Opcodes

Exponent Detection
Dreg_lo = EXPADJ (Dreg_lo, Dreg_lo)

0xC607 8000—
0xC607 8E3F

Exponent Detection
Dreg_lo = EXPADJ (Dreg_hi, Dreg_lo)

0xC607 C000—
0xC607 CE3F

Bit Multiplex
BITMUX (Dreg, Dreg, A0) (ASR)

0xC608 0000—
0xC608 003F

Bit Multiplex
BITMUX (Dreg, Dreg, A0) (ASL)

0xC608 4000—
0xC608 403F

Compare-Select (VIT_MAX)
Dreg_lo = VIT_MAX (Dreg) (ASL)

0xC609 0000—
0xC609 0E07

Compare-Select (VIT_MAX)
Dreg_lo = VIT_MAX (Dreg) (ASR)

0xC609 4000—
0xC609 4E07

Compare-Select (VIT_MAX)
Dreg = VIT_MAX (Dreg, Dreg) (ASL)

0xC609 8000—
0xC609 8E07

Compare-Select (VIT_MAX)
Dreg = VIT_MAX (Dreg, Dreg) (ASR)

0xC609 C000—
0xC609 CE07

Bit Field Extraction
Dreg = EXTRACT (Dreg, Dreg_lo) (Z)

0xC60A 0000—
0xC60A 0E3F

Bit Field Extraction
Dreg = EXTRACT (Dreg, Dreg_lo) (X)

0xC60A 4000—
0xC60A 4E3F

Bit Field Deposit
Dreg = DEPOSIT (Dreg, Dreg)

0xC60A 8000—
0xC60A 8E3F

Bit Field Deposit
Dreg = DEPOSIT (Dreg, Dreg) (X)

0xC60A C000—
0xC60A CE3F

Bit Wise Exclusive OR
Dreg_lo = CC = BXORSHIFT (A0, Dreg)

0xC60B 0000—
0xC60B 0E38

Bit Wise Exclusive OR
Dreg_lo = CC = BXOR (A0, Dreg)

0xC60B 4000—
0xC60B 4E38

Bit Wise Exclusive OR
A0 = BXORSHIFT (A0, A1, CC)

0xC60C 0000

Bit Wise Exclusive OR
Dreg_lo = CC = BXOR (A0, A1, CC)

0xC60C 4000—
0xC60C 4E00

Table C-23. 32-Bit Opcode Instructions (Sheet 34 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-188 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Byte Align
Dreg = ALIGN8 (Dreg, Dreg)

0xC60D 0000—
0xC60D 0E3F

Byte Align
Dreg = ALIGN16 (Dreg, Dreg)

0xC60D 4000—
0xC60D 4E3F

Byte Align
Dreg = ALIGN24 (Dreg, Dreg)

0xC60D 8000—
0xC60D 8E3F

Arithmetic Shift
Dreg_lo = Dreg_lo >>> uimm4

0xC680 0180—
0xC680 0FFF

Arithmetic Shift
Dreg_lo = Dreg_hi >>> uimm4

0xC680 1180—
0xC680 1FFF

Arithmetic Shift
Dreg_hi = Dreg_lo >>> uimm4

0xC680 2180—
0xC680 2FFF

Arithmetic Shift
Dreg_hi = Dreg_hi >>> uimm4

0xC680 3180—
0xC680 3FFF

Arithmetic Shift
Dreg_lo = Dreg_lo << uimm4 (S)

0xC680 4000—
0xC680 4E7F

Arithmetic Shift
Dreg_lo = Dreg_hi << uimm4 (S)

0xC680 5000—
0xC680 5E7F

Arithmetic Shift
Dreg_hi = Dreg_lo << uimm4 (S)

0xC680 6000—
0xC680 6E7F

Arithmetic Shift
Dreg_hi = Dreg_hi << uimm4 (S)

0xC680 7000—
0xC680 7E7F

Logical Shift
Dreg_lo = Dreg_lo << uimm4

0xC680 8000—
0xC680 8E7F

Logical Shift
Dreg_lo = Dreg_lo >> uimm4

0xC680 8180—
0xC680 8FFF

Logical Shift
Dreg_lo = Dreg_hi << uimm4

0xC680 9000—
0xC680 9E7F

Logical Shift
Dreg_lo = Dreg_hi >> uimm4

0xC680 9180—
0xC680 9FFF

Logical Shift
Dreg_hi = Dreg_lo << uimm4

0xC680 A000—
0xC680 AE7F

Table C-23. 32-Bit Opcode Instructions (Sheet 35 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-189

Instruction Opcodes

Logical Shift
Dreg_hi = Dreg_lo >> uimm4

0xC680 A180—
0xC680 AFFF

Logical Shift
Dreg_hi = Dreg_hi << uimm4

0xC680 B000—
0xC680 BE7F

Logical Shift
Dreg_hi = Dreg_hi >> uimm4

0xC680 B180—
0xC680 BFFF

Vector Arithmetic Shift
Dreg = Dreg >>> uimm5 (V)

0xC681 0100—
0xC681 0FFF

Vector Arithmetic Shift
Dreg = Dreg << uimm5 (V, S)

0xC681 4000—
0xC681 4EFF

Vector Logical Shift
Dreg = Dreg << uimm4 (V)

0xC681 8000—
0xC681 8E7F

Vector Logical Shift
Dreg = Dreg >> uimm4 (V)

0xC681 8180—
0xC681 8FFF

Arithmetic Shift
Dreg = Dreg >>> uimm5

0xC682 0100—
0xC682 0FFF

Arithmetic Shift
Dreg = Dreg << uimm5 (S)

0xC682 4000—
0xC680 4EFF

Logical Shift
Dreg = Dreg << uimm5

0xC682 8000—
0xC682 8EFF

Logical Shift
Dreg = Dreg >> uimm5

0xC682 8100—
0xC682 8FFF

Rotate
Dreg = ROT Dreg BY imm6

0xC682 C000—
0xC682 CFFF

Arithmetic Shift
A0 = A0 >>> uimm5

0xC683 0100—
0xC683 01F8

Arithmetic Shift
A1 = A1 >>> uimm5

0xC683 1100—
0xC683 11F8

Logical Shift
A0 = A0 << uimm5

0xC683 4000—
0xC683 40F8

Logical Shift
A0 = A0 >> uimm5

0xC683 4100—
0xC683 41F8

Table C-23. 32-Bit Opcode Instructions (Sheet 36 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-190 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Logical Shift
A1 = A1 << uimm5

0xC683 5000—
0xC683 50F8

Logical Shift
A1 = A1 >> uimm5

0xC683 5100—
0xC683 51F8

Rotate
A0 = ROT A0 BY imm6

0xC683 8000—
0xC683 81F8

Rotate
A1 = ROT A1 BY imm6

0xC683 9000—
0xC683 91F8

No Op
MNOP when issued in parallel with two compatible load/store instructions

0xC803 1800

Zero Overhead Loop Setup
LOOP loop_name LC0
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC0
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of
LOOP_END determines pcrel11m2.

0xE080 0000—
0xE08F 03FF

Zero Overhead Loop Setup
LOOP loop_name LC1
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC1
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of
LOOP_END determines pcrel11m2.

0xE090 0000—
0xE09F 03FF

Zero Overhead Loop Setup
LOOP loop_name LC0 = Preg
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC0 = Preg
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of
LOOP_END determines pcrel11m2.

0xE0A0 0000—
0xE0AF F3FF

Table C-23. 32-Bit Opcode Instructions (Sheet 37 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-191

Instruction Opcodes

Zero Overhead Loop Setup
LOOP loop_name LC1 = Preg
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC1 = Preg
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of
LOOP_END determines pcrel11m2.

0xE0B0 0000—
0xE0BF F3FF

Zero Overhead Loop Setup
LOOP loop_name LC0 = Preg >> 1
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC0 = Preg >> 1
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of
LOOP_END determines pcrel11m2.

0xE0E0 0000—
0xE0AF F3FF

Zero Overhead Loop Setup
LOOP loop_name LC1 = Preg >> 1
LOOP_BEGIN loop_name
LOOP_END loop_name
... is mapped to...
LSETUP (pcrel5m2, pcrel11m2) LC1 = Preg >> 1
... where the address of LOOP_BEGIN determines pcrel5m2, and the address of
LOOP_END determines pcrel11m2.

0xE0F0 0000—
0xE0FF F3FF

Load Immediate
reg_lo = uimm16

0xE100 0000—
0xE11F FFFF

Load Immediate
reg = imm16 (X)

0xE120 0000—
0xE13F FFFF

Load Immediate
reg_hi = uimm16

0xE140 0000—
0xE15F FFFF

Load Immediate
reg = uimm16 (Z)

0xE180 0000—
0xE19F FFFF

Jump
JUMP.L pcrel25m2

0xE200 0000—
0xE2FF FFFF

Call
CALL pcrel25m2

0xE300 0000—
0xE3FF FFFF

Table C-23. 32-Bit Opcode Instructions (Sheet 38 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-192 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Load Data Register
Dreg = [Preg + uimm17m4]

0xE400 0000—
0xE4EF 7FFF

Load Data Register
Dreg = [Preg – uimm17m4]

0xE400 8000—
0xE43F FFFF

Load Half Word, Zero Extended
Dreg = W [Preg + uimm16m2] (Z)

0xE440 0000—
0xE47F 8FFF

Load Half Word, Zero Extended
Dreg = W [Preg – uimm16m2] (Z)

0xE440 8000—
0xE47F FFFF

Load Byte, Zero Extended
Dreg = B [Preg + uimm15] (Z)

0xE480 0000—
0xE4BF 7FFF

Load Byte, Zero Extended
Dreg = B [Preg – uimm15] (Z)

0xE480 8000—
0xE4BF FFFF

Load Pointer Register
Preg = [Preg + uimm17m4]

0xE500 0000—
0xE53F 7FFF

Load Pointer Register
Preg = [Preg – uimm17m4]

0xE500 8000—
0xE53F FFFF

Load Half Word, Sign Extended
Dreg = W [Preg + uimm16m2] (X)

0xE540 0000—
0xE57F 8FFF

Load Half Word, Sign Extended
Dreg = W [Preg – uimm16m2] (X)

0xE540 8000—
0xE57F FFFF

Load Byte, Sign Extended
Dreg = B [Preg + uimm15] (X)

0xE580 0000—
0xE5BF 7FFF

Load Byte, Sign Extended
Dreg = B [Preg – uimm15] (X)

0xE580 8000—
0xE5BF FFFF

Store Data Register
[Preg + uimm17m4] = Dreg

0xE600 0000—
0xE63F 7FFF

Store Data Register
[Preg – uimm17m4] = Dreg

0xE600 8000—
0xE63F FFFF

Store Low Data Register Half
W [Preg + uimm16m2] = Dreg

0xE640 0000—
0xE67F 7FFF

Store Low Data Register Half
W [Preg – uimm16m2] = Dreg

0xE640 8000—
0xE67F FFFF

Table C-23. 32-Bit Opcode Instructions (Sheet 39 of 40)

Instruction
and Version

Opcode
Range

ADSP-BF53x/BF56x Blackfin Processor Programming Reference C-193

Instruction Opcodes

Store Byte
B [Preg + uimm15] = Dreg

0xE680 0000—
0xE6BF 7FFF

Store Byte
B [Preg – uimm15] = Dreg

0xE680 8000—
0xE6BF FFFF

Store Pointer Register
[Preg + uimm17m4] = Preg

0xE700 0000—
0xE7EF 8FFF

Store Pointer Register
[Preg – uimm17m4] = Preg

0xE700 8000—
0xE73F FFFF

Linkage
LINK uimm18m4

0xE800 0000—
0xE800 FFFF

Linkage
UNLINK

0xE801 0000

Table C-23. 32-Bit Opcode Instructions (Sheet 40 of 40)

Instruction
and Version

Opcode
Range

Instructions Listed By Operation Code

C-194 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

ADSP-BF53x/BF56x Blackfin Processor Programming Reference D-1

D NUMERIC FORMATS

ADSP-BF53x/BF56x Blackfin family processors support 8-, 16-, 32-, and
40-bit fixed-point data in hardware. Special features in the computation
units allow support of other formats in software. This appendix describes
various aspects of these data formats. It also describes how to implement a
block floating-point format in software.

Unsigned or Signed: Two’s-complement
Format

Unsigned integer numbers are positive, and no sign information is con-
tained in the bits. Therefore, the value of an unsigned integer is
interpreted in the usual binary sense. The least significant words of multi-
ple-precision numbers are treated as unsigned numbers.

Signed numbers supported by the ADSP-BF53x/BF56x Blackfin family
are in two’s-complement format. Signed-magnitude, one’s-complement,
binary-coded decimal (BCD) or excess-n formats are not supported.

Integer or Fractional
The ADSP-BF53x/BF56x Blackfin family supports both fractional and
integer data formats. In an integer, the radix point is assumed to lie to the
right of the least significant bit (LSB), so that all magnitude bits have a
weight of 1 or greater. This format is shown in Figure D-1. Note in
two’s-complement format, the sign bit has a negative weight.

Integer or Fractional

D-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure D-2, the assumed radix point lies to the left of the
three LSBs, and the bits have the weights indicated.

The native formats for the Blackfin processor family are a signed fractional
1.M format and an unsigned fractional 0.N format, where N is the num-
ber of bits in the data word and M = N – 1.

The notation used to describe a format consists of two numbers separated
by a period (.); the first number is the number of bits to the left of the
radix point, the second is the number of bits to the right of the radix
point. For example, 16.0 format is an integer format; all bits lie to the left
of the radix point. The format in Figure D-2 is 13.3.

Figure D-1. Integer Format

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215

ADSP-BF53x/BF56x Blackfin Processor Programming Reference D-3

Numeric Formats

Figure D-2. Example of Fractional Format

Signed Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021

Integer or Fractional

D-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Table D-1 shows the ranges of signed numbers representable in the frac-
tional formats that are possible with 16 bits.

Table D-1. Fractional Formats and Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000

ADSP-BF53x/BF56x Blackfin Processor Programming Reference D-5

Numeric Formats

Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location), and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-BF53x/BF56x Blackfin family
assembly language allows you to specify whether the inputs are both
signed, both unsigned, or one of each (mixed-mode). The location of the
radix point in the result can be derived from its location in each of the
inputs. This is shown in Figure D-3. The product of two 16-bit numbers
is a 32-bit number. If the inputs’ formats are M.N and P.Q, the product
has the format (M + P).(N + Q). For example, the product of two 13.3
numbers is a 26.6 number. The product of two 1.15 numbers is a 2.30
number.

Figure D-3. Format of Multiplier Result

General Rule 4-bit Example 16-bit Examples

M.N
x P.Q

(M + P).(N + Q)

1.111 (1.3 Format)
x 11.11 (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1 + 2).(2 + 3))

5.3
x 5.3

10.6

1.15
x 1.15

2.30

Block Floating-point Format

D-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Fractional Mode And Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

The ADSP-BF53x/BF56x Blackfin family provides a means (a signed frac-
tional mode) by which the multiplier result is always shifted left one bit
before being written to the result register. This left shift eliminates the
extra sign bit when both operands are signed, yielding a result that is cor-
rectly formatted.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a signed fractional data format, it is
most convenient to use the 1.15 format.

Block Floating-point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. However, some addi-
tional programming is required to maintain a block floating-point format.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. A block of fixed-point
values can be converted to block floating-point format by shifting each
value left by the same amount and storing the shift value as the block
exponent.

ADSP-BF53x/BF56x Blackfin Processor Programming Reference D-7

Numeric Formats

Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs (most significant bits), increasing the precision available in
each value. Block floating-point format can also be used to eliminate the
possibility of a data value overflowing. See Figure D-4. Each of the three
data samples shown has at least two non-significant, redundant sign bits.
Each data value can grow by these two bits (two orders of magnitude)
before overflowing. These bits are called guard bits.

If it is known that a process will not cause any value to grow by more than
the two guard bits, then the process can be run without loss of data. Later,
however, the block must be adjusted to replace the guard bits before the
next process.

Figure D-5 shows the data after processing but before adjustment. The
block floating-point adjustment is performed as follows.

• Assume the output of the SIGNBITS instruction is SB and SB is used
as an argument in the EXPADJ instruction. Initially, the value of SB
is +2, corresponding to the two guard bits. During processing, each
resulting data value is inspected by the EXPADJ instruction, which
counts the number of redundant sign bits and adjusts SB if the

Figure D-4. Data With Guard Bits

Sign Bit

2 Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

To detect bit growth into two guard bits, set SB = –2

Block Floating-point Format

D-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

number of redundant sign bits is less than two. In this example,
SB = +1 after processing, indicating the block of data must be
shifted right one bit to maintain the two guard bits.

• If SB were 0 after processing, the block would have to be shifted
two bits right. In either case, the block exponent is updated to
reflect the shift.

Figure D-5. Block Floating-point Adjustment

Sign Bit

One Guard Bit

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x3FFF = 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

2. Shift right to restore guard bits

Sign Bit

Two Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x03FF = 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1. Check for bit growth

Exponent = +2, SB = +2

Exponent = +1, SB = +1

Exponent = +4, SB = +1

EXPADJ instruction checks
exponent, adjusts SB

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-1

I INDEX

Numerics
16-bit instructions, parallel, 20-6
16-bit operations, 2-27
32-bit instructions

parallel, 20-3
32-bit operations, 2-29

A
A0, 2-2
A1, 2-2
AAU

addressing, 5-5
components, 5-3
instructions, 5-19
multi-issue operations, 5-24

Abort instruction, C-100
ABS instruction, 15-3, 19-15
AC (Address Calculation), 4-7
Access Way ⁄ Instruction Address Bit 11, 6-40
Accumulator instructions

Accumulator to D-register Move, 9-4
Accumulator to Half D-register Move, 9-16,

9-19
Compare Accumulator, 11-9
Dual 16-Bit Accumulator Extraction with

Addition, 18-13
Accumulator to D-register Move instruction,

9-2, 9-4
Accumulator to Half D-register Move

instruction, 9-19

accumulators
corresponding to MACs, 1-14, C-3
description, 1-13, C-2
extension registers A0.x and A1.x, 9-15
initializing, 8-4
overflow arithmetic status flags, 1-15, C-7
result registers A[1: 0], 2-8, 2-36, 2-43
saturation, 1-12

Add Immediate instruction, 15-16, C-59
Add instruction, 15-6, C-55
add instructions

Add, 15-6, C-55
Add Immediate, 15-16, C-59
Add on Sign, 19-3, C-107
Add with Shift, 14-2, C-46
Dual 16-Bit Add / Clip, 18-8, C-102
Quad 8-Bit Add, 18-15, C-103
Vector Add / Subtract, 19-18, C-107

Add on Sign instruction, 19-3, C-107
Add with Shift instruction, 14-2, C-46
Add/Subtract - Prescale Down instruction,

15-10, C-58
Add/Subtract - Prescale Up instruction, 15-13,

C-59
additional literature, xxvii
address arithmetic unit (AAU), 5-1 to 5-24
Address Calculation (AC), 4-7
address collision, SRAM, 6-27
address pointer registers. See pointer registers

INDEX

I-2 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

addressing
indexed, 5-8
modes, 5-18
transfers supported (table), 5-17
See also auto-decrement; auto-increment;

bit-reversed; circular-buffer; indexed;
indirect; modified; post-increment;
post-modify; pre-modify; data address
generators

address-tag compare operation, 6-13
ADSP-BF535

flags, A-2
MMRs, 6-73
special considerations, A-1

align
ALIGN16 instruction, 18-3
ALIGN24 instruction, 18-3
ALIGN8 instruction, 18-3

alignment exceptions, 6-71
alignment of memory operations, 6-71
allocating system stack, 4-56
allreg, 10-2
ALU, 1-1, 2-1, 2-26 to 2-35

arithmetic, 2-14
arithmetic formats, 2-16
data types, 2-14
description summary, 1-14, C-3
functions, 2-26
inputs and outputs, 2-26
instructions, 2-26, 2-30, 2-35
operations, 1-3, 2-26 to 2-30
status, 2-24

AMC, 1-6
Analog Devices, Inc.[7:0] field, 21-27
AND instruction, 12-2, C-43
AND, logical, 2-26
architecture

bus, 6-2
processor core, 2-2

arithmetic formats summary, 2-16 to 2-17
Arithmetic Logic Unit. See ALU
arithmetic operations, 2-26
Arithmetic Operations Instructions, C-55
Arithmetic Shift instruction, 14-7, C-46
arithmetic shifts, 2-1, 2-15, 2-48, 14-10,

19-24
arithmetic status flags, 1-15, C-7

on ADSP-BF535, A-2
Arithmetic Status register (ASTAT), 2-25
Array Access bit, 6-40
ASHIFT...BY instruction, 14-7, 19-23
assembly language, 2-1
ASTAT register, 2-25

arithmetic status flags, 1-15, 1-15
AC0, carry (ALU0), C-7
AC1, carry (ALU1), C-7
AN, negative, C-7
AQ, divide primitive quotient, C-7
AV0, overflow (A0), C-7
AV1, overflow (A1), C-7
AVS0, sticky overflow (A0), C-7
AVS1, sticky overflow (A1), C-7
AZ, zero, C-7
CC, control code bit, C-7
V, overflow (D-register), 1-17, C-7
VS, sticky overflow (D-register), C-7

RND_MOD bit, 1-20
atomic operations, 6-72
Atomic Read-Modify-Write instruction

(Test and Set Byte), C-99
auto-decrement addressing, 5-10
auto-increment addressing, 5-10
automatic address translation, 6-52
average

Quad 8-Bit Average – Byte instruction,
18-23, C-104

Quad 8-Bit Average – Half-Word
instruction, 18-29

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-3

INDEX

B
backgnd_reg, Bit Field Deposit instruction,

13-10
bank access, L2 memory, 6-43
barrel-shifter. See shifter
Base registers (B[3:0]), 5-3, 5-8, 5-13
Base Registers (Breg), 5-13

description, 1-14, 1-22, C-3
function in circular addressing, 1-22

biased rounding, 1-19, 2-19
binal point, 1-16
binary multiplication, D-5
binary numbers, 2-4
Bit Clear instruction, 13-2, C-44
Bit Field Deposit instruction, 13-10, C-44
Bit Field Extraction instruction, 13-16,

C-44
bit manipulation

bit clear, 2-52
bit set, 2-52
bit test, 2-52
bit toggle, 2-52

Bit Multiplex instruction, 13-21, C-45
bit operations instructions, 13-1, C-44
bit reverse (BREV) option, 15-37
Bit Set instruction, 13-4, C-44
Bit Test instruction, 13-8, C-44
Bit Toggle instruction, 13-6, C-44
BITCLR instruction, 13-2
BITMUX instruction, 13-21
bit-reversed addressing, 5-15
bit-reversed carry addressing, 5-2
bits

overflow, 2-14
range of sequential, notation convention,

1-11, C-5
BITSET instruction, 13-4
BITTGL instruction, 13-6
BITTST instruction, 13-8

Bit-Wise Exclusive-OR instruction, 12-10,
C-43

Blackfin processor family
I/O memory space, 1-6
instruction set, 1-4
memory architecture, 1-4
native formats, D-2

block floating point format, D-6
BMODE

bits, 3-14
state, 3-13

branch instructions in loops, 7-18
branch latency, 4-10

conditional branches, 4-21
unconditional branches, 4-21

branch prediction, 4-20
branch target, 4-13
branch target address for unconditional

branches, 4-21
branch, conditional, 4-19
branching, 7-5 to 7-7
B-registers (Base), 5-3, 5-8, 5-13
buffers

Cacheability Protection Lookaside
Buffers (CPLBs), 6-10, 6-46, 6-47

flushing core buffer, 16-5
line fill, 6-34
victim, 6-34

bus architecture, 6-2
BXOR instruction, 12-10
BXORSHIFT instruction, 12-10
Byte Align instruction, 18-3, C-102
byte order, 2-13
BYTEOP16M instruction, 18-32
BYTEOP16P instruction, 18-15
BYTEOP1P instruction, 18-19
BYTEOP2P instruction, 18-24
BYTEOP3P instruction, 18-8
BYTEPACK instruction, 18-30
BYTEUNPACK instruction, 18-41

INDEX

I-4 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

C
cache, 6-2, 6-5

address collision, 6-29
coherency support, 6-71
data cache access, 6-33
data cache control instructions, 6-37
data cache invalidation, 6-38
enabling, 6-53
enabling or disabling, 6-6
instruction cache management, 6-16
invalidation, 6-18
L2 memory, 6-44
line fill, 6-14
line fill buffer, 6-15
locking by line, 6-16
locking by Way, 6-17
mapping into data banks, 6-30
modes, 6-29
validity of cache lines, 6-11
word fetching order, 6-14
write memory operations, 6-35

cache block (definition), 6-74
Cache Control Instructions, C-101
cache hit, 6-33

address-tag compare, 6-13
definition, 6-13, 6-74

cache inhibited accesses, 6-72
cache line

components, 6-10
definition, 6-74
states, 6-34

cache line replacement unit, 6-15
cache miss, 6-13, 6-33

definition, 6-74
replacement policy, 6-15

Cacheability Protection Lookaside Buffers.
See CPLBs

CALL instruction, 4-10, 4-12, 4-13, 7-8,
C-13

range, 4-12
CC bit, 4-10, 4-18
CCEN bit, 21-26
CEC, 1-7, 1-8
choice of one register within a group,

notation convention, C-5
circular addressing

behavior, 1-21
buffer registers, 1-21

initializing, 8-11, 8-24, 8-28, 8-42,
8-46, 8-50, 15-17, 15-35, 15-39,
15-91

disabling, 1-14, 1-21, 1-22, C-3
enabling, 1-22
instructions that support

Add Immediate, 1-22, 15-16
Load Data Register, 8-11
Load High Data Register Half, 8-24
Load Low Data Register Half, 8-28
Modify – Decrement, 1-22, 15-35
Modify – Increment, 15-39
Store Data Register, 8-41
Store High Data Register Half, 8-46
Store Low Data Register Half, 8-50
Subtract Immediate, 15-90

circular buffer addressing, 5-12
registers, 5-12
wraparound, 5-15

clean (definition), 6-75
CLI instruction, 6-74, 16-13
CMPLP[1:0] field, 21-17

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-5

INDEX

code examples
core MMR programming, 6-74
Epilog code for nested ISR, 4-54
exception handler, 4-68
exception routine, 4-70
Execution Trace recreation, 21-18
interrupt enabling and disabling, 6-74
load base of MMRs, 6-74
loop, 4-22
Prolog code for nested ISR, 4-53
restoration of the control register, 6-74
using hardware loops in ISR, 4-28

code patching, 21-5
collision, address, 6-27
collision, cache address, 6-29
Compare Accumulator instruction, 11-9,

C-41
Compare Data Register instruction, 11-2,

C-39
compare instructions

Compare Accumulator, 11-9, C-41
Compare Data Register, 11-2, C-39
Compare Pointer, 11-6, C-40
Compare-Select (VIT_MAX), 19-8,

C-107
Compare Pointer instruction, 11-6, C-40
Compare-Select (VIT_MAX) instruction,

19-8, C-107
computational instructions, 2-1
computational status, 2-24
computational units, 2-1 to 2-56
condition code (CC) flag bit, 4-18
conditional

branch latency, 4-21
branches, 4-19
JUMP instruction, 4-10

conditional branches, 6-69
conditional instructions, 2-24, 4-3
conditional register move, 4-20

configuration, L1 Instruction Memory,
6-10

constants
imm16, 8-4
imm3, 11-2, 11-6
imm6, 14-21
imm7, 8-4, 15-16
lppcrel11m2, 7-14
notation convention, 1-11, 1-12, C-5,

C-6
pcrel11m2, 7-6
pcrel13m2, 7-2
pcrel25m2, 7-3, 7-8
pcrel5m2, 7-14
pcrelm2, 7-2
uimm15, 8-31, 8-34, 8-54
uimm16, 8-4
uimm16m2, 8-15, 8-19, 8-50
uimm17m4, 8-7, 8-11, 8-37, 8-41
uimm18m4, 10-17
uimm3, 11-2, 11-6
uimm4, 14-8, 14-15, 16-17, 16-20,

19-23, 19-28
uimm5, 13-2, 13-4, 13-6, 13-8, 14-8,

14-15
uimm5m2, 8-15, 8-19, 8-50
uimm6m4, 8-7, 8-11, 8-37, 8-41
uimm7m4, 8-7, 8-11, 8-37, 8-41

constants, notation convention, C-6
Content-Addressable Memory (CAM),

6-46
Control Code Bit Management

Instructions, C-39
control register

data memory, 6-24
instruction memory, 6-5
restoration, 6-74

conventions, xxxvi
convergent rounding, 1-19, 2-20
copyback buffer, 6-35

INDEX

I-6 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

core
architecture, 1-1 to 1-4, 2-2
double-fault condition, 4-46
double-fault reset, 3-13

core event
in EVT, 4-41
MMR location, 4-42

Core Event Controller (CEC), 1-8, 4-30
Core Event Vector Table (table), 4-42
Core Interrupt Latch register (ILAT), 4-39
Core Interrupt Mask register (IMASK),

4-38
Core Interrupts Pending register (IPEND),

3-1, 4-40
core MMRs, 6-73, B-1
Core Synchronize instruction, 16-5, C-99
Core Timer Interrupt (IVTMR), 4-47
core-only software reset, 3-13, 3-16
count instructions

Ones Population Count, 13-26
counter register, for loops, 7-17
counter, cycle, 4-6
counters, cycle, 21-23
CPLB_DIRTY bit, 6-57
CPLB_L1_AOW bit, 6-57
CPLB_L1_CHBL bit, 6-55, 6-57
CPLB_LOCK bit, 6-55, 6-57
CPLB_LRUPRIO bit, 6-5, 6-16, 6-55
CPLB_SUPV_WR bit, 6-57
CPLB_USER_RD bit, 6-55, 6-57
CPLB_USER_WR bit, 6-57
CPLB_VALID bit, 6-55, 6-57
CPLB_WT bit, 6-57
CPLBs, 6-10, 6-26, 6-46, 6-47

disabling, 6-6
enabling, 6-6
enabling and disabling, 6-26
management, 6-50
replacement policy, 6-51

CSYNC instruction, 16-5

customer support, xxviii
cycle counters, 4-6, 21-23, 21-24
CYCLES ⁄ CYCLES2[15:0] field, 21-25
CYCLES ⁄ CYCLES2[31:16] field, 21-25
CYCLES and CYCLES2 (Execution Cycle

Count registers), 21-24

D
DAG0 CPLB Miss, 4-66
DAG0 Misaligned Access, 4-66
DAG0 Multiple CPLB Hits, 4-66
DAG0 Protection Violation, 4-66
DAG1 CPLB Miss, 4-66
DAG1 Misaligned Access, 4-66
DAG1 Multiple CPLB Hits, 4-66
DAG1 Protection Violation, 4-66
dagreg, 9-3
DAGs

addressing modes, 5-18
description summary, 1-14, C-3
exceptions, 4-65
performance with reads, 6-26
register modification, 5-15
registers, 2-6, 5-8
support for branches, 4-3

Data / Instruction Access bit, 6-40
data address generators. See DAGs
data address registers, initialization, 5-4
Data Bank Access bit, 6-40
data banks, configuration, 6-30
data cache, 6-2

access, 6-33
control instructions, 6-37
invalidation, 6-38
L1, 6-29

Data Cache Flush instruction, C-101
Data Cache Line Invalidate instruction,

C-101
data cache line, states, 6-34
Data Cache Prefetch instruction, C-101

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-7

INDEX

Data Cache Select / Address Bit 14, 6-40
Data Fetch 1 (DF1), 4-7
Data Fetch 2 (DF2), 4-7
data flow, 2-1
data formats, 2-4 to 2-5, 2-12, 2-13

binary multiplication, D-5
Data Memory Control register

(DMEM_CONTROL), 6-24, 6-47
data memory, L1, 6-24 to 6-38
data operations, CPLB, 6-47
data register file, 2-2, 2-6, 2-7
data registers, 2-6, 3-4
Data Registers (Dreg)

description, 1-13, C-2
Data SRAM, L1, 6-27
data store format, 6-75
Data Test Command register

(DTEST_COMMAND), 6-39
Data Test Data registers

(DTEST_DATAx), 6-41, 6-42
Data Test registers, 6-38 to 6-42
data transfers, data register file, 2-8
data types, 2-11 to 2-23
Data Watchpoint Address Control register

(WPDACTL), 21-12
Data Watchpoint Address Count Value

registers (WPDACNTn), 21-11
Data Watchpoint Address registers

(WPDAn), 21-10
data watchpoints, 21-3
Data[15:0] field, 6-23, 6-42
Data[31:16] field, 6-23, 6-42
Data[47:32] field, 6-22, 6-41
Data[63:48] field, 6-22, 6-41
DBGCTL (Debug Control register), 3-16
DCB bus, 6-8
DCBS bit, 6-25, 6-26, 6-29, 6-31

recommendation for value of, 6-32
when changing selection, 6-33

DCPLB Address registers
(DCPLB_ADDRx), 6-59

DCPLB Data registers (DCPLB_DATAx),
6-57

DCPLB Fault Address register
(DCPLB_FAULT_ADDR), 6-63

DCPLB Status register
(DCPLB_STATUS), 6-61, 6-62

DCPLB_ADDRx (DCPLB Address
registers), 6-59

DCPLB_DATAx (DCPLB Data registers),
6-57

DCPLB_FAULT_ADDR (DCPLB Fault
Address register), 6-63

DCPLB_STATUS (DCPLB Status
register), 6-61, 6-62

Debug Control register (DBGCTL), 3-16
debug features, 21-1
DEC (Instruction Decode), 4-7
decimal point, 1-16
deferring exception processing, 4-68
DEPOSIT instruction, 13-10
DF1 (Data Fetch 1), 4-7
DF2 (Data Fetch 2), 4-7
direct-mapped (definition), 6-74
dirty (definition), 6-75
Dirty bit, 6-42
Disable Alignment Exception for Load

instruction, C-102
Disable Interrupts instruction, 6-74, C-99
disabling interrupts, global, 4-48
DISALGNEXCPT instruction, 5-16, 5-17,

18-6
Divide Primitive instruction, 15-19, C-60
divide primitives (DIVS, DIVQ), 2-14,

2-34
DIVQ instruction, 2-34, 15-19
DIVS instruction, 2-34, 15-19
DMA bandwidth, 6-27
DMC[1:0] field, 6-25, 6-27, 6-30, 6-38

INDEX

I-8 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

DMEM_CONTROL (Data Memory
Control register), 6-24, 6-47

Double Word Index[1:0] field, 6-40
double-fault condition, 4-46
Dreg_even, 9-3, 15-67
Dreg_hi, 8-45, 9-16, 15-43, 15-58, 19-3
Dreg_lo, 8-27, 8-49, 9-10, 9-13, 9-16,

12-10, 13-16, 13-26, 14-8, 14-15,
15-26, 15-43, 15-58, 15-83, 19-3,
19-8, 19-23, 19-28

Dreg_lo_hi, 14-8, 14-15, 15-6, 15-10,
15-13, 15-26, 15-38, 15-43, 15-53,
15-58, 15-67, 15-77, 15-83, 15-86,
19-48

Dreg_odd, 9-3, 15-67
DSP Device ID register (DSPID), 21-27
DSPID (DSP Device ID register), 21-27
DTEST_COMMAND (Data Test

Command register), 6-39
DTEST_DATAx (Data Test Data

registers), 6-41, 6-42
Dual 16-Bit Accumulator Extraction with

Addition instruction, 18-13, C-103
Dual 16-Bit Add / Clip instruction, 18-8,

C-102
dual 16-bit operations, 2-27
dual 32-bit operations, 2-29
DW[1:0] field, 6-21

E
EAB bus, 6-8, 6-14
EMUEXCPT instruction, 16-11
emulation

Force Emulation instruction, 16-11
return from (RTE), 7-10, 7-11

emulation events, 1-7, 3-1, 4-45
Emulation mode, 1-4, 3-1, 3-9, 4-45

and trace unit, 21-18
EMUSW0 bit, 21-9
EMUSW1 bit, 21-9

EMUSW2 bit, 21-9
EMUSW3 bit, 21-8
EMUSW4 bit, 21-8
EMUSW5 bit, 21-8
Enable Interrupts (STI) instruction, 6-74,

C-99
enabling interrupts, global, 4-48
ENDCPLB bit, 6-25, 6-26, 6-30, 6-51
endian format, data and instruction storage,

6-65
endianess, 2-13
ENICPLB bit, 6-7, 6-51
EPROM, 1-6
errors

bus parity, 4-60
bus timeout, 4-60
hardware, 4-59
hardware conditions causing, 4-60
internal core, 4-60
misalignment of data, 6-71
multiple hardware, 4-60
peripheral, 4-60

evaluation of loop conditions, 4-22
event controller, 1-6, 3-1, 4-29

MMRs, 4-38
sequencer, 4-3

event handling, 1-7, 4-29
nesting, 1-6
prioritization, 1-6

event monitor, 21-21
Event Vector Table (EVT), 4-41
events

asynchronous, 1-6
definition, 4-29
exception, 4-61
latency in servicing, 4-56
nested, 4-40
processing, 4-3
synchronous, 1-6
types of, 1-7

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-9

INDEX

EVT (Event Vector Table), 4-41
EX1 (Execute 1), 4-7
EX2 (Execute 2), 4-7
exception events, 3-4
exception routine, example code, 4-70
exceptions, 1-7, 3-1, 4-2

address violations not flagged, 17-3 to
17-9

alignment, 7-3, 8-8 to 8-50, 10-3, 10-7,
10-10, 10-15, 10-19

alignment errors prevented, 18-6 to
18-41

and MMRs, 6-73
deferring, 4-68
emulation, 16-11
events, 4-61, 4-63
Force Exception (EXCPT) instruction,

16-20
from protected memory write attempt,

6-53
from RTE instruction, 7-11
graceful instruction abort, 10-6, 10-15,

10-18
handler routine, 16-20
handler, executing, 4-66
handling instructions in pipeline, 4-67
illegal instruction, 16-11
MMU, 6-53
multiple, 4-65
not invoked by Force Interrupt / Reset

instruction, 16-18
not masked by Disable Interrupts

instruction, 16-13
prioritization, 6-52
protection violation, 7-11, 9-6, 10-3,

10-10, 16-4, 16-13, 16-15, 16-19
protection violations not flagged, 17-3,

17-5, 17-7, 17-9
resolved during synchronization, 16-5,

16-6, 16-9

exceptions (continued)
resolving before TESTSET operation

begins, 16-24
resolving before TESTSET operation

completes, 16-23
return from (RTX), 7-10, 7-11
undefined instruction, 8-8, 10-3
while exception handler executing, 4-67

Exceptions by Descending Priority (table),
4-65

exclusive (definition), 6-75
exclusive data cache line, 6-34
Exclusive-OR instruction, 12-8, C-43
EXCPT instruction, 4-66, 16-20
Execute 1 (EX1), 4-7
Execute 2 (EX2), 4-7
Execution Cycle Count registers (CYCLES

and CYCLES2), 21-24
Execution Unit, components, 4-8
EXPADJ instruction, 15-26
Exponent Detection instruction, C-60
exponent logic, 2-15
external, 1-6
External Event Management Instructions,

C-99
external memory, 1-6, 6-1
EXTRACT instruction, 13-16

F
Fast Fourier Transform, 5-15
FAULT[15:0] field, 6-62, 6-63
FAULT_ADDR[15:0] field, 6-64
FAULT_ADDR[31:16] field, 6-64
FAULT_DAG bit, 6-62
FAULT_ILLADDR bit, 6-62, 6-63
FAULT_RW bit, 6-62
FAULT_USERSUPV bit, 6-62, 6-63
fetch address, 4-8

incrementation, 4-8
fetched address, 4-3

INDEX

I-10 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

fetching order, 6-14
field deposit, 2-52
field extract, 2-52
flags

ADSP-BF535, A-2
arithmetic status, 1-15
overflow, 2-14

flash memory, 1-6
Flow Control Instructions, C-13
FLUSH instruction, 6-37, 17-5
FLUSHINV instruction, 6-37, 17-7
Force Emulation instruction, 16-11, C-99
Force Exception instruction, 16-20, C-99
Force Interrupt / Reset instruction, 3-11,

16-17, C-99
foregnd_reg, Bit Field Deposit instruction,

13-10
FP, 1-13
fractional data format, D-1
fractional mode, 2-15, D-6
fractional multiplier results format, 2-17
fractional representation, 2-5
fractions

binal point, 1-16
binary convention, 1-16
multiplication, 2-45

frame pointer, 4-6, 8-8, 8-12, 8-38, 10-17
description, 1-13, C-2

Frame Pointer (FP) registers, 5-6
fully associative (definition), 6-75

G
general-purpose interrupt, 4-30, 4-47

with multiple peripheral interrupts, 4-37
genreg, 9-3
global enabling and disabling interrupts,

4-48
GSM speech vocoder algorithms, 2-41
GSM speech-compression routines, 2-23

H
hardware error interrupt (HWE), 4-59

causes, 4-60
hardware errors, multiple, 4-60
hardware loops, 4-21
hardware reset, 3-12, 3-13
Harvard architecture, 6-3
hierarchical memory structure, 1-4
HWE (hardware error interrupt), 4-59,

4-60

I
I/O memory space, 1-6
IAR, 1-8
ICACHE instruction, 6-18
ICPLB Address registers

(ICPLB_ADDRx), 6-60
ICPLB Data registers (ICPLB_DATAx),

6-55
ICPLB Fault Address register

(ICPLB_FAULT_ADDR), 6-63
ICPLB Status register (ICPLB_STATUS),

6-61, 6-62
ICPLB_ADDRx (ICPLB Address

registers), 6-60
ICPLB_DATAx (ICPLB Data registers),

6-55
ICPLB_FAULT_ADDR (ICPLB Fault

Address register), 6-63
ICPLB_STATUS (ICPLB Status register),

6-61, 6-62
identifying processor mode, 3-2
IDLE instruction, 16-3
Idle instruction, 16-3, 16-14, 16-16, C-99

ADSP-BF535, A-1
Idle state, 3-2, 3-9, 4-2

transition to, 3-10
IF CC instruction, 9-8
IF CC JUMP instruction, 7-5

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-11

INDEX

IF1 (Instruction Fetch 1), 4-7
IF2 (Instruction Fetch 2), 4-7
IF3 (Instruction Fetch 3), 4-7
I-Fetch Access Exception, 4-65
I-Fetch CPLB Miss, 4-65
I-Fetch Misaligned Access, 4-65
I-Fetch Multiple CPLB Hits, 4-65
I-Fetch Protection Violation, 4-65
IFLUSH instruction, 6-6, 6-18, 17-9
ILAT (Core Interrupt Latch register), 4-39,

16-20
illegal combination, 4-66
illegal use protected resource, 4-66
ILOC[3:0] field, 6-5, 6-7, 6-17
IMASK (Core Interrupt Mask register),

4-38, 6-74
IMC bit, 6-6, 6-7, 6-19
IMEM_CONTROL (Instruction Memory

Control register), 6-5, 6-47
imm16 constant, 8-4
imm3 constant, 11-2, 11-6
imm6 constant, 14-21
imm7 constant, 8-4, 15-16
immediate constant, 1-11, C-5
immediate shift, 2-49, 2-50
Implementation[15:0] field, 21-27
index (definition), 6-75
Index registers (I[3:0]), 5-3, 5-8, 5-12
Index Registers (Ireg)

description, 1-14, 1-21, C-3
function in circular addressing, 1-21
instructions that use

Add Immediate, 15-16
Load Data Register, 8-10
Load High Data Register Half, 8-23,

8-27
Modify – Decrement, 15-34
Modify – Increment, 15-37
Store Data Register, 8-40
Store High Data Register Half, 8-45

Index Registers (Ireg) (continued)
Store Low Data Register Half, 8-49
Subtract Immediate, 15-90

indexed addressing, 5-8
with immediate offset, 5-10

initialization of data address registers, 5-4
initialization of Length registers, 5-4
initialization of loop registers, 7-15
inner loops, 4-25
inputs and outputs, 2-26
instruction address, 4-3
instruction address range watchpoints, 21-2
Instruction Alignment Unit, 4-8
instruction cache, 6-2

coherency, 6-16
invalidation, 6-18
management, 6-16

Instruction Cache Flush instruction, 17-9,
C-101

Instruction Decode (DEC), 4-7
Instruction Fetch 1 (IF1), 4-7
Instruction Fetch 2 (IF2), 4-7
Instruction Fetch 3 (IF3), 4-7
instruction fetch time loop, 4-24
instruction fetches, 6-47
instruction loop buffer, 4-24
Instruction Memory Control register

(IMEM_CONTROL), 6-5, 6-47
Instruction Memory Unit, 4-8
instruction opcodes

Abort, C-100
Add, C-55
Add Immediate, C-59
Add on Sign, C-107
Add with Shift, C-46
Add/Subtract - Prescale Down, C-58
Add/Subtract - Prescale Up, C-59
AND, C-43
Arithmetic Shift, C-46
Bit Clear, C-44

INDEX

I-12 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

instruction opcodes (continued)
Bit Field Deposit, C-44
Bit Field Extraction, C-44
Bit Multiplex, C-45
Bit Set, C-44
Bit Test, C-44
Bit Toggle, C-44
Bit-Wise Exclusive-OR, C-43
Byte Align, C-102
CALL, C-13
Compare Accumulator, C-41
Compare Data Register, C-39
Compare Pointer, C-40
Compare-Select (VIT_MAX), C-107
Core Synchronize, C-99
Data Cache Flush, C-101
Data Cache Line Invalidate, C-101
Data Cache Prefetch, C-101
Disable Alignment Exception for Load,

C-102
Disable Interrupts, C-99
Divide Primitive, C-60
Dual 16-Bit Accumulator Extraction

with Addition, C-103
Dual 16-Bit Add / Clip, C-102
Enable Interrupts, C-99
Exclusive-OR, C-43
Exponent Detection, C-60
Force Emulation, C-99
Force Exception, C-99
Force Interrupt / Reset, C-99
Idle, C-99
Instruction Cache Flush, C-101
Jump, C-13
Linkage, C-38
Load Byte – Sign-Extended, C-22
Load Byte – Zero-Extended, C-22
Load Data Register, C-17
Load Half-Word – Sign-Extended, C-20
Load Half-Word – Zero-Extended, C-19

instruction opcodes (continued)
Load High Data Register Half, C-20
Load Immediate, C-16
Load Low Data Register Half, C-21
Load Pointer Register, C-17
Logical Shift, C-50
Maximum, C-60
Minimum, C-61
Modify – Decrement, C-61
Modify – Increment, C-61
Move Byte – Sign-Extended, C-36
Move Byte – Zero Extended, C-36
Move CC, C-41
Move Conditional, C-31
Move Half to Full Word –

Sign-Extended, C-31
Move Half to Full Word –

Zero-Extended, C-31
Move Register, C-28
Move Register Half, C-32
Multiply 16-Bit Operands, C-62
Multiply 32-Bit Operands, C-68
Multiply and Multiply-Accumulate to

Accumulator, C-69
Multiply and Multiply-Accumulate to

Data Register, C-86
Multiply and Multiply-Accumulate to

Half-Register, C-74
Negate (Two’s Complement), C-93
Negate CC, C-42
No Op, C-99
NOT (One’s Complement), C-43
Ones Population Count, C-45
OR, C-43
Pop, C-37
Pop Multiple, C-37
Push, C-37
Push Multiple, C-37
Quad 8-Bit Add, C-103
Quad 8-Bit Average – Byte, C-104

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-13

INDEX

instruction opcodes (continued)
Quad 8-Bit Average – Half-Word,

C-104
Quad 8-Bit Pack, C-105
Quad 8-Bit Subtract, C-106
Quad 8-Bit

Subtract-Absolute-Accumulate,
C-106

Quad 8-Bit Unpack, C-106
Return, C-14
Rotate, C-54
Round to Half-Word, C-94
Saturate, C-95
Shift with Add, C-46
Sign Bit, C-95
Store Byte, C-27
Store Data Register, C-24
Store High Data Register Half, C-25
Store Low Data Register Half, C-26
Store Pointer Register, C-23
Subtract, C-96
Subtract Immediate, C-98
System Synchronize, C-99
Test and Set Byte (Atomic), C-99
Vector Absolute Value, C-107
Vector Add / Subtract, C-107
Vector Arithmetic Shift, C-114
Vector Logical Shift, C-115
Vector Maximum, C-115
Vector Minimum, C-115
Vector Multiply, C-115
Vector Multiply and

Multiply-Accumulate, C-121
Vector Negate (Two’s Complement),

C-138
Vector Pack, C-138
Vector Search, C-138
Zero-Overhead Loop Setup, C-14

instruction pipeline, 4-3, 4-7
stages, 4-7

instruction set, 1-4
Instruction Test Command register

(ITEST_COMMAND), 6-21
Instruction Test Data registers

(ITEST_DATAx), 6-22
Instruction Test registers, 6-19 to 6-23
Instruction Watchpoint Address Control

register (WPIACTL), 21-7
Instruction Watchpoint Address Count

registers (WPIACNTn), 21-5, 21-6
Instruction Watchpoint Address registers

(WPIAn), 21-5
instruction watchpoints, 21-4
instruction width, 4-8
instructions

AAU, 5-20
ALU, 2-30, 2-32
conditional, 2-24, 4-3
in pipeline when interrupt occurs, 4-67
interlocked pipeline, 6-66
issuing in parallel, 20-1
load ⁄ store, 6-66
multiplier, 2-38
protected, 3-4
shifter, 2-53
stored in memory, 6-65
synchronizing, 6-68
width, 4-8

integer data format, D-1
integer mode, 2-15, D-6
integer multiplication, 2-45
integer multiplier results format, 2-17
intended audience, xxv
internal memory, 1-5, 6-2
interrupt handling, instructions in pipeline,

4-67
Interrupt Mask register (IMASK), 16-15
Interrupt Priority register (IPRIO), 6-35
interrupt service routine

determining source of interrupt, 4-36

INDEX

I-14 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

interrupts, 1-7, 1-8, 3-1, 4-2
control of system, 4-30
core, 6-34
definition, 4-30
disabling

Disable Interrupts (CLI) instruction,
16-13

popping RETI from stack, 10-3
enabling

Enable Interrupts (STI) instruction,
16-15

enabling and disabling, 6-74
forcing

Force Interrupt / Reset (RAISE) in-
struction, 16-17

general-purpose, 4-30, 4-47
generated by peripheral, 4-31
global enabling and disabling, 4-48
hardware error, 4-59
IPRIO register, 6-35
multiple sources, 4-32
nested, 4-40, 4-51
NMI, return from (RTN), 7-10
non-nested, 4-51
peripheral, 4-30
priority, 16-17
priority watermark, 6-35
processing, 4-3, 4-31
return from interrupt (RTI), 7-11
return instruction (RTI), 7-10
servicing, 4-48
shared, 4-37
sources, peripheral, 4-35
uninterruptable instructions, 7-11

linkage instruction, LINK, UNLINK,
10-18

Pop Multiple, 10-15
Push Multiple, 10-6
Return from NMI (RTN), 7-11

interrupts (continued)
Test and Set Byte (Atomic) TEST-

SET, 16-23
vector, 16-17

invalid cache line (definition), 6-75
invalid data cache line, 6-34
invalidation of instruction cache, 6-18
IPEND (Core Interrupts Pending register),

3-1, 4-40
IPRIO (Interrupt Priority register), 6-35
IPRIO[3:0] field, 6-35
IPRIO_MARK[0:3] field, 6-36
I-registers (Index), 5-8
ISR and multiple interrupt sources, 4-32
issuing parallel instructions, 20-1
ITEST registers, 6-20
ITEST_COMMAND (Instruction Test

Command register), 6-21
ITEST_DATAx (Instruction Test Data

registers), 6-22
IVHW interrupt, 4-59

J
JTAG port, 3-16
JUMP instruction, 4-10, 7-2
Jump instruction, 4-10, C-13

conditional, 4-10
range, 4-11

jump instructions
Conditional Jump, 7-5
Jump, 7-2

jumps, 4-1

L
L1 data cache, 6-29
L1 data memory, 1-5
L1 Data SRAM, 6-27
L1 instruction memory, 1-5

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-15

INDEX

L1 memory. See Level 1 (L1) memory;
Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory

L1 scratchpad RAM, 1-5
L2 memory. See Level 2 (L2) memory
latched interrupt request, 4-39
latency

Level 2 (L2) memory, 6-4, 6-44
servicing events, 4-56
when servicing interrupts, 4-48

LB. See Loop Bottom registers (LB0, LB1)
LC. See Loop Count registers (LC0, LC1)
least recently used algorithm (LRU)

(definition), 6-75
Length registers (L[3:0]), 5-3, 5-8, 5-13
Length Registers (Lreg)

description, 1-14, 1-22, C-3
function in circular addressing, 1-22

Length registers, initialization, 5-4
Level 1 (L1) Data Memory, 6-24 to 6-38

architecture, 6-27
traffic, 6-24

Level 1 (L1) Instruction Memory, 6-5 to
6-19

bank architecture, 6-8
configuration, 6-10
DAG reference exception, 6-7
enabled as cache, 6-53
instruction cache, 6-10
organization, 6-10
subbank organization, 6-5

Level 1 (L1) memory, 1-4, 1-5, 6-2, 6-3
address alignment, 6-7
data cache, 6-29
definition, 6-75
frequency, 6-4
scratchpad data SRAM, 6-4
See also Level 1 (L1) Data Memory; Level

1 (L1) Instruction Memory

Level 2 (L2) memory, 1-5, 6-1, 6-4, 6-43
enabling cache, 6-6
latency, 6-44
latency with cache off, 6-45
latency with cache on, 6-44
non-cacheable, 6-45

line fill buffers, 6-15, 6-34
line fill, cache, 6-14
LINK instruction, 4-17, 10-17
Linkage instruction, 10-17, C-38
little endian (definition), 6-75
Load / Store Instructions, C-16
Load Byte – Sign-Extended instruction,

8-34, C-22
Load Byte – Zero-Extended instruction,

8-31, C-22
Load Data Register instruction, 8-10, C-17
Load Half-Word – Sign-Extended

instruction, 8-19, C-20
Load Half-Word – Zero-Extended

instruction, 8-15, C-19
Load High Data Register Half instruction,

8-23, C-20
Load Immediate instruction, 8-3, C-16
load instructions

Load Byte – Sign-Extended, 8-34, C-22
Load Byte – Zero-Extended, 8-31, C-22
Load Half-Word – Sign-Extended, 8-19,

C-20
Load Half-Word – Zero-Extended, 8-15,

C-19
Load High Data Register Half, 8-23,

C-20
Load Immediate, 8-3, C-16
Load Low Data Register Half, 8-27,

C-21
Load Pointer Register, 8-7, C-17

load instructions, stalled, 6-34
Load Low Data Register Half instruction,

8-27, C-21

INDEX

I-16 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

load operation, 6-66
load ordering, 6-67
Load Pointer Register instruction, 8-7,

C-17
load, speculative execution, 6-69
load/store instructions, 5-6
logging nested interrupt, 4-55
logical operations, 2-26
Logical Operations instructions, C-43
Logical Shift instruction, 2-48, 14-14,

C-50
logical shifts, 2-1, 2-15
long jump (JUMP.L) instruction, 4-11
Loop Bottom registers (LB0, LB1), 4-22

description, 1-14, C-2
Loop Count registers (LC0, LC1)

description, 1-14, C-2
Loop Counter registers (LC0, LC1), 4-22
loop PC-relative constant, 1-12, C-6
Loop Top registers (LT0, LT1), 4-22

description, 1-13, C-2
loopback, 4-22, 4-25
loops, 4-1

branch instructions in, 7-18
buffer, 4-24
conditions, evaluation, 4-22
counter register, 7-17
disabling, 4-23
hardware, 4-21
inner, 4-25
instruction fetch time, 4-24
interrupted, 4-27
last instruction restrictions, 7-17
Loop Bottom register, 9-7
Loop Count register, 9-7
LOOP instruction, 7-13
Loop Top register, 9-7
loopback, 4-22
modifying loop counter, 7-18
nested, 7-16

loops (continued)
outer, 4-25
registers, 4-6, 4-22, 7-15
restoring, 4-27
saving and resuming, 4-27
small loop count values, 7-16
span, 7-15
termination conditions, 4-3
top and bottom addresses, 4-23
two-dimensional, 4-24
unrolling, 4-26
Zero - Overhead Loop Setup instruction,

7-13
zero-overhead, 7-15
zero-overhead and trace buffer, 21-15

lppcrel11m2 constant, 7-14
L-registers (Length), 5-8
LRU bit, 6-42
LRU policy, 6-51
LRUPRIO bit, 6-23
LRUPRIORST bit, 6-5, 6-7
LSETUP instruction, 7-13
LSHIFT instruction, 2-48
LSHIFT...BY instruction, 14-14, 19-28
LT. See Loop Top registers (LT0, LT1)

M
MAC1 Multiply and Accumulate Unit 1

mixed mode option (M), 15-48, 15-55,
15-64, 15-70

MACs, 1-3, 2-35 to 2-48
description summary, 1-14
dual operations, 2-47
multicycle 32-bit instruction, 2-46

MACs (multiplier-accumulators)
dual operations, 2-47
See also multiply without accumulate

Major Architectural Change[7:0] field,
21-27

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-17

INDEX

manual
audience, xxv
contents, xxvi
conventions, xxxvi
new in this edition, xxvii
related documents, xxxi

MAX instruction, 15-30, 19-32
Maximum instruction, 15-30, C-60
maximum instructions

Maximum, 15-30
Vector Maximum, 19-32, C-115

memory, 1-6
address alignment, 5-16
architecture, 1-4, 6-2 to 6-4
external, 1-6
how instructions are stored, 6-65
internal, 1-5
L1 data, 6-24 to 6-38
L1 Data SRAM, 6-27
Level 2 (L2), 6-43
management, 6-45
nonaligned operations, 6-71
off-chip, 1-6
Page Descriptor Table, 6-50
protected, 3-5
protected regions, 6-54
protection and properties, 6-45 to 6-63
protection between tasks, 6-52
protection in User mode, 6-53
terminology, 6-74 to 6-76
transaction model, 6-65
See also cache; Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory; Level 2
(L2) memory

Memory Management Unit. See MMU
memory page, 6-48
memory-mapped registers. See MMRs
MIN instruction, 15-32, 19-35
Minimum instruction, 15-32, C-61

minimum instructions
Minimum, 15-32, C-61
Vector Minimum, 19-35, C-115

mixed mode option (M), 15-43, 15-48,
15-55, 15-64, 15-70

MMR location of core events, 4-42
MMR space, configuration, 6-30
MMRs, 6-2, 6-72 to 6-74

accessibility, 6-73
on ADSP-BF535, 6-73
restriction on reading, 3-1

MMU, 1-4, 6-45
application, 6-52
exception, 6-53
exception handler, 6-50, 6-51
on reset, 6-52

MNOP used in parallel instruction issues,
20-2, 20-8

mode control pins, 3-13
modes

ADSP-BF535, A-1
Emulation, 1-4, 3-1, 4-45
identifying, 3-2
operation, 1-4
Supervisor, 1-4, 3-1
transitional conditions, 3-2
User, 1-4, 3-1

modified (definition), 6-75
modified addressing, 5-5
modified data cache line, 6-34
Modify – Decrement instruction, 15-34,

C-61
Modify – Increment instruction, 15-37,

C-61
modify address, 5-2
modify instructions

Modify – Decrement, 15-34, C-61
Modify – Increment, 15-37, C-61

Modify registers (M[3:0]), 5-3, 5-8, 5-12

INDEX

I-18 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Modify Registers (Mreg)
description, 1-14, C-3
function in circular addressing, 1-21
instructions that use

Load Data Register, 8-10
Modify – Decrement, 15-34
Modify – Increment, 15-37
Store Data Register, 8-40

used to increment Ireg, 1-21
mostreg, 10-8
Move Byte – Sign-Extended instruction,

9-25, C-36
Move Byte – Zero Extended instruction,

9-23, C-36
Move CC instruction, C-41
Move Conditional instruction, 9-8, 11-12,

C-31
Move Half to Full Word – Sign-Extended

instruction, 9-10, C-31
Move Half to Full Word – Zero-Extended

instruction, 9-13, C-31
move instructions, C-28
Move Register Half instruction, 9-15, C-32
Move Register instruction, 9-2, C-28
M-registers (Modify), 5-8
multi-issue instruction, 20-1
multi-issue operations, AAU instructions,

5-24
multiple exceptions, for an instruction,

4-65
multiple interrupt sources, 4-32, 4-55
multiplier, 2-1

accumulator result registers A[1: 0],
2-36, 2-37

arithmetic integer modes formats, 2-16
data types, 2-14
fractional modes format, 2-16
instruction options, 2-40
instructions, 2-38
operands for input, 2-36

multiplier (continued)
operations, 2-36
results, 2-37, 2-38, 2-42
rounding, 2-37
saturation, 2-38
status, 2-24
status bits, 2-38

multiplier accumulators. See MACs
Multiply 16-Bit Operands instruction,

15-43, C-62
Multiply 32-Bit Operands instruction,

15-51, C-68
Multiply and Accumulate Unit (MAC)

combining MAC0 and MAC1operations
in vector instructions, 19-38, 19-41

description summary, C-3
Multiply and Accumulate Unit 1 (MAC1)

mixed mode option (M), 15-43, 15-48,
15-55, 15-64, 15-70, 19-38, 19-41

Multiply and Multiply-Accumulate to
Accumulator instruction, 15-53, C-69

Multiply and Multiply-Accumulate to Data
Register instruction, 15-67, C-86

Multiply and Multiply-Accumulate to
Half-Register instruction, 15-58,
C-74

Multiply and Multiply-Accumulate, Vector
instruction, 19-41, C-121

multiply without accumulate, 2-44
Multiply, Vector instruction, 19-38, C-115

N
Negate (Two’s Complement) instruction,

15-73, C-93
Negate CC instruction, 11-15, C-42
negate instructions

Negate CC, 11-15, C-42
Vector Negate, 19-46, C-138

nested interrupt, 4-40, 4-51
logging, 4-55

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-19

INDEX

Nested Interrupt Handling (figure), 4-53
nested ISR

example Epilog code, 4-54
example Prolog code, 4-53

nested loops, 4-25, 7-16
nesting of events, 1-6
NMI, 1-7, 3-1, 4-46
No Op instruction, 16-25, C-99
nonaligned memory operations, 6-71
nonmaskable interrupt, 4-46
non-nested interrupt, 4-51
Non-nested Interrupt Handling (figure),

4-51
non-OS environments, 3-7
non-processing states, 3-2
nonsequential program operation, 4-9
nonsequential program structures, 4-1
NOP instruction, 16-25
NOT (One’s Complement) instruction,

12-4, C-43
NOT, logical, 2-26
notation conventions, 1-10

choice of one register within a group,
1-11, C-5

constants, 1-11, C-5
loop PC-relative constants, 1-12, C-6
PC-relative constants, 1-12, C-6
range of sequential registers or bits, 1-11,

C-5
register pairs, C-4
register portions, C-4
set of registers in one instruction, C-4

numbers
binary, 2-4
data formats, 2-13
fractional representation, 2-5
signed, 2-5
two’s complement, 2-5
unsigned, 2-4

numeric formats, D-1 to D-8
binary multiplication, D-5
block floating point, D-6
integer mode, D-6
two’s complement, D-1

O
off-chip memory, 1-6
on-chip L2 memory, 6-4
on-chip memory, 1-5
ONES instruction, 13-26
Ones Population Count instruction, 13-26,

C-45
opcodes, xxvii

constructing, xxvii
See also instruction opcodes

operating modes, 3-1 to 3-10
operator

– – autodecrement, 10-2, 10-5
– subtract, 15-10, 15-13, 15-86, 19-18
& logical AND, 12-2
&= logical AND assign, 11-12
* multiply, 15-43, 15-53, 15-58, 15-67,

19-3
+ add, 14-5, 15-6, 15-10, 15-13, 18-13,

19-18
++ autoincrement, 10-8, 10-12, 17-7,

17-9
+= add assign, 15-16, 15-37, 15-53,

15-58, 15-67
+|– vector add / subtract, 19-18

INDEX

I-20 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

operator (continued)
+|+ vector add / add, 19-18
< less-than, 11-2, 11-6, 11-9
<< logical left shift, 14-2, 14-5, 14-7,

14-14, 19-23, 19-28
<<= logical left shift assign, 14-14
<= less-than or equal, 11-2, 11-6, 11-9
= assign (representative sample, only),

8-3, 9-2, 10-2, 11-12, 12-10, 13-8,
14-2, 15-3, 18-3, 19-3

=– negate (2’s complement) assign,
15-73, 19-46

–= subtract assign, 15-34, 15-53, 15-58,
15-67, 15-90

=! bit invert (one’s complement) assign,
11-15, 13-8

== compare-equal, 11-2, 11-6, 11-9
=~ multi-bit invert (one’s complement)

assign, 12-4
>> logical right shift, 14-14, 19-28
>>= logical right shift assign, 14-14
>>> arithmetic right shift, 14-7, 19-23
>>>= arithmetic right shift assign, 14-7
^ logical XOR, 12-8
^= logical XOR assign, 11-12
| logical OR, 12-6
–|– vector subtract / subtract, 19-18
–|+ vector subtract / add, 19-18
|= logical OR assign, 11-12

option flags
16-bit Accumulator extraction with x2

scaling, 16-bit saturation and
rounding (S2RND)
Multiply 16-Bit Operands instruction,

15-43
Multiply and Multiply-Accumulate to

Data Register instruction, 15-67
Multiply and Multiply-Accumulate to

Half-Register instruction, 15-67

option flags (continued)
use with move instructions, 9-16
use with multiply instructions, 15-43,

15-58, 15-67
32-bit Accumulator extraction with x2

scaling and 32-bit saturation (ISS2)
Multiply 16-Bit Operands instruction,

15-43
Multiply and Multiply-Accumulate to

Data Register instruction, 15-67
Multiply and Multiply-Accumulate to

Half-Register instruction, 15-58
use with move instructions, 9-16
use with multiply instructions, 15-43,

15-58, 15-67
arithmetic shift left (ASL)

use with instructions, 13-21, 19-8,
19-18

arithmetic shift right (ASR)
use with instructions, 13-21, 19-8,

19-18
bit reverse (BREV)

Modify – Increment instruction,
15-37

cross outputs (CO)
Vector Add / Subtract instruction,

19-18
fraction, unsigned operator (FU)

Multiply 16-Bit Operands instruction,
15-43

Multiply and Multiply-Accumulate to
Accumulator instruction, 15-53

Multiply and Multiply-Accumulate to
Data Register instruction, 15-67

Multiply and Multiply-Accumulate to
Half-Register instruction, 15-58

use with multiply instructions, 15-43,
15-53, 15-58, 15-67

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-21

INDEX

option flags (continued)
high half-word Accumulator extraction

with saturation and rounding (IH)
Multiply 16-Bit Operands instruction,

15-43
Multiply and Multiply-Accumulate to

Half-Register instruction, 15-58
use with instructions, 9-16, 15-43,

15-58
integer, signed operator (IS)

Multiply 16-Bit Operands instruction,
15-43

Multiply and Multiply-Accumulate to
Accumulator instruction, 15-53

Multiply and Multiply-Accumulate to
Data Register instruction, 15-67

Multiply and Multiply-Accumulate to
Half-Register instruction, 15-58

use with move instructions, 9-16
use with multiply instructions, 15-43,

15-53, 15-58, 15-67
integer, unsigned operator (IU)

Multiply 16-Bit Operands instruction,
15-43

Multiply and Multiply-Accumulate to
Half-Register instruction, 15-58

use with compare instructions, 11-2,
11-6

use with move instructions, 9-16
use with multiply instructions, 15-43,

15-58
mixed mode (M)

Vector Multiply and Multiply-Accu-
mulate instruction, 19-41

Vector Multiply instruction, 19-38
no saturate (NS)

Add instruction, 15-6
Negate (Two’s Complement) instruc-

tion, 15-73
Subtract instruction, 15-86

option flags (continued)
saturate (S)

Add instruction, 15-6
Arithmetic Shift instruction, 14-7
Negate (Two’s Complement) instruc-

tion, 15-73
Saturate instruction, 15-80
Subtract instruction, 15-86
Vector Add / Subtract instruction,

19-18
saturate Accumulator at 32-bit word

boundary (W32)
Multiply and Multiply-Accumulate to

Accumulator instruction, 15-53
use with modify instructions, 15-34,

15-37
use with multiply instructions, 15-53

saturate and cross outputs (SCO)
Vector Add / Subtract instruction,

19-18
sign extended (X)

use with bit field instructions, 13-10,
13-16

use with load instructions, 8-3, 8-19,
8-34

use with move instructions, 9-13, 9-25
truncate (T)

Move Register Half instruction, 9-16
Quad 8-Bit Average – Byte instruc-

tion, 18-19
truncate, signed fraction operands (T)

Multiply 16-Bit Operands instruction,
15-43

Multiply and Multiply-Accumulate to
Half-Register instruction, 15-58

use with multiply instructions, 15-43,
15-58

truncate, unsigned fraction operands
(TFU)
Multiply 16-Bit Operands instruction,

15-43

INDEX

I-22 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

option flags (continued)
Multiply and Multiply-Accumulate to

Half-Register instruction, 15-58
use with multiply instructions, 15-43,

15-58
zero extended (Z)

use with instructions, 8-3, 8-15, 8-31,
9-10, 9-23, 13-16

OR instruction, 12-6, C-43
or instructions

Exclusive-OR, 12-8
OR, 12-6, C-43

OR, logical, 2-26
ordering

loads and stores, 6-67
weak and strong, 6-67

outer loops, 4-25
overflow

arithmetic status flags, 1-15, 1-17, C-7
behavior, 1-17, 1-18
bits, 2-14
flags, 2-14
implemented by user for the Multiply

32-Bit Operands instruction, 15-51
impossible in the Multiply 32-Bit

Operands instruction, 15-51
prevention in Divide Primitive

instruction, 15-22
saturation of multiplier results, 2-38

P
PACK instruction, 19-48
packing instructions

Quad 8-Bit Pack, 18-30
Quad 8-Bit Unpack, 18-41, C-106
Vector Pack, 19-48, C-138

Page Descriptor Table, 6-53
PAGE_SIZE[1:0] field, 6-55, 6-57
parallel instructions, 20-1

parallel issue syntax, 20-2
parameter passing, 4-15
pattern_reg, Bit Field Extraction

instruction, 13-16
pcrel11m2 constant, 7-6
pcrel13m2 constant, 7-2
pcrel25m2 constant, 7-3, 7-8
pcrel5m2constant, 7-14
PC-relative constant, 1-12, C-6
PC-relative offset, 4-12
pcrelm2 constant, 7-2
PEMUSW0 bit, 21-21
PEMUSW1 bit, 21-21
PEMUSWx bits, 21-20
Performance Monitor Control register

(PFCTL), 21-20
Performance Monitor Counter registers

(PFCNTRn), 21-20
Performance Monitoring Unit, 21-19
peripheral

interrupt generated by, 4-31
interrupt sources, 4-35
interrupts, 4-30
interrupts, relative priority, 4-37
interrupts, source masking, 4-36

Peripheral Access Bus (PAB), 6-73
PFCEN0[1:0] field, 21-21
PFCEN1[1:0] field, 21-21
PFCNT0 bit, 21-21
PFCNT1 bit, 21-21
PFCNTRn (Performance Monitor

Counter registers), 21-20
PFCNTRx[15:0] field, 21-20
PFCNTRx[31:16] field, 21-20
PFCTL (Performance Monitor Control

register), 21-20
PFMON0[7:0] field, 21-21
PFMON1[7:0] field, 21-21
PFPWR bit, 21-21

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-23

INDEX

pipeline
figure, 4-8
instruction, 4-3, 4-7
instructions when interrupt occurs, 4-67
interlocked, 6-66
stages, 4-7
stalls, 6-66

pointer register file, 2-6
pointer register modification, 5-15
pointer registers, 3-4, 5-6, 8-11, 8-20, 8-47
Pointer registers (P[5:0]), 5-3
Pointer Registers (Preg)

description, 1-13, C-2
Pop instruction, 10-8, C-37
Pop Multiple instruction, 10-12, C-37
popping, manual, 4-5
PORT_PREF0 bit, 6-25, 6-26
PORT_PREF1 bit, 6-24, 6-25
post-modify addressing, 5-2, 5-5, 5-11,

5-13
post-modify buffer access, 5-14
powerdown warning, as NMI, 4-46
powerup, 3-12
PRCENx bits, 21-20
PREFETCH instruction, 6-37, 17-3
pre-modify instruction, 5-11
pre-modify stack pointer addressing, 5-11
prioritization of events, 1-6
processor core architecture, 2-2
processor mode

determination, 3-1
Emulation, 3-9
figure, 3-2
identification, 3-2
identifying, 3-2
IPEND interrogation, 3-1
Supervisor, 3-7
User, 3-3

processor state
Idle, 3-9
Reset, 3-10
upon reset, 3-11

product identification registers, 21-27
program counter (PC), 4-3, 4-6
Program Counter register (PC)

PC-relative indirect JUMP and CALL,
4-13

PC-relative offset, 4-11
program flow, 4-1
Program Flow Control Instructions, C-13
program sequencer, 1-3, 4-1 to 4-58
program structures, nonsequential, 4-1
programming model for cache memory,

6-2
protected instructions, 3-4
protected memory, 3-5
protected memory regions, 6-54
protected resources, 3-4
protection of memory between tasks, 6-52
protection of memory in User mode, 6-53
purpose of this manual, xxv
Push instruction, 10-2, C-37
Push Multiple instruction, 10-5, C-37
pushing, manual, 4-5

Q
quad 16-bit operations, 2-28
Quad 8-Bit Add instruction, 18-15, C-103
Quad 8-Bit Average – Byte instruction,

18-23, C-104
Quad 8-Bit Average – Half-Word

instruction, 18-29, C-104
Quad 8-Bit Pack instruction, 18-30, C-105
Quad 8-Bit Subtract instruction, 18-32,

C-106
Quad 8-Bit Subtract-Absolute-Accumulate

instruction, 18-36, C-106

INDEX

I-24 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

Quad 8-Bit Unpack instruction, 18-41,
C-106

R
radix point, D-1, D-2
RAISE instruction, 3-11, 16-17
range

CALL instruction, 4-12
conditional branches, 4-20
Jump instruction, 4-11
of signed numbers, D-4

read transfer, address, 6-14
Read/Write Access bit, 6-40
reading MMRs, restriction, 3-1
reg, 8-4
Register Access Bus (RAB), 6-72
register file, 1-2
register file instructions, 2-9
register files, 2-6 to 2-11
register instructions, conditional branch,

4-10
register move, 4-20
register pairs, valid pairs defined, 1-10, C-4
register portions, notation convention,

1-11, C-4
register set notation

multiple Data Registers in one
instruction, 1-11, C-4

register shift, 2-50, 2-51
registers

accessible in User mode, 3-4
choice of one register within a group,

notation convention, 1-11, C-5
core, B-1 to B-9
memory-mapped, core, B-1 to B-9
product identification, 21-27
range of sequential, notation convention,

1-11, C-5
related documents, xxxi

replacement policy
CPLBs, 6-51
definition, 6-75
for cache controller, 6-33

reset
core double-fault, 3-13
core-only software, 3-13, 3-16
effect on memory configuration, 6-26
hardware, 3-12, 3-13
initialization sequence

programming for interrupts, 4-37
MMU, 6-52
processor state upon reset, 3-11
system software, 3-12, 3-14
watchdog timer, 3-12, 3-14

reset event, 1-7
reset interrupt (RST), 4-46
RESET signal, 3-10
Reset state, 3-2, 3-10
reset values, ADSP-BF535, A-1
resources, protected, 3-4
restoring loops, 4-27
resuming loops, 4-27
RETS register, 4-12, 7-9, 10-3, 10-17
return address, 4-3

for CALL instruction, 4-10
Return Address registers, 4-6
return from emulation (RTE) instruction,

4-10
return from exception (RTX) instruction,

4-10
return from interrupt (RTI) instruction,

4-10
return from nonmaskable interrupt (RTN)

instruction, 4-10
return from subroutine (RTS) instruction,

4-10
Return instruction, 4-10, 7-10, C-14
RETx register, 3-5
RND instruction, 15-77

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-25

INDEX

RND_MOD bit, 2-19, 2-23
affected instructions, 9-18, 15-38, 15-45,

15-59
in ASTAT register, 1-20

RND12 instruction, 15-13
RND20 instruction, 15-10
ROM, 1-6, 6-2
ROT...BY instruction, 14-21
Rotate instruction, 14-21, C-54
Rotate Operations instructions, C-46
round robin scheduling, 6-51
Round to Half-Word instruction, 15-77,

C-94
rounding

behavior, 1-20
biased, 1-19, 2-19, 2-22
convergent, 1-19, 2-20
instructions, 2-19, 2-24
round-to-nearest, 1-19
setting mode, 2-2
unbiased, 1-19, 2-19

round-to-nearest, 2-22
round-to-nearest rounding, 1-19
RST (reset interrupt), 4-46
RTE instruction, 4-10, 7-10
RTI instruction, 4-10, 4-45, 7-10
RTN instruction, 4-10, 7-10
RTS instruction, 4-10, 7-10
RTX instruction, 4-10, 7-10
RW bit, 6-21

S
SAA instruction, 18-36
Saturate instruction, C-95
saturation, 1-17

16-bit register range, 1-18
32-bit register range, 1-18
40-bit register range, 1-18
Accumulator, 1-12
Saturate instruction, 15-80, C-95

saving loops, 4-27
SBNK[1:0] field, 6-21
scalar operations, 19-38, 19-41
scene_reg, Bit Field Extraction instruction,

13-16
scratchpad data memory, 6-47
scratchpad data SRAM, 6-4
scratchpad SRAM, 6-4
SDRAM, 1-6
SEARCH instruction, 19-50
search, Vector Search instruction, 19-50
SEQSTAT (Sequencer Status register), 4-6,

4-59, 16-3, 16-8
sequencer registers, 3-4
Sequencer Status register (SEQSTAT), 4-6,

4-59, 16-3, 16-8
sequential registers or bits

range of, notation convention, 1-11
sequential registers or bits, range of,

notation convention, 1-11, C-5
servicing interrupt, 4-48
set (definition), 6-75
set associative (definition), 6-76
Set Index[5:0] field, 6-40
SET[4:0] field, 6-21
shared interrupt, 4-37, 4-55
Shift / Rotate Operations instructions,

C-46
shift instructions

Arithmetic Shift, 2-48, 14-7
Logical Shift, 14-14, C-50
Shift with Add, 14-5, C-46
Vector Arithmetic Shift, 19-23, C-114
Vector Logical Shift, 19-28, C-115

Shift with Add instruction, 14-5, C-46
shifter, 1-1, 2-1, 2-48 to 2-56

arithmetic formats, 2-17
data types, 2-15
field deposit, 2-52
field extract, 2-52

INDEX

I-26 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

shifter (continued)
immediate shifts, 2-49, 2-50
instructions, 2-53
operations, 2-48
register shifts, 2-50, 2-51
status flags, 2-53
three-operand shifts, 2-50
two-operand shifts, 2-49

shifts, 2-1
short jump (JUMP.S) instruction, 4-11
SIC, 1-7, 1-8, 4-35
SIC_IAR0 (System Interrupt Assignment

register 0), 4-37
SIC_IARx (System Interrupt Assignment

registers), 4-37
SIC_IMASK (System Interrupt Mask

register), 4-36
SIC_ISR (System Interrupt Status register),

4-35
SIC_IWR (System Interrupt Wakeup

Enable register), 4-34
Sign Bit instruction, C-95
sign extending data, 2-12
SIGN instruction, 19-3
SIGNBITS instruction, 15-83
signed numbers, 2-4, 2-5, D-1

ranges, D-4
SIMD video ALU operations, 2-35
single 16-bit operations, 2-27
single 32-bit operations, 2-29
single step exception, 4-66
small loop count values, 7-16
SNEN bit, 21-26
software interrupt handlers, 4-30
software loops, zero-overhead, 7-15
Software Reset register (SWRST), 3-15
SP, 1-13
Special, 18-47
speculative load execution, 6-69
speech compression routines, 2-23

SRAM, 1-6, 6-2
address collision, 6-27
L1 data, 6-27
L1 instruction access, 6-8
L2, 6-43
scratchpad, 6-4

SSSTEP bit, 21-26
SSYNC instruction, 16-8
stack, 4-5

effects of Linkage instruction, 10-18
effects of Pop instruction, 10-9
effects of Pop Multiple instruction,

10-13
effects of Push instruction, 10-2
effects of Push Multiple instruction, 10-6
maximum frame size, 10-18

Stack Control Instructions, C-37
Stack Pointer, 1-13, 10-7 to 10-19

description, C-2
Stack Pointer (SP) registers, 4-6, 5-6
stack variables, 4-15
Stages of Instruction Pipeline (table), 4-7
stalled load instruction, 6-34
stalls, pipeline, 6-66
STATDA0 bit, 21-14
STATDA1 bit, 21-14
states

Idle, 3-2
Reset, 3-2

STATIA0 bit, 21-14
STATIA1 bit, 21-14
STATIA2 bit, 21-14
STATIA3 bit, 21-14
STATIA4 bit, 21-14
STATIA5 bit, 21-14
status flags, arithmetic, 1-15
status registers, 3-4
STI instruction, 6-74, 16-15
Store Byte instruction, 8-54, C-27
Store Data Register instruction, C-24

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-27

INDEX

Store High Data Register Half instruction,
8-45, C-25

store instructions, C-16
Store Byte, 8-54, C-27
Store Data Register, 8-40, C-24
Store High Data Register Half, 8-45,

C-25
Store Low Data Register Half, 8-49,

C-26
Store Pointer Register, 8-37, C-23

Store Low Data Register Half instruction,
8-49, C-26

store operation, 6-66
store ordering, 6-67
Store Pointer Register instruction, 8-37,

C-23
Subbank Access[1:0] field, 6-40
subroutines, 4-1, 4-13

return from (RTS), 7-10, 7-11
Subtract Immediate instruction, 15-90,

C-98
Subtract instruction, 15-86, C-96
subtract instructions

Quad 8-Bit Subtract, 18-32, C-106
Quad 8-Bit

Subtract-Absolute-Accumulate,
18-36, C-106

Subtract, 15-86, C-96
Subtract Immediate, 15-90, C-98
Vector Add / Subtract, 19-18, C-107

superscalar architecture, 20-1
Supervisor mode, 1-4, 3-1, 3-7

exclusive Supervisor instructions
Disable Interrupts, 16-13
Enable Interrupts, 16-15
Force Interrupt / Reset, 16-19
Idle, 16-4

exclusive Supervisor instructions, Return
(RTI, RTX, and RTN), 7-11

exclusive Supervisor registers

Supervisor mode (continued)
RETE, 9-6, 10-3, 10-10
RETI, 9-6, 10-3, 10-10
RETN, 9-6, 10-3, 10-10
RETX, 9-6, 10-3, 10-10
SEQSTAT, 9-6, 10-3, 10-10
SYSCFG, 9-6, 10-3, 10-10
USP, 9-6, 10-3, 10-10

MMR access, 6-73
Supervisor Stack Pointer register, 5-7
Supply, 5-2
supply addressing, 5-2
support, technical or customer, xxviii
SWRST (Software Reset register), 3-15
Synchronize, Core instruction, 16-5
syntax

allreg, 10-2
case insensitive, 1-8
comment delineators, 1-10
constants

imm16, 8-4
imm3, 11-2, 11-6
imm6, 14-21
imm7, 8-4, 15-16
lppcrel11m2, 7-14
notation convention, C-6
pcrel11m2, 7-6
pcrel13m2, 7-2
pcrel25m2, 7-3, 7-8
pcrel5m2, 7-14
pcrelm2, 7-2
uimm15, 8-31, 8-34, 8-54
uimm16, 8-4
uimm16m2, 8-15, 8-19, 8-50
uimm17m4, 8-7, 8-11, 8-37, 8-41
uimm18m4, 10-17
uimm3, 11-2, 11-6
uimm4, 14-8, 14-15, 16-17, 16-20,

19-23, 19-28

INDEX

I-28 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

syntax (continued)
uimm5, 13-2, 13-4, 13-6, 13-8, 14-8,

14-15
uimm5m2, 8-15, 8-19, 8-50
uimm6m4, 8-7, 8-11, 8-37, 8-41
uimm7m4, 8-7, 8-11, 8-37, 8-41

constants, notation convention, 1-11,
1-12, C-5

dagreg, 9-3
Dreg_even, 9-3, 15-67
Dreg_hi, 8-45, 9-16, 15-43, 15-58, 19-3
Dreg_lo, 8-27, 8-49, 9-10, 9-13, 9-16,

12-10, 13-16, 13-26, 14-8, 14-15,
15-26, 15-43, 15-58, 15-83, 19-3,
19-8, 19-23, 19-28

Dreg_lo_hi, 14-8, 14-15, 15-6, 15-10,
15-13, 15-26, 15-38, 15-43, 15-53,
15-58, 15-67, 15-77, 15-83, 15-86,
19-48

Dreg_odd, 9-3, 15-67
free format, 1-9
genreg, 9-3
instruction delimiting, 1-9
mostreg, 10-8
parallel issue, 20-2
reg, 8-4
sysreg, 9-3
user label, 7-3, 7-6, 7-8

SYSCFG (System Configuration register),
21-26

SYSCR (System Reset Configuration
register), 3-14

sysreg, 9-3
System and Core Event Mapping (table),

4-30
System Configuration register (SYSCFG),

21-26
System Interrupt Assignment register 0

(SIC_IAR0), 4-37

System Interrupt Assignment registers
(SIC_IARx), 4-37

System Interrupt Controller (SIC), 1-8,
4-30

System Interrupt Mask register
(SIC_IMASK), 4-36

system interrupt processing, 4-31
System Interrupt Status register (SIC_ISR),

4-35
System Interrupt Wakeup Enable register

(SIC_IWR), 4-34
system interrupts, 4-30
System Reset Configuration register

(SYSCR), 3-14
system software reset, 3-12, 3-14
system stack, recommendation for

allocating, 4-56
System Synchronize instruction, 16-8,

C-99

T
tag (definition), 6-76
Tag bit, 6-42
Tag[1:0] field, 6-23
Tag[19:4] field, 6-23, 6-42
Tag[3:2] field, 6-23, 6-42
TAGSELB bit, 6-21
TBUF (Trace Buffer register), 21-18
TBUF[15:0] field, 21-18
TBUF[31:16] field, 21-18
TBUFCNT[4:0] field, 21-17
TBUFCTL (Trace Buffer Control register),

21-16
TBUFEN bit, 21-17
TBUFOVF bit, 21-16, 21-17
TBUFPWR bit, 21-16, 21-17
TBUFSTAT (Trace Buffer Status register),

21-17
technical or customer support, xxviii
technical support, xxviii

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-29

INDEX

Test and Set Byte (Atomic) instruction,
16-22, C-99

TESTSET instruction, 6-72, 16-22
three-operand shift, 2-50
throughput

achieved by interlocked pipeline, 6-66
achieved by SRAM, 6-2

trace buffer, 21-15
exception, 4-66
reading, 21-16

Trace Buffer Control register (TBUFCTL),
21-16

Trace Buffer register (TBUF), 21-18
Trace Buffer Status register (TBUFSTAT),

21-17
Trace Unit, 21-15 to 21-18
truncation, 1-20, 2-23

behavior, 1-20
two’s complement format, D-1
two-dimensional loops, 4-24
two-operand shift, 2-49

U
uimm15 constant, 8-31, 8-34, 8-54
uimm16 constant, 8-4
uimm16m2 constant, 8-15, 8-19, 8-50
uimm17m4 constant, 8-7, 8-11, 8-37, 8-41
uimm18m4 constant, 10-17
uimm3 constant, 11-2, 11-6
uimm4 constant, 14-8, 14-15, 16-17,

16-20, 19-23, 19-28
uimm5 constant, 13-2, 13-4, 13-6, 13-8,

14-8, 14-15
uimm5m2 constant, 8-15, 8-19, 8-50
uimm6m4 constant, 8-7, 8-11, 8-37, 8-41
uimm7m4 constant, 8-7, 8-11, 8-37, 8-41
unbiased rounding, 1-19, 2-19

unconditional branches
branch latency, 4-21
branch target address, 4-21

undefined execution, 7-17
undefined instruction, 4-65
UNLINK instruction, 4-17, 10-17
Unrecoverable Event, 4-65
unrolling loops, 4-26
unsigned integer, D-1
unsigned numbers, 2-4

data formats, 2-13
Upper Bits of Address for Match[21:6]

field, 6-59, 6-60
Upper Bits of Address for Match[5:0] field,

6-59, 6-60
User mode, 1-4, 3-1

accessible registers, 3-3
accessing MMRs, 6-73
entering, 3-5
leaving, 3-6
protected instructions, 3-4

User Stack Pointer (USP), 3-7, 5-7
user_label, 7-3, 7-6, 7-8

V
valid (definition), 6-76
Valid bit, 6-42

clearing, 6-37
figure, 6-23
function, 6-11
in cache line replacement, 6-15
in instruction cache invalidation, 6-18

Vector Absolute Value instruction, 19-15,
C-107

Vector Add / Subtract instruction, 19-18,
C-107

Vector Arithmetic Shift instruction, 19-23,
C-114

vector couplet, 19-38, 19-41

INDEX

I-30 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

vector instructions
Vector Absolute Value, 19-15, C-107
Vector Add / Subtract, 19-18, C-107
Vector Arithmetic Shift, 19-23, C-114
Vector Logical Shift, 19-28, C-115
Vector Maximum, 19-32, C-115
Vector Minimum, 19-35, C-115
Vector Multiply, 19-38, C-115
Vector Multiply and

Multiply-Accumulate, 19-41, C-121
Vector Pack, 19-48, C-138
Vector Search, 19-50, C-138

Vector Logical Shift instruction, 19-28,
C-115

Vector Maximum instruction, 19-32,
C-115

Vector Minimum instruction, 19-35,
C-115

Vector Multiply and Multiply-Accumulate
instruction, 19-41, C-121

Vector Multiply instruction, 19-38, C-115
Vector Negate (Two’s Complement)

instruction, 19-46, C-138
Vector Operations Instructions, C-107
Vector Pack instruction, 19-48, C-138
Vector Search instruction, 19-50, C-138
victim (definition), 6-76
victim buffers, 6-34
video ALU

instructions, 5-16
operations, 2-35

video bit field operations
Bit Field Deposit instruction

backgnd_reg, 13-10
foregnd_reg, 13-10

Bit Field Extraction instruction
pattern_reg, 13-16
scene_reg, 13-16

video pixel operations instructions, 18-1,
C-102

VIT_MAX instruction, 19-8
Von-Neumann architecture, 6-1

W
WAKEUP signal, 3-10
watchdog timer reset, 3-12, 3-14
Watchpoint Match, 4-65
Watchpoint Status register (WPSTAT),

21-14
Watchpoint Unit, 21-1 to 21-14

combination of instruction and data
watchpoints, 21-3

data address watchpoints, 21-10
instruction watchpoints, 21-4
memory-mapped registers, 21-2
WPIACTL watchpoint ranges, 21-4

watchpoints
data, 21-3
instruction address range, 21-2

Way
1-Way associative (direct-mapped), 6-74
definition, 6-76
locking, 6-17
priority in cache line replacement, 6-15

WAYSEL[1:0] field, 6-21
WB (Write Back), 4-7
width, instruction, 4-8
word (definition), 2-6
word fetching order, 6-14
WPAND bit, 21-3, 21-8
WPDA (Data Address)[15:0] field, 21-11
WPDA (Data Address)[31:16] field, 21-11
WPDACC0[1:0] field, 21-13
WPDACC1[1:0] field, 21-13
WPDACNT (Count Value)[15:0] field,

21-12
WPDACNTn (Data Watchpoint Address

Count Value registers), 21-11
WPDACTL (Data Watchpoint Address

Control register), 21-12

ADSP-BF53x/BF56x Blackfin Processor Programming Reference I-31

INDEX

WPDAEN0 bit, 21-13
WPDAEN1 bit, 21-13
WPDAn (Data Watchpoint Address

registers), 21-10
WPDCNTEN0 bit, 21-13
WPDCNTEN1 bit, 21-13
WPDREN01 bit, 21-13
WPDRINV01 bit, 21-13
WPDSRC0[1:0] field, 21-13
WPDSRC1[1:0] field, 21-13
WPIA (Instruction Address)[14:0] field,

21-6
WPIA (Instruction Address)[30:15] field,

21-6
WPIACNT (Count Value)[15:0] field,

21-7
WPIACNTn (Instruction Watchpoint

Address Count registers), 21-6
WPIACTL (Instruction Watchpoint

Address Control register), 21-7
WPIAEN0 bit, 21-9
WPIAEN1 bit, 21-9
WPIAEN2 bit, 21-9
WPIAEN3 bit, 21-9
WPIAEN4 bit, 21-8
WPIAEN5 bit, 21-8
WPIAn (Instruction Watchpoint Address

registers), 21-5
WPICNTEN0 bit, 21-9
WPICNTEN1 bit, 21-9

WPICNTEN2 bit, 21-9
WPICNTEN3 bit, 21-9
WPICNTEN4 bit, 21-8
WPICNTEN5 bit, 21-8
WPIREN01 bit, 21-9
WPIREN23 bit, 21-9
WPIREN45 bit, 21-8
WPIRINV01 bit, 21-9
WPIRINV23 bit, 21-9
WPIRINV45 bit, 21-8
WPPWR bit, 21-4, 21-7, 21-9
WPSTAT (Watchpoint Status register),

21-14
wraparound buffer, 5-15
write back, 6-29, 6-35, 6-76
Write Back (WB), 4-7
write buffer depth, 6-35
write through, 6-29, 6-35, 6-76

X
XOR, logical, 2-26

Z
zero extending data, 2-12
zero-overhead loop registers, 4-22
Zero-Overhead Loop Setup instruction,

7-13, C-14
zero-overhead loops and trace buffer, 21-15

INDEX

I-32 ADSP-BF53x/BF56x Blackfin Processor Programming Reference

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Conventions

	1 Introduction
	Core Architecture
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space

	Event Handling
	Core Event Controller (CEC)
	System Interrupt Controller (SIC)

	Syntax Conventions
	Case Sensitivity
	Free Format
	Instruction Delimiting
	Comments

	Notation Conventions
	Behavior Conventions
	Glossary
	Register Names
	Functional Units
	Arithmetic Status Flags
	Fractional Convention
	Saturation
	Rounding and Truncating
	Automatic Circular Addressing

	2 Computational Units
	Using Data Formats
	Binary String
	Unsigned
	Signed Numbers: Two’s-Complement
	Fractional Representation: 1.15

	Register Files
	Data Register File
	Accumulator Registers
	Register File Instruction Summary

	Data Types
	Endianess
	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary
	Using Multiplier Integer and Fractional Formats
	Rounding Multiplier Results
	Unbiased Rounding
	Biased Rounding
	Truncation

	Special Rounding Instructions

	Using Computational Status
	ASTAT Register
	Arithmetic Logic Unit (ALU)
	ALU Operations
	Single 16-Bit Operations
	Dual 16-Bit Operations
	Quad 16-Bit Operations
	Single 32-Bit Operations
	Dual 32-Bit Operations

	ALU Instruction Summary
	ALU Division Support Features
	Special SIMD Video ALU Operations

	Multiply Accumulators (Multipliers)
	Multiplier Operation
	Placing Multiplier Results in Multiplier Accumulator Registers
	Rounding or Saturating Multiplier Results

	Saturating Multiplier Results on Overflow
	Multiplier Instruction Summary
	Multiplier Instruction Options

	Multiplier Data Flow Details
	Multiply Without Accumulate
	Special 32-Bit Integer MAC Instruction
	Dual MAC Operations

	Barrel Shifter (Shifter)
	Shifter Operations
	Two-Operand Shifts
	Three-Operand Shifts
	Bit Test, Set, Clear, Toggle
	Field Extract and Field Deposit

	Shifter Instruction Summary

	3 Operating Modes and States
	User Mode
	Protected Resources and Instructions
	Protected Memory
	Entering User Mode
	Example Code to Enter User Mode Upon Reset
	Return Instructions That Invoke User Mode

	Supervisor Mode
	Non-OS Environments
	Example Code for Supervisor Mode Coming Out of Reset

	Emulation Mode
	Idle State
	Example Code for Transition to Idle State

	Reset State
	System Reset and Powerup
	Hardware Reset
	SYSCR Register
	Software Resets and Watchdog Timer
	SWRST Register
	Core-Only Software Reset
	Core and System Reset

	4 Program Sequencer
	Introduction
	Sequencer Related Registers

	Instruction Pipeline
	Branches
	Direct Short and Long Jumps
	Direct Call
	Indirect Branch and Call
	PC-Relative Indirect Branch and Call
	Subroutines
	Stack Variables and Parameter Passing

	Condition Code Flag
	Conditional Branches
	Conditional Register Move

	Branch Prediction

	Hardware Loops
	Two-Dimensional Loops
	Loop Unrolling
	Saving and Resuming Loops
	Example Code for Using Hardware Loops in an ISR

	Events and Interrupts
	System Interrupt Processing
	System Peripheral Interrupts
	SIC_IWR Register
	SIC_ISR Register
	SIC_IMASK Register
	System Interrupt Assignment Registers (SIC_IARx)
	Core Event Controller Registers
	IMASK Register
	ILAT Register
	IPEND Register

	Event Vector Table
	Return Registers and Instructions
	Executing RTX, RTN, or RTE in a Lower Priority Event

	Emulation Interrupt
	Reset Interrupt
	NMI (Nonmaskable Interrupt)
	Exceptions
	Hardware Error Interrupt
	Core Timer Interrupt
	General-purpose Interrupts (IVG7-IVG15)

	Interrupt Processing
	Global Enabling/Disabling of Interrupts
	Servicing Interrupts
	Software Interrupts
	Nesting of Interrupts
	Non-nested Interrupts
	Nested Interrupts
	Self-Nesting of Core Interrupts
	Additional Usability Issues

	Latency in Servicing Events

	Hardware Errors and Exception Handling
	SEQSTAT Register
	Hardware Error Interrupt
	Exceptions
	Exceptions While Executing an Exception Handler
	Exceptions and the Pipeline
	Deferring Exception Processing
	Example Code for an Exception Handler
	Example Code for an Exception Routine

	5 Address Arithmetic Unit
	Addressing With the AAU
	Pointer Register File
	Frame and Stack Pointers

	DAG Register Set
	Indexed Addressing With Index & Pointer Registers
	Loads With Zero or Sign Extension
	Indexed Addressing With Immediate Offset

	Auto-increment and Auto-decrement Addressing
	Pre-modify Stack Pointer Addressing
	Post-modify Addressing
	Addressing Circular Buffers
	Addressing With Bit-reversed Addresses

	Modifying DAG and Pointer Registers
	Memory Address Alignment
	AAU Instruction Summary

	6 Memory
	Memory Architecture
	Overview of On-Chip Level 1 (L1) Memory
	Overview of Scratchpad Data SRAM
	Overview of On-Chip Level 2 (L2) Memory

	L1 Instruction Memory
	IMEM_CONTROL Register
	L1 Instruction SRAM
	L1 Instruction Cache
	Cache Lines
	Instruction Cache Management

	Instruction Test Registers
	ITEST_COMMAND Register
	ITEST_DATA1 Register
	ITEST_DATA0 Register

	L1 Data Memory
	DMEM_CONTROL Register
	L1 Data SRAM
	L1 Data Cache
	Example of Mapping Cacheable Address Space
	Data Cache Access
	Cache Write Method
	IPRIO Register and Write Buffer Depth
	Data Cache Control Instructions
	Data Cache Invalidation

	Data Test Registers
	DTEST_COMMAND Register
	DTEST_DATA1 Register
	DTEST_DATA0 Register

	On-chip Level 2 (L2) Memory
	On-chip L2 Bank Access
	Latency

	Memory Protection and Properties
	Memory Management Unit
	Memory Pages
	Memory Page Attributes

	Page Descriptor Table
	CPLB Management
	MMU Application
	Examples of Protected Memory Regions
	ICPLB_DATAx Registers
	DCPLB_DATAx Registers
	DCPLB_ADDRx Registers
	ICPLB_ADDRx Registers
	DCPLB_STATUS and ICPLB_STATUS Registers
	DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR Registers

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Ordering of Loads and Stores
	Synchronizing Instructions
	Speculative Load Execution
	Conditional Load Behavior

	Working With Memory
	Alignment
	Cache Coherency
	Atomic Operations
	Memory-mapped Registers
	Core MMR Programming Code Example

	Terminology

	7 Program Flow Control
	Instruction Overview
	Jump
	IF CC JUMP
	Call
	RTS, RTI, RTX, RTN, RTE (Return)
	LSETUP, LOOP

	8 Load / Store
	Instruction Overview
	Load Immediate
	Load Pointer Register
	Load Data Register
	Load Half-Word - Zero-Extended
	Load Half-Word - Sign-Extended
	Load High Data Register Half
	Load Low Data Register Half
	Load Byte - Zero-Extended
	Load Byte - Sign-Extended
	Store Pointer Register
	Store Data Register
	Store High Data Register Half
	Store Low Data Register Half
	Store Byte

	9 Move
	Instruction Overview
	Move Register
	Move Conditional
	Move Half to Full Word - Zero-Extended
	Move Half to Full Word - Sign-Extended
	Move Register Half
	Move Byte - Zero-Extended
	Move Byte - Sign-Extended

	10 Stack Control
	Instruction Overview
	--SP (Push)
	--SP (Push Multiple)
	SP++ (Pop)
	SP++ (Pop Multiple)
	LINK, UNLINK

	11 Control Code Bit Management
	Instruction Overview
	Compare Data Register
	Compare Pointer
	Compare Accumulator
	Move CC
	Negate CC

	12 Logical Operations
	Instruction Overview
	& (AND)
	~ (NOT One’s Complement)
	| (OR)
	^ (Exclusive-OR)
	BXORSHIFT, BXOR

	13 Bit Operations
	Instruction Overview
	BITCLR
	BITSET
	BITTGL
	BITTST
	DEPOSIT
	EXTRACT
	BITMUX
	ONES (One’s Population Count)

	14 Shift/Rotate Operations
	Instruction Overview
	Add with Shift
	Shift with Add
	Arithmetic Shift
	Logical Shift
	ROT (Rotate)

	15 Arithmetic Operations
	Instruction Overview
	ABS
	Add
	Add/Subtract - Prescale Down
	Add/Subtract - Prescale Up
	Add Immediate
	DIVS, DIVQ (Divide Primitive)
	EXPADJ
	MAX
	MIN
	Modify - Decrement
	Modify - Increment
	Multiply 16-Bit Operands
	Multiply 32-Bit Operands
	Multiply and Multiply-Accumulate to Accumulator
	Multiply and Multiply-Accumulate to Half-Register
	Multiply and Multiply-Accumulate to Data Register
	Negate (Two’s Complement)
	RND (Round to Half-Word)
	Saturate
	SIGNBITS
	Subtract
	Subtract Immediate

	16 External Event Management
	Instruction Overview
	Idle
	Core Synchronize
	System Synchronize
	EMUEXCPT (Force Emulation)
	Disable Interrupts
	Enable Interrupts
	RAISE (Force Interrupt / Reset)
	EXCPT (Force Exception)
	Test and Set Byte (Atomic)
	No Op

	17 Cache Control
	Instruction Overview
	PREFETCH
	FLUSH
	FLUSHINV
	IFLUSH

	18 Video Pixel Operations
	Instruction Overview
	ALIGN8, ALIGN16, ALIGN24
	DISALGNEXCPT
	BYTEOP3P (Dual 16-Bit Add / Clip)
	Dual 16-Bit Accumulator Extraction with Addition
	BYTEOP16P (Quad 8-Bit Add)
	BYTEOP1P (Quad 8-Bit Average - Byte)
	BYTEOP2P (Quad 8-Bit Average - Half-Word)
	BYTEPACK (Quad 8-Bit Pack)
	BYTEOP16M (Quad 8-Bit Subtract)
	SAA (Quad 8-Bit Subtract-Absolute-Accumulate)
	BYTEUNPACK (Quad 8-Bit Unpack)

	19 Vector Operations
	Instruction Overview
	Add on Sign
	VIT_MAX (Compare-Select)
	Vector ABS
	Vector Add / Subtract
	Vector Arithmetic Shift
	Vector Logical Shift
	Vector MAX
	Vector MIN
	Vector Multiply
	Vector Multiply and Multiply-Accumulate
	Vector Negate (Two’s Complement)
	Vector PACK
	Vector SEARCH

	20 Issuing Parallel Instructions
	Supported Parallel Combinations
	Parallel Issue Syntax
	32-Bit ALU/MAC Instructions
	16-Bit Instructions
	Examples

	21 Debug
	Watchpoint Unit
	Instruction Watchpoints
	WPIAn Registers
	WPIACNTn Registers
	WPIACTL Register
	Data Address Watchpoints
	WPDAn Registers
	WPDACNTn Registers
	WPDACTL Register
	WPSTAT Register

	Trace Unit
	TBUFCTL Register
	TBUFSTAT Register
	TBUF Register
	Code to Recreate the Execution Trace in Memory

	Performance Monitoring Unit
	PFCNTRn Registers
	PFCTL Register
	Event Monitor Table

	Cycle Counter
	CYCLES and CYCLES2 Registers
	SYSCFG Register

	Product Identification Register
	DSPID Register

	A ADSP-BF535 Considerations
	ADSP-BF535 Operating Modes and States
	ADSP-BF535 Flags

	B Core MMR Assignments
	L1 Data Memory Controller Registers
	L1 Instruction Memory Controller Registers
	Interrupt Controller Registers
	Debug, MP, and Emulation Unit Registers
	Trace Unit Registers
	Watchpoint and Patch Registers
	Performance Monitor Registers

	C Instruction Opcodes
	Introduction
	Appendix Organization
	Glossary
	Register Names
	Functional Units
	Notation Conventions
	Arithmetic Status Flags

	Core Register Encoding Map
	Opcode Representation
	Opcode Bit Terminology
	Undefined Opcodes
	Holes In Opcode Ranges
	Opcode Representation In Listings, Memory Dumps

	Program Flow Control Instructions
	Load / Store Instructions
	Move Instructions
	Stack Control Instructions
	Control Code Bit Management Instructions
	Logical Operations Instructions
	Bit Operations Instructions
	Shift / Rotate Operations Instructions
	Arithmetic Operations Instructions
	External Event Management Instructions
	Cache Control Instructions
	Video Pixel Operations Instructions
	Vector Operations Instructions
	Instructions Listed By Operation Code
	16-Bit Opcode Instructions
	32-Bit Opcode Instructions

	D Numeric Formats
	Unsigned or Signed: Two’s-complement Format
	Integer or Fractional
	Binary Multiplication
	Fractional Mode And Integer Mode

	Block Floating-point Format

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

